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Symmetry of field strength yields particle confinement in 3D
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Symmetric Quasisymmetric

Quasisymmetry - a hidden symmetry of magnetic fields 2



Ingredients of stellarator confinement

üIntegrable magnetic field
üEnergetic particle confinement
üMHD stability
üCollisional “bootstrap” current
üEquilibrium 𝛽 limit
üDivertor configuration
üReduction of turbulent transport
üCoil feasibility 

ASG Superconductors

223



Traditional two-step optimization

1. MHD equilibrium optimization

Boundary of equilibrium 
optimized for confinement
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2. Coil design

Inverse problem solved to find coils 
to support equilibrium

Traditional two-step optimization

1. MHD equilibrium optimization

Boundary of equilibrium 
optimized for confinement

∇×𝑩 ×𝑩 = 𝜇#∇𝑝	 in	𝑉$%&'(&
𝑩 ⋅ A𝒏 C

)!"#$%#
= 0

min
	)!"#$%#

𝑓(𝑩 𝑆$%&'(& , 	𝑆$%&'(&)

𝑩 ⋅ A𝒏 = 𝑩$%&'(& ⋅ A𝒏

  + +&
,-∫ℝ𝟑\0!"#$%#

𝑑1𝑥2 𝑱()*" 𝒙
+ × 𝒙6𝒙+ ⋅8𝒏 𝒙
𝒙6𝒙+ ,

min
𝑱()*"

I
	)!"#$%#

J𝑑!𝑥	K𝑩 ⋅ A𝒏
!
+ (coil	complexity)

154



2. Coil design

Inverse problem solved to find coils 
to support equilibrium

Traditional two-step optimization

1. MHD equilibrium optimization

Boundary of equilibrium 
optimized for confinement

∇×𝑩 ×𝑩 = 𝜇#∇𝑝	 in	𝑉$%&'(&
𝑩 ⋅ A𝒏 C

)!"#$%#
= 0

min
	)!"#$%#

𝑓(𝑩 𝑆$%&'(& , 	𝑆$%&'(&)

𝑩 ⋅ A𝒏 = 𝑩$%&'(& ⋅ A𝒏

  + +&
,-∫ℝ𝟑\0!"#$%#

𝑑1𝑥2 𝑱()*" 𝒙
+ × 𝒙6𝒙+ ⋅8𝒏 𝒙
𝒙6𝒙+ ,

min
𝑱()*"

I
	)!"#$%#

J𝑑!𝑥	K𝑩 ⋅ A𝒏
!
+ (coil	complexity)

154



Minor radius

N
eo

cl
as

si
ca

l h
ea

t f
lu

x 

LHD 
(“unoptimized”)

W7-X 
(“optimized”)

18Stellarator optimization at scale – Wendelstein 7-X 5



Since 
2021

Landreman & Paul PRL (2022),  Wechsung et al PNAS (2022),  Giuliani et al JPP (2022),  Landreman, Buller & Drevlak PoP (2022)

• Fusion-produced distribution 
of alpha particles 

• Configurations scaled to 
reactor size

• Guiding center trajectories 
with collisions

Fraction of alpha-particle energy lost before thermalization

Through optimization, QS stellarators can confine fusion products 6



Private fusion sector now pursuing stellarator reactors Growing private investment in stellarators 7



Differentiable simulations for stellarator optimization

• Automatic differentiation (JAX)

❌ Software must be rewritten with JAX-compatible functions
❌ Potential poor memory scaling (intermediate values stored)
✓  (relatively) straightforward to implement new objectives
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Differentiable simulations for stellarator optimization

• Automatic differentiation (JAX)

❌ Software must be rewritten with JAX-compatible functions
❌ Potential poor memory scaling (intermediate values stored)
✓  (relatively) straightforward to implement new objectives

• Adjoint methods 

• Enforce constraint with Lagrange multiplier:

ℒ Ω, 𝑢, 𝑞 = 𝑓 Ω, 𝑢 + ⟨𝑞, 𝐿 Ω, 𝑢 ⟩

• Solve adjoint equation:

𝛿ℒ Ω, 𝑢, 𝑞; 𝛿𝑢 = 0

• Compute derivative of cost function

𝛿𝑓 Ω, 𝑢 Ω , 𝑞; 𝛿Ω = 	𝛿ℒ Ω, 𝑢(Ω), 𝑞; 𝛿Ω

• 𝑢	= state variables
• Ω = design parameters
• 𝑞 = test function
• 𝑓 = cost function
• …  = inner product

8



Differentiable simulations for stellarator optimization

• Automatic differentiation (JAX)

❌ Software must be rewritten with JAX-compatible functions
❌ Potential poor memory scaling (intermediate values stored)
✓  (relatively) straightforward to implement new objectives

• Adjoint methods 
❌ Requires deriving new equations for new objectives
✓  Reduction in memory overhead and computational cost
     (if # objectives << # parameters)
✓  Legacy solvers can be reused (with modifications)

Linear gyrokinetics

Acton et al, J. Plasma Phys. 90 (2024).

Gaur et al, J. Plasma Phys. 89 (2023).

Ideal ballooning

Paul et al, J. Plasma Phys. 85 (2019).

Drift kinetic equation

8



Differentiable simulations for stellarator optimization

• Automatic differentiation (JAX)

❌ Software must be rewritten with JAX-compatible functions
❌ Potential poor memory scaling (intermediate values stored)
✓  (relatively) straightforward to implement new objectives

• Adjoint methods 
❌ Requires deriving new equations for new objectives
✓  Reduction in memory overhead and computational cost
     (if # objectives << # parameters)
✓  Legacy solvers can be reused (with modifications)

• Complex step differentiation

❌ Requires complex analytic function
❌ Expensive for high-dimensional gradient
✓  Simple implementation

𝜕𝑓
𝜕𝑥 ≈

Im 𝑓 𝑥 + 𝑖ℎ
ℎ

8



How can data-driven methods accelerate device optimization? 

• Optimizing with data-driven surrogate models

• Bayesian optimization: 
• Build Gaussian process surrogate based on limited function evaluations
• Challenge: scaling to many (≳	20) dimensions often impractical 
• Incorporating gradients, several local BOs can help [Padidar, NeurIPS 2021]
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How can data-driven methods accelerate device optimization? 

• Optimizing with data-driven surrogate models

• Bayesian optimization: 
• Build Gaussian process surrogate based on limited function evaluations
• Challenge: scaling to many (≳	20) dimensions often impractical 
• Incorporating gradients, several local BOs can help [Padidar, NeurIPS 2021]

Giuliani et al, J. Plasma Phys. 90 (2024). Packman et al, J. Fusion Energy 44 (2025).

9

Initial stage coil exploration Coil winding pack optimization



How can data-driven methods accelerate device optimization? 

• Optimizing with data-driven surrogate models

• Bayesian optimization: 
• Build Gaussian process surrogate based on limited function evaluations
• Challenge: scaling to many (≳	20) dimensions often impractical 
• Incorporating gradients, several local BOs can help [Padidar, NeurIPS 2021]

• Neural network surrogates:
• Provides differentiable model
• Likely only feasible within a limited configuration space (e.g., W7-X operating space)

Merlo et al, Nuclear Fusion 63 (2023).
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How can data-driven methods accelerate device optimization? 

• Optimizing with data-driven surrogate models

• Bayesian optimization: 
• Build Gaussian process surrogate based on limited function evaluations
• Challenge: scaling to many (≳	20) dimensions often impractical
• Incorporating gradients, several local BOs can help [Padidar, NeurIPS 2021]

• Neural network surrogates:
• Provides differentiable model
• Likely only feasible within a limited configuration space (e.g., W7-X operating space)

• Optimization with data-driven subgrid or fluid closure models: 
• If geometry independent, may not suffer from curse of dimensionality
• e.g., improved gyrofluid closure for EP instabilities 

9



Recent progress largely made through “physics-reduced” models
… but sometimes it pays off to attack the full problem 

Bindel et al, PPCF 65 (2024).

• Direct optimization of collisionless particle 
losses

• Discovery of new classes of optimized 
stellarators → piecewise omnigeneity

Velasco et al, PRL 133 (2024).

10



Resonance with AE will drive transport in optimized stellarators

Ogawa et al, Nucl. Fusion 50 (2010).

Transition between chirping and 
steady frequency on TJ-II 

Melnikov et al, Nucl. Fusion 56 (2016).

TAE-induced diffusive transport on LHD

11



Resonance with AE will drive transport in optimized stellarators

NCSX

• Monte-Carlo analysis of collisionless 3.5 MeV alpha transport
• Resonant AE w/ 𝛿𝑩 ⋅ ∇𝜓 ∼ 1061 [Hsu & Sigmar, 1992] 

Paul et al, J. Plasma Phys. 89 (2023).

Precise QA
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Resonance with AE will drive transport in optimized stellarators

NCSX

Precise QANCSX

• Monte-Carlo analysis of collisionless 3.5 MeV alpha transport
• Resonant AE w/ 𝛿𝑩 ⋅ ∇𝜓 ∼ 1061 [Hsu & Sigmar, 1992] 

• Equilibrium destruction of drift surfaces causes enhanced losses
Paul et al, J. Plasma Phys. 89 (2023).
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Reduced MHD model for shear Alfvén waves

• The equations describing SAW can be derived from ideal MHD under the assumption 
of ”reduced MHD” ( WT|| T. ≪ 1) and low beta [Salat & Tataronis, 2001]

𝐵	∇||
∇V! ∇||Φ

𝐵
+
𝜔!∇V!Φ
𝑣W!

= 0
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Reduced MHD model for shear Alfvén waves

• The equations describing SAW can be derived from ideal MHD under the assumption 
of ”reduced MHD” ( WT|| T. ≪ 1) and low beta [Salat & Tataronis, 2001]

𝐵	∇||
∇V! ∇||Φ

𝐵
+
𝜔!∇V!Φ
𝑣W!

= 0

• Eigenvalue problem for potential, Φ, with solutions that are global (i.e., extending in 
radius) or local (like a delta-function) 
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Shear Alfvén continuum structure informs global eigenmodes 

𝐵	∇||
∇𝜓 !

𝐵
∇||Φ +

𝜔! ∇𝜓 !

𝑣W!
Φ = 0𝐵	∇||

∇V! ∇||Φ
𝐵

+
𝜔!∇V!Φ
𝑣W!

= 0

• Reduced MHD (𝑘V ≫ 𝑘||) model for SAW
• Discrete modes can be destabilized

• Nullspace of second radial derivative
• Localized energy density → heavily damped
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• We focus on localized continuum solutions, nullspace of highest-order radial 
derivative → often the first step in assessing AE stability

𝐵	∇||
∇𝜓 !

𝐵
∇||Φ +

𝜔! ∇𝜓 !

𝑣W!
Φ = 0

Shear Alfvén continuum structure informs global eigenmodes 
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Analogous spectral optimization problems 

• Periodic modulation of index of refraction introduces frequency gap
• Optical fiber → transmission gap 
• Semiconductors → band gap

• “Band gap engineering” by modifying material properties

Heidbrink, Phys. Plasmas 15 (2008).
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Outline

• Stellarator optimization and AI/ML

• Perturbation theory for shear Alfvén 
continuum

• Can we manipulate the shear Alfvén 
continuum to avoid resonance?



Perturbative approach to solving the SAW continuum 

• Continuum equation in Boozer coordinates near magnetic axis: 

1
1 + 𝜖

𝜕
𝜕𝜁
+ 𝜄#

𝜕
𝜕𝜃

(1 + 𝜖)
𝜕
𝜕𝜁
+ 𝜄#

𝜕
𝜕𝜃

Φ + 𝜔!Φ = 0

• Expand in smallness of coupling parameter, 𝜖 = ∇Y /

⟨ ∇Y /⟩− 1
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Perturbative approach to solving the SAW continuum 

• Continuum equation in Boozer coordinates near magnetic axis: 

1
1 + 𝜖

𝜕
𝜕𝜁
+ 𝜄#

𝜕
𝜕𝜃

(1 + 𝜖)
𝜕
𝜕𝜁
+ 𝜄#

𝜕
𝜕𝜃

Φ + 𝜔!Φ = 0

• Expand in smallness of coupling parameter, 𝜖 = ∇Y /

⟨ ∇Y /⟩− 1

• Degenerate perturbation theory is required (analogous to, e.g. Stark effect)

• Goal: 
• Analytic expressions for the gap widths

• Understand interaction between gaps in 3D geometry

17



Lowest order: No coupling (i.e., cylinder) 

𝜕
𝜕𝜁
+ 𝜄#

𝜕
𝜕𝜃

𝜕
𝜕𝜁
+ 𝜄#

𝜕
𝜕𝜃

ΦZ
(#) + 𝜔Z

(#) !
ΦZ
(#) = 0

• Eigenfunctions:

ΦZ
(#) = Φ[0,\0𝑒

]([0^6\0_`ab)

• Normalized frequencies:

𝜔Z
(#) !

= 𝜄#𝑚Z − 𝑛Z
!

18



Linear order: Degenerate eigenvalues shifted

𝜕
𝜕𝜁
+ 𝜄#

𝜕
𝜕𝜃

!
Φ c ` 𝜕

𝜕𝜁
+ 𝜄#

𝜕
𝜕𝜃

𝜖
𝜕
𝜕𝜁
+ 𝜄#

𝜕
𝜕𝜃

Φ(#) + 𝜔(#)
!
Φ c + 𝜔(c) Φ # = 0

• Degeneracy implies “crossing” of unperturbed frequencies: Φ(#) = 𝛼ZΦZ
# + 𝛼TΦT

#

𝜔Z
(#) !

= 𝜔T
(#) !

→	 𝜄#𝑚Z − 𝑛Z =	±(𝜄#𝑚T − 𝑛T)

+

-
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Linear order: Degenerate eigenvalues shifted

• For “co-propagating” degeneracy (+ root) → 𝜄# = Δ𝑛/Δ𝑚 (only in 3D)

𝜔(c) = 0

Gap width:  
Δ𝜔 = 2 𝜖d[,d\ 𝜔 #

20



Linear order: Degenerate eigenvalues shifted

• For ”co-propagating” degeneracy (+ root) → 𝜄# = Δ𝑛/Δ𝑚 (only in 3D)

𝜔(c) = 0
• For “counter-propagating” degeneracy (- root) → frequency splitting

𝜔(c) = 2 𝜖d[,d\ 𝜔
(#)

Gap width:  
Δ𝜔 = 2 𝜖d[,d\ 𝜔 #

20



Classification of AE gap modes

• Classify gaps by coupling mode numbers (Δ𝑚, Δ𝑛)

• In axisymmetry:

• TAE (Δ𝑚 = 1, Δ𝑛 = 0)
• EAE (Δ𝑚 = 2, Δ𝑛 = 0)
• (… higher-order poloidal shaping)

• In stellarators, also: 

• HAE (Δ𝑚 ≠ 0, Δ𝑛 ≠ 0)
• MAE (Δ𝑚 = 0, Δ𝑛 ≠ 0)

21



• Classify gaps by coupling mode numbers (Δ𝑚, Δ𝑛)

• In axisymmetry:

• TAE (Δ𝑚 = 1, Δ𝑛 = 0)
• EAE (Δ𝑚 = 2, Δ𝑛 = 0)
• (… higher-order poloidal shaping)

• In stellarators, also: 

• HAE (Δ𝑚 ≠ 0, Δ𝑛 ≠ 0)
• MAE (Δ𝑚 = 0, Δ𝑛 ≠ 0)

Gaps remain separated in 2D:
𝜔(#) = |𝜄#Δ𝑚 − Δ𝑛|/2

EAE

(4,0)

(6,0)

Classification of AE gap modes 21



Gap crossing in stellarators [Goodman, 2024]

Stellgap [Spong, 2003] calculations by A. Hyder
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Gap crossing in stellarators [Goodman, 2024]

Stellgap [Spong, 2003] calculations by A. Hyder
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Higher-order crossings possible in 3D systems

Two counter-propagating pairs: 
frequency of each shift in “nested gaps”

Two co-propagating, third counter-
propagating: one “gap crossing” mode

23



Nührenberg-Zille configuration: 15-way crossing

J. Nuhrenberg and R. Zille, Phys. Lett. A (1988)

24

”Gap repulsion” [Y. I. Kolesnichenko, 2001] 



Rotating ellipticity dominates near-axis spectral content

• Near-axis model for the flux-surface compression factor, ∇𝜓 !

∇𝜓 ! = 𝑟!Ψ! + 𝑟1Ψ1 + 𝒪 𝑟,

• Defining coordinate system oriented with ellipse axes, 𝑥 = 𝑎 cos 𝜗, 𝑦 = 𝑏 sin 𝜗

Ψ! = 𝐵#!
𝑝	 − 𝑝! − 4 cos 2𝜗

2
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Rotating ellipticity dominates near-axis spectral content 25

• Near-axis model for the flux-surface compression factor, ∇𝜓 !

∇𝜓 ! = 𝑟!Ψ! + 𝑟1Ψ1 + 𝒪 𝑟,

• Defining coordinate system oriented with ellipse axes, 𝑥 = 𝑎 cos 𝜗, 𝑦 = 𝑏 sin 𝜗

Ψ! = 𝐵#!
𝑝	 − 𝑝! − 4 cos 2𝜗

2
• Given that ellipse typically makes one half-rotation per field period, produces helical 

(𝒎 = 𝟐,𝒏 = 𝑵𝑷) coupling [Kolesnichencko, 2001]



Rotating ellipticity dominates spectral content

• Toroidal variation of elongation and curvature drive MAE and EAE modes

26



Outline

• Stellarator optimization and AI/ML

• Perturbation theory for shear Alfvén 
continuum

• Can we manipulate the shear Alfvén 
continuum to avoid resonance?



Resonance analysis for configurations close to QS [Paul, 2023]

• Assume configuration close to QS with 𝐵 𝜓, 𝜒 = 𝜃 − 𝑁𝜁

• Passing particle dynamics characterized by transit frequency profiles 𝜔^, 𝜔_ , 𝜔f

e.g., 𝜔^ = ⟨�̇�⟩
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Resonance analysis for configurations close to QS [Paul, 2023]

• Assume configuration close to QS with 𝐵 𝜓, 𝜒 = 𝜃 − 𝑁𝜁

• Passing particle dynamics characterized by transit frequency profiles 𝜔^, 𝜔_ , 𝜔f

e.g., 𝜔^ = ⟨�̇�⟩

• Resonance condition with SAW s.t. wave phase is constant in particle frame:

Ωg = 𝑚 + 𝑙 𝜔f − 𝑛 − 𝑁𝑚 𝜔_ +𝜔 = 0

Ø Coupling through magnetic drifts introduces multiple resonant surfaces 
through 𝑙

Ø Strongest resonance for 𝑙 = 0, 1

27



A strategy for resonance avoidance [Paul, 2025] 

• At typical reactor scale (e.g., HSR418), 𝑛] ≈ 3	×10!# m/s, 𝐵 ≈ 5 T	→
Wa1 a2 ≈ 1/4 at 3.5 MeV 

→	Strong passing resonance requires 𝜔/𝜔W 	> 1

28



A strategy for resonance avoidance [Paul, 2025] 

• At typical reactor scale (e.g., HSR418), 𝑛] ≈ 3	×10!# m/s, 𝐵 ≈ 5 T	→
Wa1 a2 ≈ 1/4 at 3.5 MeV 

→	Strong passing resonance requires 𝜔/𝜔W 	> 1

𝜔 > 𝜄 − 𝑁 /2

• Strategy: 
• Preferentially promote low-frequency gaps to 

ü Avoid resonance at birth energy
ü Avoid wide gaps (Δ𝜔 ∝ 𝜔)

• Reduce 𝜔W (e.g., high-density, low field) 

28



• Fixed-boundary optimization with SIMSOPT to reduce high-frequency gap spectral 
content (while maintaining QS, aspect ratio):

𝑓 𝑆h = 𝐴 𝑆h − 𝐴∗ ! + 𝑓j) 𝑆h + 𝑓k 𝑆h + 𝑓lmno(𝑆h) 

• 𝑓j): two-term quasisymmetry error

• 𝑓k: enforce 𝜄 ≥ 1.03

• 𝑓lmno = ∑p∑ kq[6r3q\ s|k6r| 𝜖q[,q\
! 𝜄𝛿𝑚 − 𝑁h𝛿𝑛 !

Optimization of the shear Alfvén continuum

Resonance condition ∝(Gap width)2

29



Wistell-A [Bader, 2020] Optimized

Optimization of the shear Alfvén continuum
• High-order shaping components reduced 

30



Wistell-A [Bader, 2020] Optimized

Optimization of the shear Alfvén continuum
• EP confinement (without MHD activity) maintained

30



Optimization of the shear Alfvén continuum 31

• Stellgap calculations confirm width of high-frequency HAE gaps reduced

Wistell-A Optimized



Alfvén gap eigenmodes computed with AE3D [Spong, 2010]  

𝜔! = 4.52

𝑚 = 4,
𝑛 = 0

𝑚 = 0,
𝑛 = 𝑁"

Wistell-A

32



Alfvén gap eigenmodes computed with AE3D [Spong, 2010]  

𝑚 = 5,
𝑛 = 4𝑁"

𝑚 = 3,
𝑛 = 0

Optimized

𝜔! = 1.10

32



Conclusions and future work

• Geometry can manipulate the continuum to promote stability, by reducing the 
width of high-frequency gaps which may strongly resonate with EPs

• Application: control of AEs in tokamaks?

J. Gonzalez-Martin et al, PRL 130 (2023)
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Conclusions and future work

• Geometry can manipulate the continuum to promote stability, by reducing the 
width of high-frequency gaps which may strongly resonate with EPs

• Application: control of AEs in tokamaks?

• Ongoing work: validation of optimization with FAR3D stability analysis

• Future work: generalization of optimization approach to use spectral 
density [Weisse, 2006] with full continuum 
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