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SETUP

We stir a 1D, collisionless, electrostatic plasma at frequencies much slower
than wpe at length scales much larger than Ape, with Te ~ T;.

Electrons Boltzmann respond, and E determined mostly by n; = ne.

lons behave kinetically, given ion acoustic waves are strongly damped
onionsat Te/T; = O(1).
Motivation: a simple example of a turbulent collisionless plasma
interacting with microscales.
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THE (ALLEGED) STORY

Driving leads to phase-space mixing of f;, leading to two-stream-like

structures that go unstable to microscales (~ Ape)

Microscales saturate through nonlinear effects

The resulting fluctuations create an anomalous collisionality,
smoothing ~ cs structure

For Te/T; << 1, a phase space inertial range forms, possibly governed

by a ponderomotive potential



PHASE SPACE TURBULENCE: T/T; = 0.2
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{f)(v)

wr:O.

Cs—UKCs = vyilk<u

Cs — U <K ¢s == beams mostly

drag, barely diffuse.
Cs— UK Cs = Kmax < ?\5;

Energy lost by beams goes into

1 1 y fastest growing mode:
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COMPARISON BETWEEN TWO-STREAM QL AND SIMULATION

Averaged across later times: t € (50.0, 99.0)
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WHY NOT QUASILINEAR?

For two-stream instability,

vp isindependent of k!

Resonant particles are not stochastizied across a wide enough range
of velocities for QLT to be valid (Av # O(1))

Analytical fix: for fluctuation Vlasov equation, include a boundary
layer in velocity space atv = vp
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PARTICLE TRAPPING AS A BOUNDARY LAYER

Boundary layer width v — vp| = O(8/2)
Inner variable:

?:ﬁ(t,)_(:X—th,V:V_Vp)
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F ~ 52 whilst fout ~ 5, s0 F and foyt contribute to ¢ equally
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ANOMALOUS COLLISIONALITY

Resonant particles dynamics, qualitatively:
Beams that are ~ ¢s apart will drag on each other
‘Diffusion’ on scales Av ~ 61/2c5 (averaging over holes)

An anomalous collisionality that erases structures O(cs) on trapping
timescales.
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MACROSCALE INERTIAL RANGE

If Te/T; < 1, thereis an inertial range ¢s << v << vy, ;.
Small scales in position and velocity space build up simultaneously

Can treat this as a cascade of entropy — theory for |1A‘(k,s)|2 and thus
|A(k)?|, a la Nastac et al. 2025?
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MYSTERY: () << Xext

Averaged across quasi-steady state times: t €(130.0, 210.0)
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SPECTRUM OF “ENTROPY"
Line of ‘critical balance’ is inconsistent with mixing dominated by outer

scale forcing (Batchelor turbulence), as seen in Vlasov-Poisson (Nastac et al.
2025).

G, /t€(130.0,210.0)

102

10! »

10°

100 10! 102



PONDEROMOTIVE FORCE, PERHAPS?

(¢) and xext do not govern the cascade, what does?



PONDEROMOTIVE FORCE, PERHAPS?

(¢) and xext do not govern the cascade, what does?

Inhomogeneity in (f) leads to macroscale inhomogeneity in the
fluctuation amplitude, which leads to ponderomotive force for
non-resonant particles,

[l
Dpond ~ ———
pond ™ v )2



PONDEROMOTIVE FORCE, PERHAPS?

(¢) and xext do not govern the cascade, what does?

Inhomogeneity in (f) leads to macroscale inhomogeneity in the
fluctuation amplitude, which leads to ponderomotive force for
non-resonant particles,

[l
Dpond ~ ———
pond ™ v )2

Formally, can be included within QLT (Dewar 1973)



PONDEROMOTIVE FORCE, PERHAPS?

(¢) and xext do not govern the cascade, what does?

Inhomogeneity in (f) leads to macroscale inhomogeneity in the
fluctuation amplitude, which leads to ponderomotive force for

non-resonant particles,

|2

Dpond ~ ———
pon (V— Vp)z

Formally, can be included within QLT (Dewar 1973)

Puzzle: to construct a theory for |f(k, s)|2, need a theory for large-scale
dependence of |p|?



PONDEROMOTIVE FORCE, PERHAPS?

(¢) and xext do not govern the cascade, what does?

Inhomogeneity in (f) leads to macroscale inhomogeneity in the
fluctuation amplitude, which leads to ponderomotive force for

non-resonant particles,

[l

Dpond ~ —
pon (V— Vp)z

Formally, can be included within QLT (Dewar 1973)

Puzzle: to construct a theory for |f(k, s)|2, need a theory for large-scale

dependence of |p|?

Critical balance between linear and ponderomotive, nonlinear phase

mixing = & (|$|?) ~ r?



THE (ALLEGED) STORY

Driving leads to phase-space mixing of f;, leading to two-stream-like

structures that go unstable to microscales (~ Ape)

Microscales saturate through nonlinear effects

The resulting fluctuations create an anomalous collisionality,
smoothing ~ cs structure

For Te/T; << 1, a phase space inertial range forms, possibly governed

by a ponderomotive potential
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