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Motivation

m Temperature gradients in magnetized plasmas drive
microinstabilities.

m These instabilities extract free energy from the background profile,
generating turbulence.

m The resulting turbulence causes anomalous heat transport, often
orders of magnitude above neoclassical predictions.

m Why it matters: This enhanced heat loss makes it significantly
harder to maintain the plasma temperature required for fusion.

m Our focus is on turbulence driven by the Thermo-Alfvénic
Instability (TAI), studied within a local slab model of tokamak-like
plasma.
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Physical Setup

m Magnetised, low-beta plasma with B¢ ~ %‘j

m Governing equations derived via a low-beta asymptotic limit of
gyrokinetics

m Electrons described by the drift-kinetic approximation (small p)
m Presence of an equilibrium electron-temperature gradient
m All other equilibrium quantities assumed uniform

m Focus on scales where magnetic field lines are frozen into
electron flow, i.e. k; de < 1

m Dynamics dominated by the thermo-Alfvénic instability (TAI)

Meyrand Romain TAI turbulence WPI 25 2/24



Model Equations

(Zocco & Schekochihin 2011 + temperature gradient)
The dynamics are encoded in the drift-kinetic equation:

d5fe e 1 GAH

+ V<p> Vifoe + C[5%]

+ background electron temperature gradient

Perturbations are advected by the E x B drift:

d 0 PeVihe ey
dt ot +ve-Vy, V= 5 o X V1, = TOe
Their parallel motion is along the exact magnetic field:
2 8B, 5B, A
VH b-V= & + TO VJ_, Bio = pebo X VJ_A, A= peBO.
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Hermite Expansion

No explicit dependence on v, =- it can be integrated out = reduced 4D
description

The kinetic equation can be recast as an infinite hierarchy of Hermite
moments:

dg Vihe
o VI (VM T gnit +Vmgn 1) = RHS.

This formulation replaces the kinetic equation with a coupled set of
fluid-like moment equations.

In the linear regime, the coupling via parallel streaming leads to phase
mixing. Energy cascades to high Hermite modes, corresponding to
increasingly fine velocity-space structure.
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Electron Continuity Equation

déne
dt nOe

+ V”U”e =0

The density perturbation evolves due to two main effects:

Advection by the E x B drift

Compression or rarefaction from parallel electron flow along
the perturbed magnetic field
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The Parallel Momentum Equation

The electron parallel momentum equation reads:

du
nOeme$ = —V”p”e — eneEH.

The two forces on the right-hand side are:
1. Parallel pressure gradient:

58)( dTO 5”6 57—”6

ViPle = V18Pjet oo~~~ = MoeToe [VII (E T Toe
2. Parallel electric field:

Bi=b-BE=—Co V=2 Yoz

Relation between parallel current and electron velocity:

, C
_enOeUHe = /|| = 4_
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Parallel Electron Temperature

The parallel electron temperature is
Tje = Toe + 8T e,

which is advected by the local E x B flow and modified by £
compressional heating or cooling from v, as well as by the perturbed
parallel heat flux 5qe:

dTje _ d5Tje
ot = ot +VE-VLT092—V||

SQHe

Noe

— 2TOeVHUHe-

The equilibrium temperature gradient, advected by the E x B flow,
drives temperature perturbations and extracts free energy,

_ pthheaﬁ
Ve -V Toe = Toe oi; By’

leading to the development of the ETG instability.
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Parallel Heat Flux

qu Vihe _ PeVthe 0A
at + N (294—1-\/_57-”9) — /3 the oL, ay +C[q||
V4

The TAl is kinetic and electromagnetic, unlike the ETG, which is fluid
and electrostatic.

All higher-order moments satisfy:

dg. Vinh
& Y (VM + T gmer + Vmgn 1) = Clgwl, m>4.
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Quasineutrality

Particle density is related to ¢ via quasineutrality

Z
_plzvi(pv kJ_Pi < 17

on, on; Z a L 2T
— = =1 -Top=-Tp=~
Moe Noj T 4
_;(pv kJ_Pi > 1.

The operator 'y can be expressed in Fourier space as:
Fo = lo(aj)e™,

where
(kipi)?

i= 5
2
and Iy is the modified Bessel function of the first kind.
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Summary of equations

Assembling together all of the above, we end up with the following

systems of equations:
d [/6ne
dt ( ) +V||U||e—0

2lao e -
dt ( whe) % [az Vi (nOG T The ) T Lroy)

6T, 1)
ﬂ( e) Y <n dle +2Ue) +Pe\/the3_<P o,

dt \ Toe oe Toe 2Lt oy
dq|| Vthe PeVine OA
e aay. (2g4+\/_57'||e> V/3 Pelthe s gy *Clail

dg Vih
T;n + \/ECV” (vm-i- 19met + \/mgmq) = Clgm], m=>4.

én _ u
2 =37y, —le d2vi A
Noe Vine
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Instabilities

This sytem support a range of temperature-gradient-driven instabilities,
both electrostatic and electromagnetic, distinguished by whether the
magnetic field lines are frozen into the electron flow.
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Figure: The growth rates of the collisionless instabilities (Adkins et al. 2022).
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Free-energy cascades

The free energy is a nonlinear invariant of the system, i.e., itis
conserved by nonlinear interactions , but can be injected into the system
by equilibrium gradients, and is dissipated by collisions:

2 2
w r (ot e o 18m Ul 10T
= [ d®— AoV AP + -2+ ¢4 _
Moo Tos / v( 5 Tld L|+2nge+vtﬁe+4 T2
v aW ot eere— D
nOeTOe dt — cTA|l ETG
. __L/d_sr%f%;%hea_w
TG~ 7217 ) V Toe 2 Oy

_ Vine [ d%r 8qe 0A
=20 | TV meeTos ) Pey
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KAW turbulence

In the wave-number range where the ETG instability is suppressed by

magnetic tension,
kJ_de << 1,

the dominant plasma perturbations are KAW-like.
WKAW ~ K| ViheK1 de ~ t ~~ PeVinek2 o).

A Kolmogorov-style constant-flux argument leads to the scaling of the
amplitudes in the inertial range:

o2 e \1/3
7 17L Ce=const = Y1~ (Q_) (kLPe)_z/S'

tnl e

This scaling translates into the following 1D spectrum:

2
© —7/3
E,, (ki) ~ _ki x k"

Meyrand Romain TAI turbulence WPI 25 13/24



TAIl Turbulence
(Adkins et al. 2022)

In standard KAW turbulence, energy cascades from large to small
scales.

In contrast, TAI turbulence is driven directly at small (sub-p;) scales by
the TAl instability, which injects energy into KAWs at a rate:

v,
Y ~ wraw ~ —— (k. pe)?

L7v/Be

Because y grows faster with k, than the nonlinear transfer rate = an
inertial range cannot develop.

Unless some mechanism exists to transfer energy back to larger scales?
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Numerical Experiments
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Wait — this looks just like standard KAW turbulence with energy injected
at large scales!
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Upscale Transfer in TAl Turbulence

How does energy reach larger scales?

m Nonlinear modulation instability ?

m Inverse cascade enabled by an additional inviscid
invariant?
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Zonation

Before saturation, a modulational instability drives non-local energy
transfer in the k, direction, funneling energy from large k, modes
directly to k, = 0.

As a result, the system spontaneously self-organizes into coherent
zonal flows. This process also occurs with Boltzmann ions.
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Zonation Animtion

B
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Helicity and inverse cascade

In addition to the free energy, the electromagnetic system of equations
has a second (nonlinear) “invariant” the generalized helicity:

o /dSI‘ &ne ( B %)
Moe Vihe

dt —EH—DH

where the generalized helicity injection rate is

ey = Ve [dr0ne (0 OTje  po DA
P72 )V one \ " Toe  Lroy

The existence of this additional invariant could lead to an inverse
cascade (see Adkins et al. 2025).
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Parity Symmetry

The system under consideration possesses a parity symmetry:
(X7 y7 Z) V”, 5f87 v, A7 SB”) — (_Xa y7 —Z, _VH7 _5fe) —Q, A7 _SB”)

The generalized helicity is odd under the parity transformation

ey — —€p, and the same applies to the generalized helicity itself.
Therefore, in a statistically homogeneous turbulent state, both quantities
must vanish unless parity is broken, either by an external agent or
spontaneously.
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Spontaneous Symmetry Breaking
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Energy Flux

Nomralized energy flux versus time. Blue corresponds to inverse cascade
(energy transfer to larger scales), while red corresponds to direct cascade
(energy transfer to smaller scales).
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Saturation
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The nonlinear rate, which here characterizes outer large scales, and the
maximum linear growth rate, a small-scale quantity, are equal.
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Looking Ahead

m What causes the spontaneous symmetry breaking?
m How does the heat flux scale with the temperature gradient?

m Could TAI turbulence interfere with or modify the dynamics of ITG
turbulence?

m Any suggestions or insights?
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