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Some (of my) questions: 

Can ML help us speed up standard plasma simulators? 

Our early attempts: ML replaces Monte Carlo modules in PIC  - Badiali et al., JPP 2022; Amaro et al., arXiv:2406.02491

Can we build faster ML based simulators? 

Rethinking architecture of simulators to match ML uniqueness: 1D collisional plasma model - Carvalho et al.; MLST 2023

What can we learn from data-driven approaches + ML? 

Learning physics (following Alves & Fiuza) e.g. collision operators: Carvalho et al., in preparation for submission to JPP 

Can standard plasma simulators provide “high quality data” for data-driven discovery? 

Capturing collisions in PIC codes: D. Carvalho et al., in preparation

Can we understand qualitative modifications of plasma behavior from “Learning what we already know”

e.g. Waterbag vs Maxwellian; nonlinear waves vs unstable (and then turbulent) scenarios; nonrelativistic to relativistic, 
Casimir invariants evolution

Motivation & questions
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“There are unknown unknowns” (and “know unknowns”), Jon Arons citing D. Rumsfled 
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MC models in PIC simulations

New simulator models - 1D GNN collisional plasma model 

Learning advection and diffusion coefficients

The (ground) truth? - collisions in PIC codes
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Integration of equations of motion: 
moving particles

Integration of field equations: 
updating fields

Deposition:                            
calculating current on grid

Interpolation:                            
evaluating force on particles

∂B
∂t

= −c∇×E

∂E
∂t

= c∇×B− 4πj

Fp → up → xp

(E,B)i ← Ji

(E,B)i → Fp
(x,u)p → ji∆t

Monte-Carlo
Collision / QED Module

➡ collides pairs of particles
➡ emission of photons
➡ pair creation

Collisions/QED Physics are modelled using Monte-Carlo routines
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Can lead to numerical issues 
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Computationally intensive 
Memory & run-time

Can lead to numerical issues 
e.g. increased numerical heating

Theory valid in limited scenarios 
e.g. small angle-scattering

Problems

Reduce computational cost
Design new (stable) numerical algorithms
Learn corrections to existing theory 

Can ML tackle these issues?
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MC routines require the calculation of collision cross-sections

Theory
Usually impracticable at run-time

Interpolation Tables 
Fast to query
Limited to few input parameter values

Chebyshev Polynomials 
Exponentially convergent 
Impractical for  3D input parameter space≥

How are cross-sections calculated?
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Impractical for  3D input parameter space≥

How are cross-sections calculated?

Usual MC Inputs 
Photon Energy
Ion Atomic Number

Inputs that should also influence cross-section  
Angle of incoming photon
Plasma temperature
Plasma density
Ionisation degree
Local electromagnetic fields

Bethe-Heitler

Input parameter spaces are often > 3D
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MC routines require the calculation of collision cross-sections

Theory
Usually impracticable at run-time

Interpolation Tables 
Fast to query
Limited to few input parameter values

Chebyshev Polynomials 
Exponentially convergent 
Impractical for  3D input parameter space≥

Neural Networks*  
Memory efficient for any input parameter space
Run-time dependent on model size

* C. Badiali et al.,  J. Plasma Phys. 88(6) (2022) and O. Amaro et al., arXiv:2406.02491 (2024)

How are cross-sections calculated?

Usual MC Inputs 
Photon Energy
Ion Atomic Number

Inputs that should also influence cross-section  
Angle of incoming photon
Plasma temperature
Plasma density
Ionisation degree
Local electromagnetic fields

Bethe-Heitler

Input parameter spaces are often > 3D

https://arxiv.org/abs/2406.02491
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Example in production: Bethe-Heitler pair creation

B Martinez et al, Phys. Plasmas 26, 103109 (2019)
C. Badiali et al.,  J. Plasma Phys. 88(6) (2022)
O. Amaro et al., arXiv:2406.02491 (2024)

*

OSIRIS NN Implementation

Atomic 
Number

Photon 
Energy

Positron 
Energy

https://arxiv.org/abs/2406.02491
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Production 2D (Laser-solid target long-time evolution)

Light-weight and fast OSIRIS-SFQED 
Neural Networks are as accurate as pre-calculated tables
Require x100 less memory to store and are of comparable runtime

“With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.” von Neumann

NN vs Table: Similar performance at reduced memory cost

O. Amaro et al., arXiv:2406.02491 (2024)
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https://arxiv.org/abs/2406.02491
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MC models in PIC simulations

New simulator models - GNN collisional plasma model 

Learning advection and diffusion coefficients

The (ground) truth? - collisions in PIC codes
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PIC codes (and others) can be seen from a graph perspective

D. Carvalho et al., Mach. Learn.: Sci. Technol. 5 025048 (2024)
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A. Sanchez-Gonzalez et al., ICML PMLR 8459–8468 (2020) 
R. Lam et al., Science 382.6677 1416-1421 (2023)
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1D Plasma Electrostatic Sheet Model

J. Dawson,  Phys. Fluids 5.4, 445-459 (1962) 
J. Dawson,  Methods in Computational Physics 9, 1–28 (1970)
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1D Plasma Electrostatic Sheet Model

Neutralising Ion Background

Negatively Charged Sheet

J. Dawson,  Phys. Fluids 5.4, 445-459 (1962) 
J. Dawson,  Methods in Computational Physics 9, 1–28 (1970)
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1D Plasma Electrostatic Sheet Model

Neutralising Ion Background

Negatively Charged Sheet
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1D Plasma Electrostatic Sheet Model

E-field

δ

J. Dawson,  Phys. Fluids 5.4, 445-459 (1962) 
J. Dawson,  Methods in Computational Physics 9, 1–28 (1970)
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1D Plasma Electrostatic Sheet Model

Equilibrium
E-field

δ

J. Dawson,  Phys. Fluids 5.4, 445-459 (1962) 
J. Dawson,  Methods in Computational Physics 9, 1–28 (1970)
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1D Plasma Electrostatic Sheet Model

Equilibrium Out of equilibrium
E-field

··ξ = − 4πe2n0
me

ξ = − ω2
pξ

δ ξ

J. Dawson,  Phys. Fluids 5.4, 445-459 (1962) 
J. Dawson,  Methods in Computational Physics 9, 1–28 (1970)
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1D Plasma Electrostatic Sheet Model

Equilibrium Out of equilibrium
E-field

··ξ = − 4πe2n0
me

ξ = − ω2
pξ

δ ξ

Graph
Generation GNN[!! , #! , !"#! ] ODE

Integrator
Resolve

Boundary
$ %!

[!!$%, #!$%, !"#!$&]
[!&'$%, #&!$&] Sort

Particles

Eq. of 
Motion

Resolve 
Crossings

[!! , #! , !"#! ] Resolve 
Boundary

[!!$%, #!$%, !"#!$&]Sort
Particles

[!&'$%, #&!$&]

Sheet Model

Graph Network Simulator

Add 
Guards
(! = #)

J. Dawson,  Phys. Fluids 5.4, 445-459 (1962) 
J. Dawson,  Methods in Computational Physics 9, 1–28 (1970)

State t State t + 1

Positions
Velocities

Eq. Positions
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1D Plasma ESM Graph Network Simulator

Graph
Generation GNN[!! , #! , !"#! ] ODE
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$ %!
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[!! , #! , !"#! ] Resolve 
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Sheet Model

Graph Network Simulator

Add 
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J. Dawson,  Methods in Computational Physics 9, 1–28 (1970) 
D. Carvalho et al., Mach. Learn.: Sci. Technol. 5 025048 (2024)
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1D Plasma ESM Graph Network Simulator

Graph
Generation GNN[!! , #! , !"#! ] ODE
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$ %!
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Graph Network Simulator
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https://github.com/deepmind/jraph 
https://github.com/google/jax Code: https://github.com/diogodcarvalho/gns-sheet-model 

J. Dawson,  Methods in Computational Physics 9, 1–28 (1970) 
D. Carvalho et al., Mach. Learn.: Sci. Technol. 5 025048 (2024)
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GNS generalizes to different number of sheets and boundary conditions

Trained on subsampled high temporal resolution data  of 10 sheets 

moving inside a periodic box 
(Δtorig = 10−4 ω−1

p )
(tsim = 10 ω−1

p )
Initial positions and velocities are randomly sampled from a uniform distribution

D. Carvalho et al., Mach. Learn.: Sci. Technol. 5 025048 (2024)
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GNS rollout errors are very small

           Rollout MAE Δt = 10−2 ω−1
p = 5.6 × 10−4 δ

Example shown corresponds to the worst rollout error observed in the test set
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GNS recovers a broad range of kinetic plasma processes
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GNS recovers a broad range of kinetic plasma processes
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GNS recovers the Two Stream Instability

v0 ≈ 500 δ ⋅ ωp (vs vtrain
max = 20 δ ⋅ ωp)Nsheets = 10,000 (vs Ntrain

sheets = 10)Parameters:

D. Carvalho et al., Mach. Learn.: Sci. Technol. 5 025048 (2024)

Sheet Model @ Δt = 10−2 ω−1
p GNS @ Δt = 10−2 ω−1

p GNS @ Δt = 10−1 ω−1
p
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Δϵ/ϵ0 ≈ 10−6 Δϵ/ϵ0 ≈ 10−2 Δϵ/ϵ0 ≈ 10−2

v0 ≈ 500 δ ⋅ ωp (vs vtrain
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sheets = 10)Parameters:
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GNS conserves energy similarly to Sheet Model while being significantly faster*
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MC models in PIC simulations

New simulator models - GNN collisional plasma model 

Learning advection and diffusion coefficients

The (ground) truth? - collisions in PIC codes
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What is the ground truth in PIC simulations? 

∂N
∂t

+ v ⋅ ∇xN − q
m (Em + v × Bm) ⋅ ∇vN = 0

Klimontovich + Maxwell’s equations

D. Carvalho et al., in preparation for JPP (2025)
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This is the particle-in-cell algorithm (with finite-size particles):  

statistical mechanics is well-known (e.g. H. Okuda and C. Birdsall, (1970), R.  Hockney (1971), M. Touati et al. (2022), S. 
Jubin et al.,  (2024))

Born-Infeld electrodynamics

Numerical collision operator has been derived in previous works: Can this be learned from the simulation data in the 
weakly collisional regime?



f(v, t = 0)

Can we describe phase-space dynamics using a Fokker-Planck operator?

̂f1(v, t) ̂f2(v, t) ̂f3(v, t)

∂N
∂t

+ v ⋅ ∇xN − q
m (Em + v × Bm) ⋅ ∇vN = 0

PIC (Klimontovich)

∂ ̂f(v, t)
∂t

= − ∇v ⋅ (A ̂f) + 1
2 ∇v ∇v ⋅ (D ̂f)

?
What if we want (Fokker-Planck)?
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Thermal Plasma

D. Carvalho et al., in preparation for JPP (2025)
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Thermal Plasma
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How do we estimate  (advection) and  (diffusion)? A D
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Thermal Plasma

D. Carvalho et al., in preparation for JPP (2025)



Option 1: From raw particle data
The “correct” approach if possible 
Not feasible for larger systems (memory-wise) unless it is done at run-time

Option 2: From the phase-space evolution of sub-populations
Can be done in post-processing with a differentiable solver
Ill-posed problem: non-unique solution for coefficients

How do we estimate  (advection) and  (diffusion)? A D
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Learning advection / diffusion from evolution of sub-populations

̂f t+1 = ̂f t + Δt (−∇v ⋅ (A ̂f t) + 1
2 ∇v ∇v ⋅ (D ̂f t))

̂f 0(v) ̂fN(v)

FP FP FP FP…
̂f1(v) ̂f 2(v)
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Learning advection / diffusion from evolution of sub-populations

̂f t+1 = ̂f t + Δt (−∇v ⋅ (A ̂f t) + 1
2 ∇v ∇v ⋅ (D ̂f t))

̂f 0(v) ̂fN(v)

FP FP FP FP…
̂f1(v) ̂f 2(v)

We can make the Fokker-Planck solver differentiable and frame this as an optimisation task

 min
A,D

̂fN
predicted − ̂fN

true
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Learning advection / diffusion from evolution of sub-populations

̂f t+1 = ̂f t + Δt (−∇v ⋅ (A ̂f t) + 1
2 ∇v ∇v ⋅ (D ̂f t))

This is an ill-posed problem (there exists a family of solutions)            Train with multiple sub-populations

̂f 0(v) ̂fN(v)

FP FP FP FP…
̂f1(v) ̂f 2(v)

We can make the Fokker-Planck solver differentiable and frame this as an optimisation task

 min
A,D

̂fN
predicted − ̂fN

true
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We use different sets of training and test sub-populations

Train (9x)

Test (20x)
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We use different sets of training and test sub-populations

Train (9x)

Test (20x)
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We can parameterise A/D using a Tensor (discrete) or a NN (continuous)

Tracks

Tensor 

Ai[vx, vy]
Dij[vx, vy]

NN 

Ai = MLP(vx, vy)
Dij = MLP(vx, vy)
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Can these operators reproduce dynamics?

f t+1 = f t + Δt (−∇v ⋅ (Af t) + 1
2 ∇v ∇v ⋅ (Df t))

32Luis O. Silva | 16th Plasma Kinetics Working Meeting,  Vilnius | July 9, 2025 |        
D. Carvalho et al., in preparation for JPP (2025)



Can these operators reproduce dynamics? (Yes)

f t+1 = f t + Δt (−∇v ⋅ (Af t) + 1
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Next steps 

General purpose library: from phase space data, retrieve A and D (to be inserted on Fokker-Planck codes) for 
varying plasma conditions, and from different sources of data

Sub-module to capture (PIC or other) collisions for mesoscale simulations

Meta analysis: use different A and D for different plasma conditions (n, B, T) to learn more general behaviour e.g. 
via sparse regression
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MC models in PIC simulations

New simulator models - GNN collisional plasma model 

Learning advection and diffusion coefficients

The (ground) truth? - collisions in PIC codes
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What is the ground truth? 

∂N
∂t

+ v ⋅ ∇xN − q
m (Em + v × Bm) ⋅ ∇vN = 0

Klimontovich + Maxwell’s equations

D. Carvalho et al., in preparation (2025)
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This is the particle-in-cell algorithm (with finite-size particles): statistical mechanics is well-known (e.g. H. Okuda and C. 
Birdsall (1970), R.  Hockney (1971), M. Touati et al. (2022), S. Jubin et al. (2024)) + Born-Infeld electrodynamics 

What if the cell/particle size is shorter than the classical electron radius? 

What are the challenges of running << 1 ppc? 

Field initialization becomes critical + Computation determined by grid (N3 or N2)

Numerical heating (still need to resolve Debye length) + Very small time steps (CFL) + numerical transition radiation

Validation against theory (but theory is very limited - only 2D) or computational models (MD non relativistic)

Shape functions to capture quantum effects?  



Integration of equations of motion: 
moving particles

Integration of field equations: 
updating fields

Deposition:                            
calculating current on grid

Interpolation:                            
evaluating force on particles

∂B
∂t

= −c∇×E

∂E
∂t

= c∇×B− 4πj

Fp → up → xp

(E,B)i ← Ji

(E,B)i → Fp
(x,u)p → ji∆t

Monte-Carlo
Collision / QED Module

➡ collides pairs of particles
➡ emission of photons
➡ pair creation

The PIC loop by itself should be able to model collisional dynamics
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Nonlinear collisional absorption in laser-driven plasmas 
C. D. Decker et al., Phys. Plasmas 1, 4043–4049 (1994) 
Disorder induced heating 
M. D. Acciarri et al., Plasma Sources Sci. Technol. 33 035009 (2024)
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nλ2
D ≃ 0.1

Simulating self-consistent collisions with PIC

(Average interparticle distance )≫ λD

D. Carvalho et al., in preparation (2025)
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Can we learn operators that describe the collisional dynamics?

N2D
D ≃ 32 N2D

D ≃ 2.5

D. Carvalho et al., in preparation (2025)
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Work in progress 

Comparison with theory: collision frequencies +       
A and D and 2D Fokker-Planck model (Morales et al.)

What about B fields?
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Can ML help us speed up standard plasma simulators? No speed up but 
huge memory gains 

Can we build faster ML based simulators? Yes, but with significant 
modifications to the algorithms/structure/philosophy

What can we learn from data-driven approaches + ML? It looks like we can 
learn a lot (and the community is learning how to do it): e.g. collision operators

Can standard plasma simulators provide “high quality data” for data-
driven discovery? Yes, pushing for additional developments in HPC simulations 

Interplay between HPC and AI is just starting: “There are (many) unknown 
unknowns” (which is great for science!)
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