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SETUP

We stir a 1D, collisionless, electrostatic plasma at frequencies much slower
than ωpe at length scales much larger than λDe, with Te ∼ Ti.

• Electrons Boltzmann respond, and E determined mostly by ni = ne.

• Ions behave kinetically, given ion acoustic waves are strongly damped
on ions at Te/Ti = O(1).

Motivation: a simple example of a turbulent collisionless plasma
interacting with microscales.
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THE VLASOV-BOLTZMANN SYSTEM

Ions:
∂f
∂t
+ v ∂f

∂x
− e
m

∂ϕ

∂x
∂f
∂v
= 0 (1)

Gauss with isothermal Boltzmann Electrons:

exp(eϕ
Te
) = ni

n0
+ λ2

De,0
∂2

∂x2
eϕ
Te

(2)
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THE VLASOV-BOLTZMANN SYSTEM

Ions:
∂f
∂t
+ v ∂f

∂x
− ∂ϕ

∂x
∂f
∂v
= 0 (1)

Gauss with isothermal Boltzmann Electrons:

ϕ = ni
n0
− 1 + ϵ2∂

2ϕ
∂x2 +O(δ

2) (2)

cs :=
√
Te/m→ 1

ϕ ∼: δ≪ 1
ϵ = λDe,0/L≪ 1
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SIMULATION DETAILS

Ions through PIC (Pegasus++):

∂f
∂t
+ v ∂f

∂x
− ∂ϕ

∂x
∂f
∂v
= 0 (3)

Quasineutrality with Boltzmann electrons:

ϕ = ni
n0
− 1 +O(δ2)

+ ϵ2∂
2ϕ
∂x2

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
“Numerical Dissipation"

+ χext

(4)
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THE (ALLEGED) STORY

• Driving leads to phase-space mixing of fi, leading to two-stream-like
structures that go unstable to microscales (∼ λDe)

• Microscales saturate through nonlinear effects

• The resulting fluctuations create an anomalous collisionality,
smoothing ∼ cs structure

• For Te/Ti ≪ 1, a phase space inertial range forms, possibly governed
by a ponderomotive potential
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PHASE SPACE TURBULENCE: Te/Ti = 0.2
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MULTIPLE SCALES

(t, x, v)
(ω−1

pi ,λDe, cs)

Fluctuation Scales

(λDe
√ m

e∣ϕ∣ ,λDe,
√

e∣ϕ∣
m )

Particle Trapping
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Macroscales
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QUASILINEAR?

Average:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⟨ϕ⟩ = 1
n0
∫ dv ⟨f⟩

∂ ⟨f⟩
∂t
+ v∂ ⟨f⟩

∂x
− ∂ ⟨ϕ⟩

∂x
∂ ⟨f⟩
∂v
= ⟨∂f̃

∂v
∂ϕ̃

∂x
⟩

(5)

Fluctuations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃ = 1
n0
∫ dv f̃ + ϵ2∂

2ϕ̃
∂x2

∂f̃
∂t
+ v ∂f̃

∂x
− ∂ϕ̃

∂x
∂ ⟨f⟩
∂v
− ∂ ⟨ϕ⟩

∂x
∂f̃
∂v
−
̃
(∂f̃
∂v

∂ϕ̃

∂x
) = 0

(6)

f̃ , ϕ̃ = O(δ)
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TWO-STREAM QUASILINEAR THEORY

v

⟨f⟩ (v)

−u u

• ωr = 0.

• cs − u≪ cs Ô⇒ γk/k≪ u

• cs − u≪ cs Ô⇒ beams mostly
drag, barely diffuse.

• cs − u≪ cs Ô⇒ kmax ≪ λ−1
De

Energy lost by beams goes into
fastest growing mode:
∆(u2)∝ −∆((1 + ϵ2k2)∣ϕ̃k∣2).

Prediction: ∣ϕ̃k ∣
2
∝ k2 for for L−1 ≪ k≪ λ−1

De .
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COMPARISON BETWEEN TWO-STREAM QL AND SIMULATION

101 102 103

k

10−8

10−7

10−6

10−5

10−4

10−3

⟨|n
k|2 ⟩

Averaged across early times: t∈ (32.0, 44.0)
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VISUAL EVIDENCE OF HOLES
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WHY NOT QUASILINEAR?

• For two-stream instability,

vp := ωr
k
= u1 + u2

2

vp is independent of k!

• Resonant particles are not stochastizied across a wide enough range
of velocities for QLT to be valid (∆v ≠ O(1))

• Analytical fix: for fluctuation Vlasov equation, include a boundary
layer in velocity space at v = vp
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PARTICLE TRAPPING AS A BOUNDARY LAYER
• Boundary layer width ∣v − vp∣ = O(δ1/2)

• Inner variable:
f̃ = F̃(t, x̄ = x − vpt,V = v − vp)

• Inner equation:

∂F̃
∂t
+ V ∂F̃

∂x̄
− ∂ϕ̃

∂x
∂ ⟨f⟩
∂v
∣
vp
−
̃
(∂ϕ̃
∂x

∂F̃
∂V
) = 0

• ∂x̄(ln F̃) ∼ ϵ−1

• ∂t(ln F̃) ∼ (ϵδ−1/2)−1

• Matches with f̃out ∼ ∑k
ϕ̃k(t) eikx
v−vp

∂⟨f⟩
∂v

• F̃ ∼ δ1/2, whilst f̃out ∼ δ, so F̃ and f̃out contribute to ϕ̃ equally
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ANOMALOUS COLLISIONALITY

Resonant particles dynamics, qualitatively:

• Beams that are ∼ cs apart will drag on each other

• ‘Diffusion’ on scales ∆v ∼ δ1/2cs (averaging over holes)

• An anomalous collisionality that erases structures O(cs) on trapping
timescales.

19 / 24



ANOMALOUS COLLISIONALITY

Resonant particles dynamics, qualitatively:

• Beams that are ∼ cs apart will drag on each other

• ‘Diffusion’ on scales ∆v ∼ δ1/2cs (averaging over holes)

• An anomalous collisionality that erases structures O(cs) on trapping
timescales.

19 / 24



ANOMALOUS COLLISIONALITY

Resonant particles dynamics, qualitatively:

• Beams that are ∼ cs apart will drag on each other

• ‘Diffusion’ on scales ∆v ∼ δ1/2cs (averaging over holes)

• An anomalous collisionality that erases structures O(cs) on trapping
timescales.

19 / 24



ANOMALOUS COLLISIONALITY

Resonant particles dynamics, qualitatively:

• Beams that are ∼ cs apart will drag on each other

• ‘Diffusion’ on scales ∆v ∼ δ1/2cs (averaging over holes)

• An anomalous collisionality that erases structures O(cs) on trapping
timescales.

19 / 24



MACROSCALE INERTIAL RANGE

If Te/Ti ≪ 1, there is an inertial range cs ≪ v ≪ vth,i.

Small scales in position and velocity space build up simultaneously

Can treat this as a cascade of entropy→ theory for ∣̂f(k, s)∣2 and thus
∣n̂(k)2∣, à la Nastac et al. 2025?

• s is Fourier dual to v
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Can treat this as a cascade of entropy→ theory for ∣̂f(k, s)∣2 and thus
∣n̂(k)2∣, à la Nastac et al. 2025?

• s is Fourier dual to v
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MYSTERY: ⟨ϕ⟩≪ χEXT

100 101 102 103
k

10−6

10−5

10−4

10−3

10−2

10−1

100

Averaged across quasi-steady state times: t∈ (130.0, 210.0)

⟨|nk|2⟩
⟨|Ek|2⟩
⟨|Fk|2⟩
∼ k−2

∼ k0

Forcing is ‘critically balanced’: kextvth ∼ kext
√
∣χext∣ ∼ τ−1
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SPECTRUM OF “ENTROPY"
Line of ‘critical balance’ is inconsistent with mixing dominated by outer
scale forcing (Batchelor turbulence), as seen in Vlasov-Poisson (Nastac et al.
2025).
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PONDEROMOTIVE FORCE, PERHAPS?

• ⟨ϕ⟩ and χext do not govern the cascade, what does?

• Inhomogeneity in ⟨f⟩ leads to macroscale inhomogeneity in the
fluctuation amplitude, which leads to ponderomotive force for
non-resonant particles,

Φpond ∼
∣ϕ̃∣2

(v − vp)2

• Formally, can be included within QLT (Dewar 1973)

• Puzzle: to construct a theory for ∣̂f(k, s)∣2, need a theory for large-scale
dependence of ∣ϕ̃∣2

• Critical balance between linear and ponderomotive, nonlinear phase
mixing Ô⇒ δ (∣ϕ̃∣2) ∼ r2
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THE (ALLEGED) STORY

• Driving leads to phase-space mixing of fi, leading to two-stream-like
structures that go unstable to microscales (∼ λDe)

• Microscales saturate through nonlinear effects

• The resulting fluctuations create an anomalous collisionality,
smoothing ∼ cs structure

• For Te/Ti ≪ 1, a phase space inertial range forms, possibly governed
by a ponderomotive potential
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