



# Neoclassical transport in the pedestal: theory and numerical comparison

Silvia Trinczek



#### The Pedestal

- Improved confinement through shearing of turbulence
  - -"transport barrier"
- strong decrease of density and temperature + radial electric field well in H-mode plasma
- Pedestal width is of the order of  $ho_p^{\,[1,2]}$





#### **Motivation**

Neoclassical transport relevant in strong gradient regions due to reduced turbulence<sup>[1]</sup>

- Pedestal width is of the order of  $ho_p^{[1,2]}$
- Problem: "standard" neoclassical theory requires weak gradients

$$\frac{\rho_p}{L} \ll 1$$

We need to extend neoclassical theory into regions of strong gradients:  $L \sim \rho_p$ 



GOAL: Extend neoclassical theory into regions where turbulence is reduced (pedestal)

and study if the resulting profiles describes stable low transport states (H-



#### **Structure**

- 1. Orderings and transport equations
- 2. Turbulence-free pedestal
  - Transport
  - XGC comparison
- 3. Low turbulence pedestal
  - Transport
  - Stability analysis



#### **Structure**

- 1. Orderings and transport equations
- 2. Turbulence-free pedestal
  - Transport
  - XGC comparison
- 3. Low turbulence pedestal
  - Transport
  - Stability analysis



# Model set up and orderings

Large aspect ratio:

$$\epsilon \equiv \frac{r}{R} \ll 1$$

Scale separation:

$$L_{n,\Phi,T} \sim \rho_p \equiv \rho \frac{B}{B_p} \sim \rho \frac{q}{\epsilon}$$

$$\rho \ll \rho_p$$

⇒ Drift kinetics



#### Circular flux surfaces:

Slim orbit width: Many orbits within one gradient length scale  $\Rightarrow f = f_M + g$ 

Poloidal variation:

$$\Phi - \phi(\psi) = \phi_{\theta}(\theta, \psi) \sim \epsilon \frac{T}{e}$$

Strong gradients:

$$\rho_* \equiv \frac{\rho}{L} \sim \frac{\rho}{\rho_p} \sim \epsilon$$

[5] G. Kagan et al 2009 PoP 16, 056105

Weak gradients:

$$\rho_* \equiv \frac{\rho}{L} \sim \frac{\rho}{r} \ll \epsilon$$

Previous work assumed small temperature gradients<sup>[5-7]</sup>, small mean parallel flow gradients<sup>[8-10]</sup> and were inconsistent in the poloidal variation and the mean parallel flow



# Shift of trapped particle region

**Trapped particles:** 

Poloidal velocity:

$$\dot{\theta} = \left(v_{\parallel}\hat{b} + v_{E\times B}\right) \cdot \nabla\theta = \left(v_{\parallel} + \frac{cI}{B}\frac{\partial\Phi}{\partial\psi}\right)\hat{b} \cdot \nabla\theta \equiv (v_{\parallel} + u)\hat{b} \cdot \nabla\theta$$

Poloidal components of parallel velocity and  $E \times B$  – drift balance<sup>[4,7]</sup>

 $\Rightarrow$  Shift in trapped particle region to  $v_{\parallel} + u \sim \sqrt{\epsilon} v_t$ 



G. Kagan et al 2009 *PoP* **16**, 056105



Shift in trapped particle region causes asymmetry in passing particle number:

more red particles  $(v_{\parallel} + u > 0)$  than blue particles  $(v_{\parallel} + u < 0)$ 

[5] G. Kagan et al 2009 *PoP* **16**, 056105



#### **Poloidal Variation**

• Shift in Trapped Particle Region causes asymmetry in passing particle number red particles  $(v_{\parallel} + u > 0)$  than blue particles  $(v_{\parallel} + u < 0)$ 



- Centrifugal forces
- Mean parallel flow gradient
- Orbit width asymmetry



- $\Rightarrow$  Poloidal Variation within a flux surface in density, potential, flow, and temperature [1\*,2\*]
- $\Rightarrow$  Particles can be trapped on the inboard side



# **Transport equations**

Ion neoclassical particle and energy fluxes in the banana regime:

$$\Gamma_{\mathbf{i}} = -1.1 \sqrt{\frac{r}{R}} \frac{v I^2 p_i}{|S|^{3/2} m_i \Omega_{\mathbf{i}}^2} \left\{ \left[ \frac{\partial}{\partial \psi} \ln p_i - \frac{m_i (u + V_{\parallel})}{T_i} \left( \frac{\partial V_{\parallel}}{\partial \psi} - \frac{\Omega}{I} \right) \right] G_1(u, V_{\parallel}, \phi_c) - 1.17 \frac{\partial}{\partial \psi} \ln T_i G_2(u, V_{\parallel}, \phi_c) \right\}$$

$$Q_{i} = \frac{m_{i}u^{2}}{2}\Gamma_{i} - 1.46\sqrt{\frac{r}{R}} \frac{vI^{2}p_{i}T_{i}}{|S|^{3/2}m_{i}\Omega_{i}^{2}} \left\{ \left[ \frac{\partial}{\partial\psi} \ln p_{i} - \frac{m_{i}(u+V_{\parallel})}{T_{i}} \left( \frac{\partial V_{\parallel}}{\partial\psi} - \frac{\Omega}{I} \right) \right] H_{1}(u,V_{\parallel},\phi_{c}) - 0.25\frac{\partial}{\partial\psi} \ln T_{i} H_{2}(u,V_{\parallel},\phi_{c}) \right\}$$

- Modification of transport coefficient by poloidal dependence of the potential
- Transport driven by gradient of mean parallel flow
- Orbit squeezing<sup>[5]</sup>
- Explicit dependence on mean parallel flow

Orbit squeezing:

$$S = 1 + \frac{cI^2}{\Omega B} \frac{\partial^2 \Phi}{\partial \psi^2}$$

Trapped particle velocity:

$$u = \frac{cI}{B} \frac{\partial \Phi}{\partial \psi}$$



# Transport equations

$$\Gamma_{\mathbf{i}} = -1.1 \sqrt{\frac{r}{R}} \frac{vI^2p}{|S|^{3/2}m\Omega^2} \left\{ \left[ \frac{\partial}{\partial \psi} \ln p - \frac{m(u+V_{\parallel})}{T} \left( \frac{\partial V_{\parallel}}{\partial \psi} - \frac{\Omega}{I} \right) \right] G_1(u,V_{\parallel},\phi_c) - 1.17 \frac{\partial}{\partial \psi} \ln T G_2(u,V_{\parallel},\phi_c) \right\}$$

$$\rightarrow 0 \rightarrow 1 \rightarrow 1 \rightarrow 1$$

$$Q = \frac{mu^{2}}{2} \Gamma_{\mathbf{i}} - 1.46 \sqrt{\frac{r}{R}} \frac{vI^{2}pT}{|S|^{3/2}m\Omega^{2}} \left\{ \left[ \frac{\partial}{\partial \psi} \ln p - \frac{m(u+V_{\parallel})}{T} \left( \frac{\partial V_{\parallel}}{\partial \psi} - \frac{\Omega}{I} \right) \right] H_{1}(u,V_{\parallel},\phi_{c}) - 0.25 \frac{\partial}{\partial \psi} \ln T H_{2}(u,V_{\parallel},\phi_{c}) \right\}$$

$$\rightarrow 0 \qquad \rightarrow 1 \qquad \rightarrow 1$$

Electron particle transport:  $\Gamma_e = (...)$ 

Electron energy transport:  $Q_e = (...)$ 

Ion momentum transport:  $\gamma = (...)$ 

Poloidal variation from QN:  $\phi_c = (...)$ 

For Banana [1\*,2\*] and for Plateau regime

Weak gradient limit

Orbit squeezing:

$$S = 1 + \frac{cI^2}{\Omega B} \frac{\partial^2 \Phi}{\partial \psi^2}$$

Trapped particle velocity:

$$u = \frac{cI}{B} \frac{\partial \Phi}{\partial \psi}$$

Bootstrap current:  $j^B = (...)$ 



#### **Structure**

- 1. Orderings and transport equations
- 2. Turbulence-free pedestal
  - Transport
  - XGC comparison
- 3. Low turbulence pedestal
  - Transport
  - Stability analysis



#### The turbulence free pedestal: Neoclassical Ambipolarity

**In practice:** Take input profiles of density, temperature and mean flow and calculate transport quantities

#### No turbulence:

• Consistent with ambipolarity:  $\Gamma_i = \Gamma_e$ 

$$\frac{\Gamma_e^{neo}}{\Gamma_i^{neo}} \sim \sqrt{\frac{m_e}{m_i}}$$

• We must impose  $\Gamma_i \simeq 0$  to lowest prder Banana NA

-0.1 -0.2 05
10

Give  $n_i, T_i, T_e, V_{\parallel}$  profiles

nonlinear

Solve  $\Gamma_i = (...) = 0$  for  $E_r$ 

Get  $Q_i$ ,  $\Gamma_e$ ,  $Q_e$ ,  $\gamma$ ,  $\phi_{\theta}$ ,  $j^B$  profiles



#### Results: Poloidal variation



In-out asymmetry

Not true to scale in radius



In-out and up-down asymmetry

Not true to scale in radius



# Results: Banana regime





Strong gradient neoclassical theory predicts a larger or smaller energy flux, depending on the flow

Strong gradient neoclassical theory predicts larger or similar bootstrap current, depending on the flow



# Results: Plateau regime



Strong gradient neoclassical theory predicts larger energy flux and bootstrap current

Choice of mean parallel flow is less important



- XGC is a gyrokinetic particle-in-cell code with a nonlinear Fokker-Planck collision operator
- XGCa is the axisymmetric version of XGC that has been successfully benchmarked to weak
  gradient neoclassical theory<sup>[11]</sup>
- Objective: Compare fluxes, poloidal variation and bootstrap current modifications

Simulation setup: Strong density and temperature gradient profiles with heat sources to maintain temperature gradient





Let profiles evolve for about  $3\tau_i$ 

16



Preliminary results: ion energy flux and ion particle flux







Preliminary results: Bootstrap current and poloidal variation







Problems: Poloidal variation prediction does not agree







Problems: Radial electric field and mean parallel flow show "artificial torque"





#### **Structure**

- 1. Orderings and transport equations
- 2. Turbulence-free pedestal
  - Transport
  - XGC comparison
- 3. Low turbulence pedestal
  - Transport
  - Stability analysis



#### Low turbulence pedestal: Radial force balance

• Assumption: the radial electric field balances the pressure



$$enrac{\partial\Phi}{\partial\psi} = rac{\partial p}{\partial\psi}$$

Give  $n_i, T_i, T_e, V_{\parallel}$  profiles

Radial force balance

 $Zenrac{\partial\Phi}{\partial\psi}=rac{\partial p}{\partial\psi}$  gives  $E_r$ 

Moment Equations Get  $\Gamma_i$ ,  $Q_i$ ,  $\Gamma_e$ ,  $Q_e$ ,  $\gamma$ ,  $\phi_{\theta}$ ,  $j^B$  profiles



#### Results: Poloidal variation



In-out asymmetry

Not true to scale in radius



In-out and up-down asymmetry

Not true to scale in radius



# Results: Banana regime



**Banana FB** 



# Results: Plateau regime









# Stability analysis

Assumption: neoclassical transport is dominant in H-mode pedestals



We have an H-mode pedestal



Modes like ITG should be stable for the profiles we found, and turbulent transport is small



Our model should be able to describe the correct transport





# Stability analysis

**In practice:** How do things like

- $u \sim v_t$
- $V_{\parallel} \sim v_t$
- $\phi_{ heta}$  causing trapped particles on the inboard side

affect, for example, ITG, TEM and KBM in a regime where

- $\rho_* \sim \epsilon$   $\nabla \Phi \sim \frac{\Phi}{\epsilon}$

Bonus question: Can we find a threshold when profiles become unstable (H-L transition)?



#### **Conclusions**

We extend **neoclassical theory** into regions of **strong gradients** 5 to describe **H-mode pedestals** and find



- Poloidal variation
- Explicit dependence on mean parallel flow
- Orbit squeezing
- Predictions for turbulence-free and low-turbulence scenarios

#### Remaining questions:

- Can we get good agreement with XGC simulations?
- Are the solutions **stable** and describe an H-mode pedestal?



