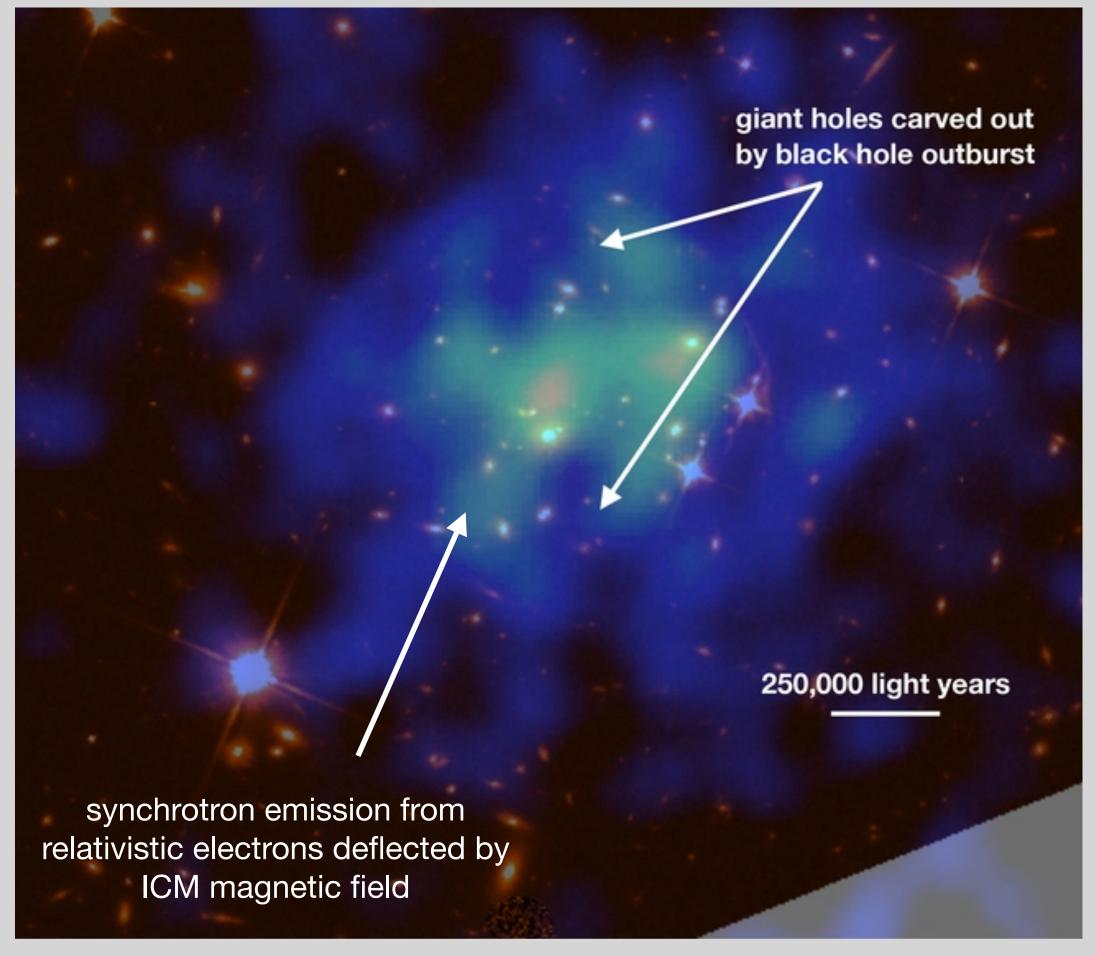


DECAY OF DYNAMO-INITIALIZED MAGNETIC FIELDS

Zach Hemler (Princeton) with Prof. Matt Kunz and Dr. David Hosking

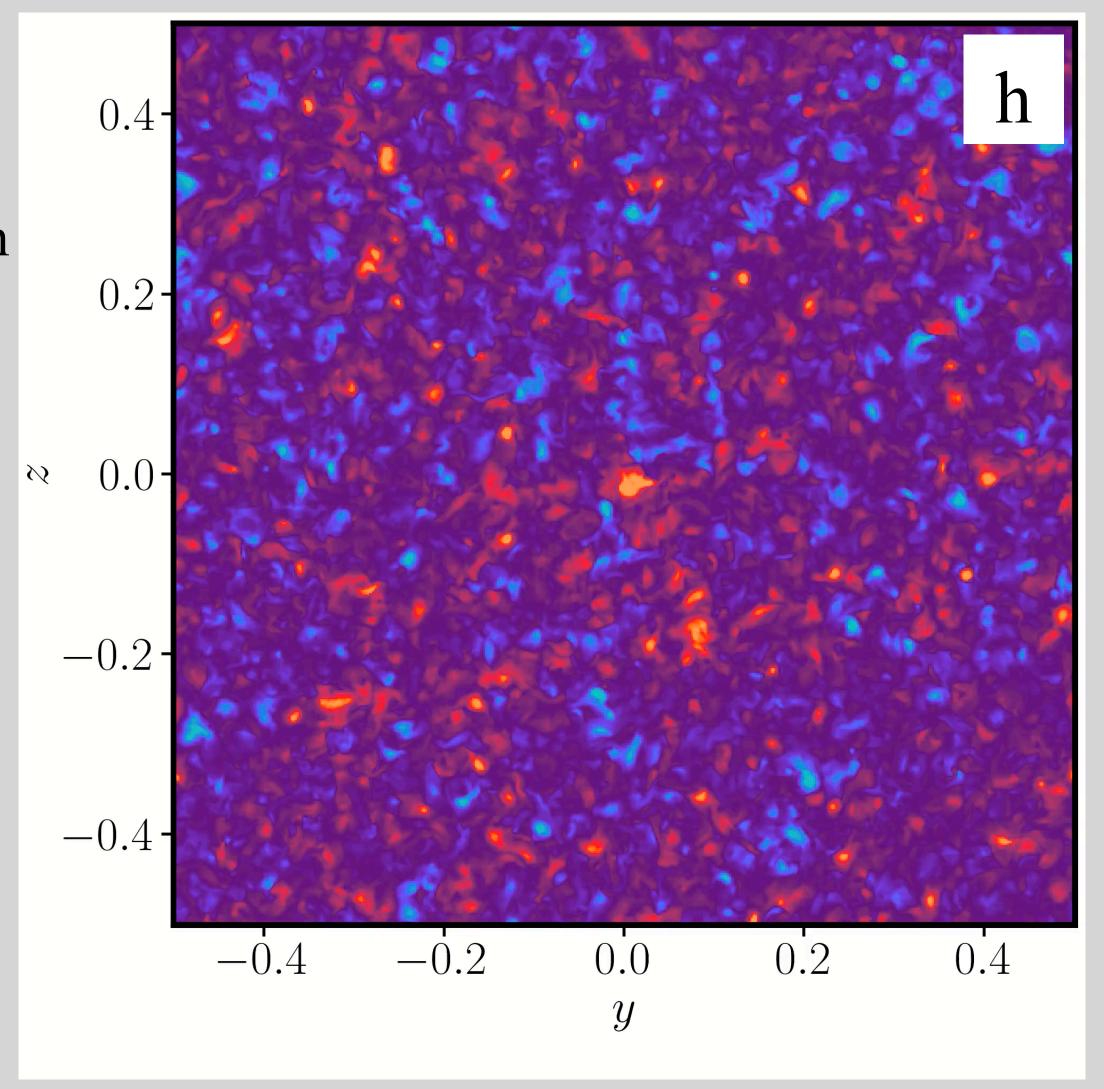
16th Plasma Kinetics Working Meeting, 07/22/25

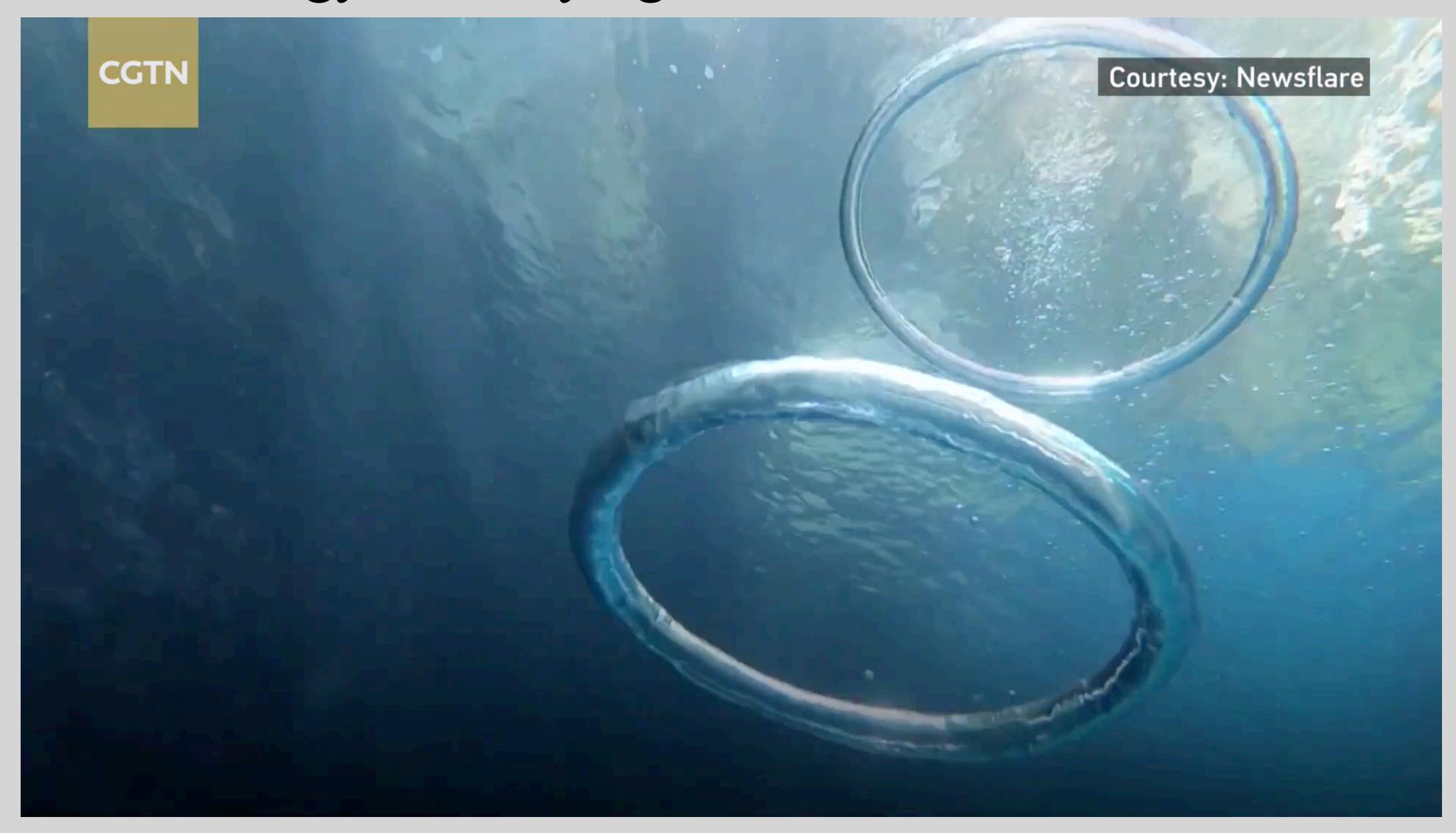
Motivation Astrophysical dynamos with intermittent forcing



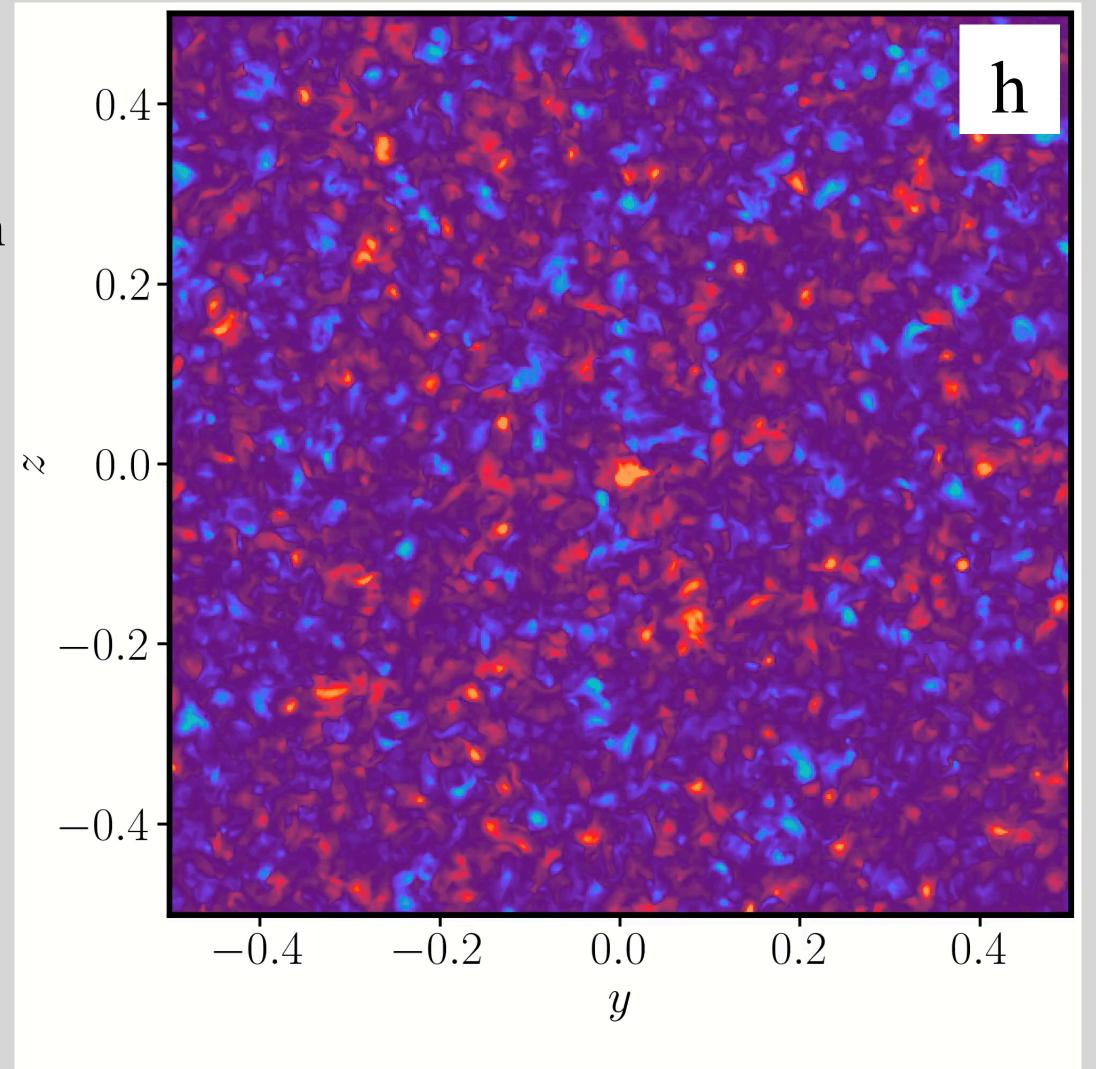
intracluster medium (ICM)

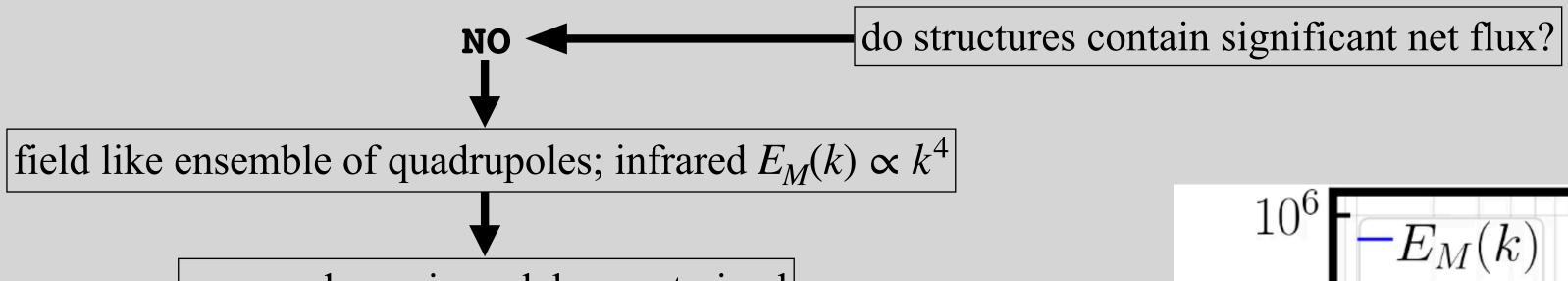
- In the absence of forcing...
 - $B\downarrow$: magnetic field decays resistively
 - $L\uparrow$: magnetic structures merge/grow via reconnection
- Merger dynamics can be constrained by...
 - conservation of helicity
 - conservation of magnetic flux



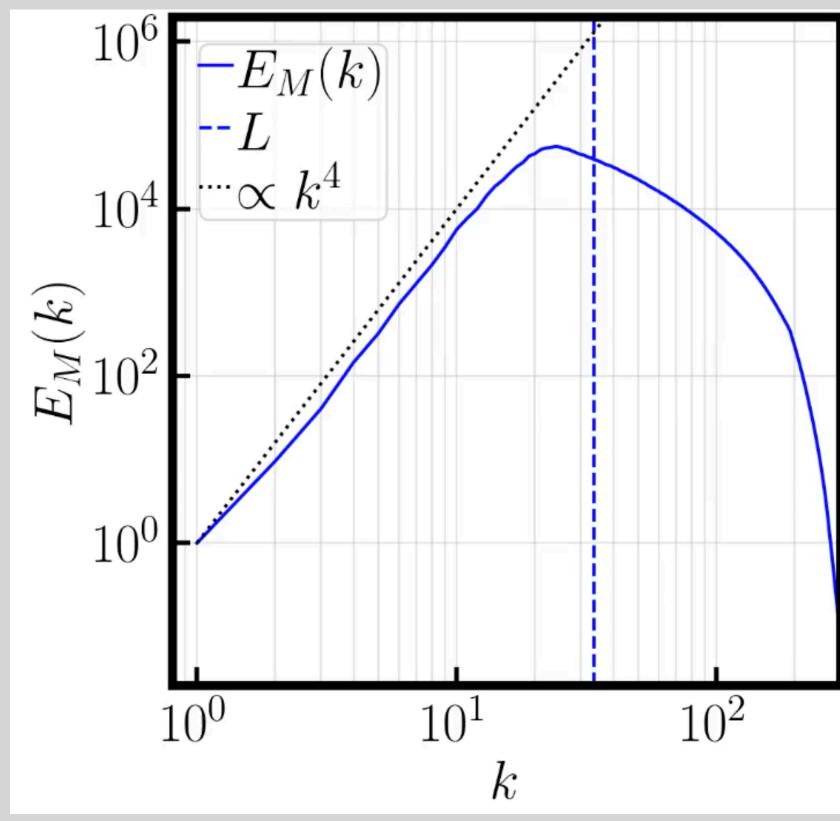


- In the absence of forcing...
 - $B\downarrow$: magnetic field decays resistively
 - $L\uparrow$: magnetic structures merge/grow via reconnection
- Merger dynamics can be constrained by...
 - conservation of helicity
 - conservation of magnetic flux
- Merger-constraining quantity sets statistical invariant
- Statistical invariant sets...
 - statistical scaling ($B^{\alpha}L \sim \text{const}$)
 - decay laws
 - presence or absence of inverse cascade

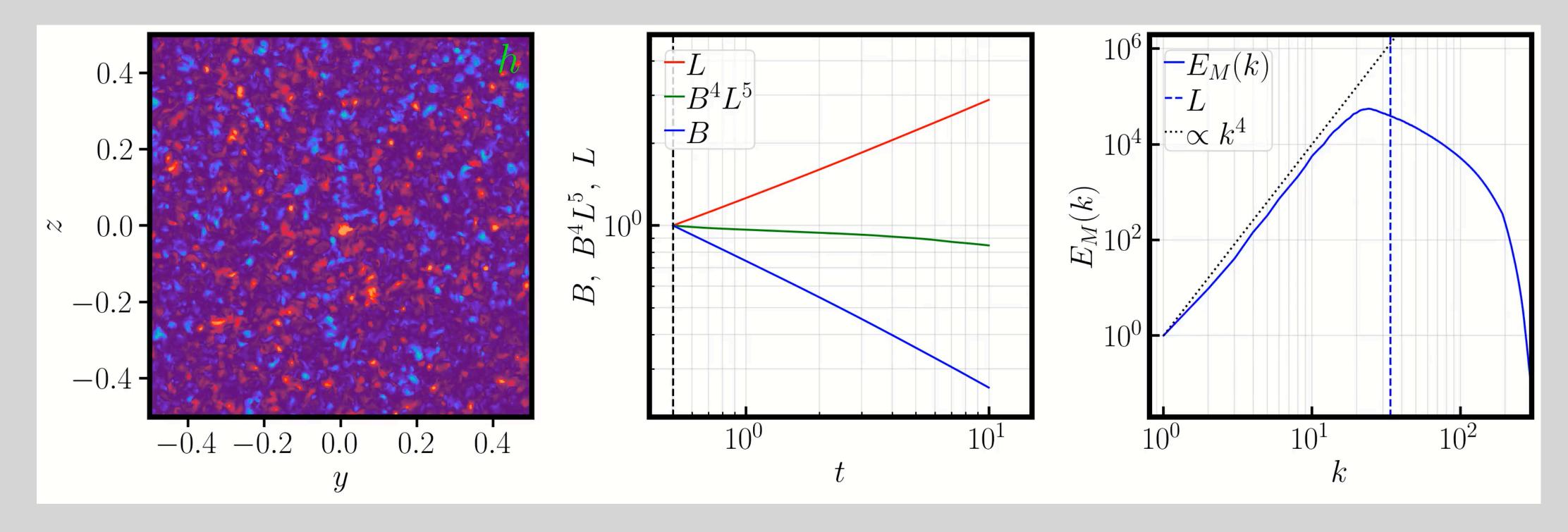




merger dynamics solely constrained by helicity conservation



Helicity-constrained merger dynamics, I_H



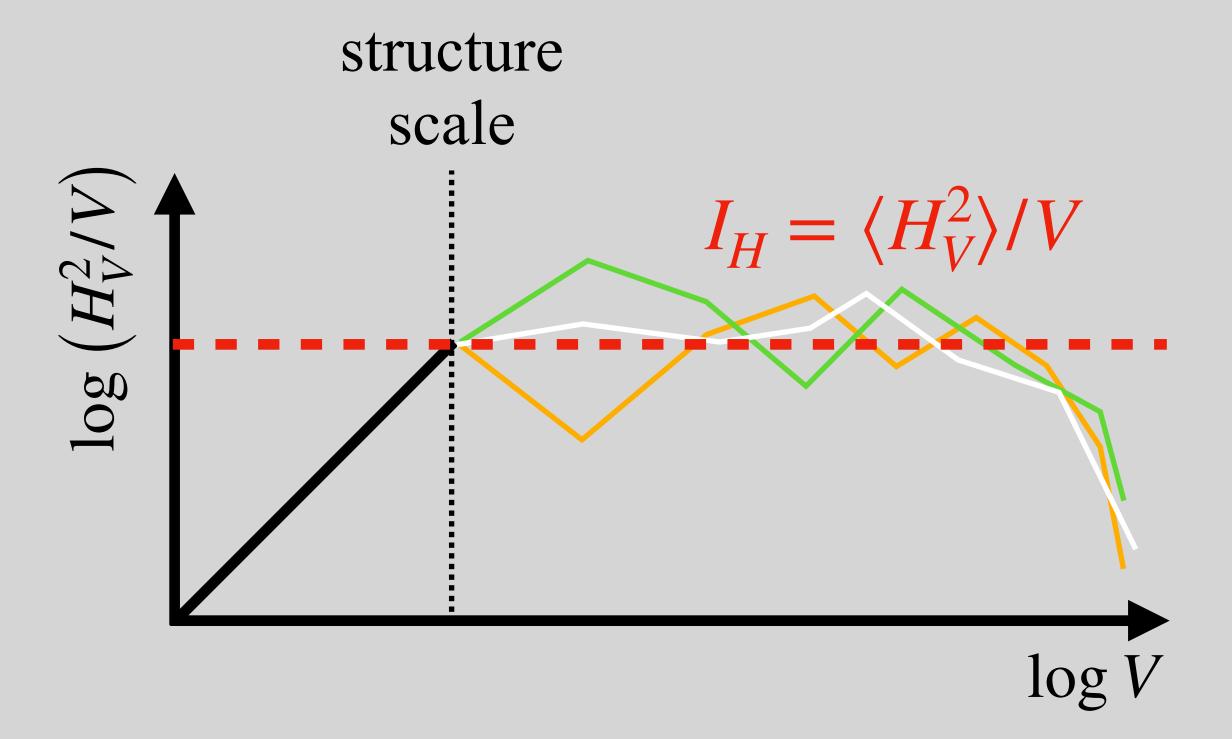
helicity-constrained merger dynamics, with some assumptions \Longrightarrow global statistical scaling $B^4L^5 \sim$ const

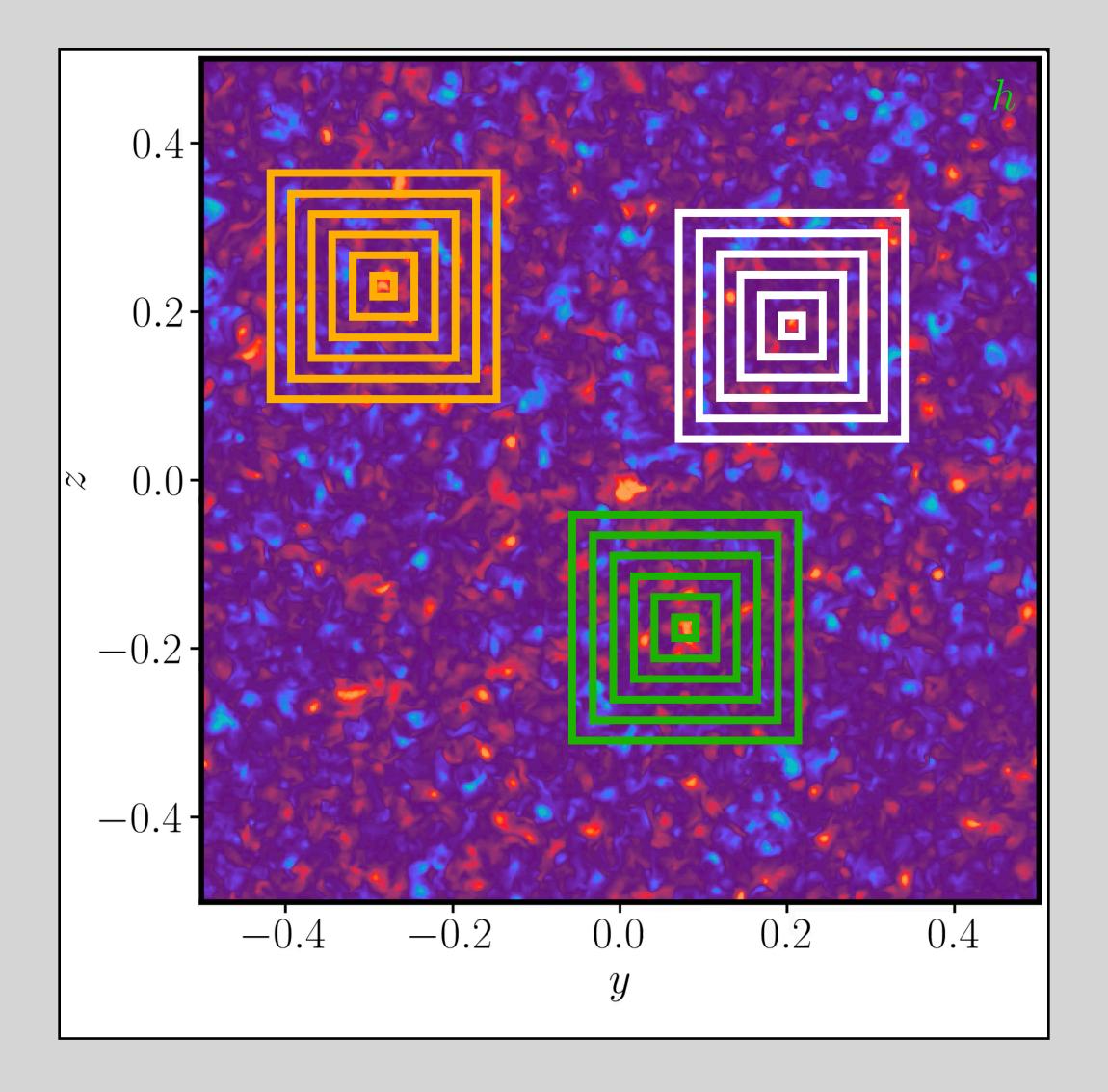
$$I_H \equiv \int \langle h(\mathbf{x}) h(\mathbf{x} + \mathbf{r}) \rangle d^3 \mathbf{r} \qquad [I_H] = B^4 L^5 \sim \text{const}$$

physically, I_H is roughly the characteristic squared net helicity per unit volume within structures

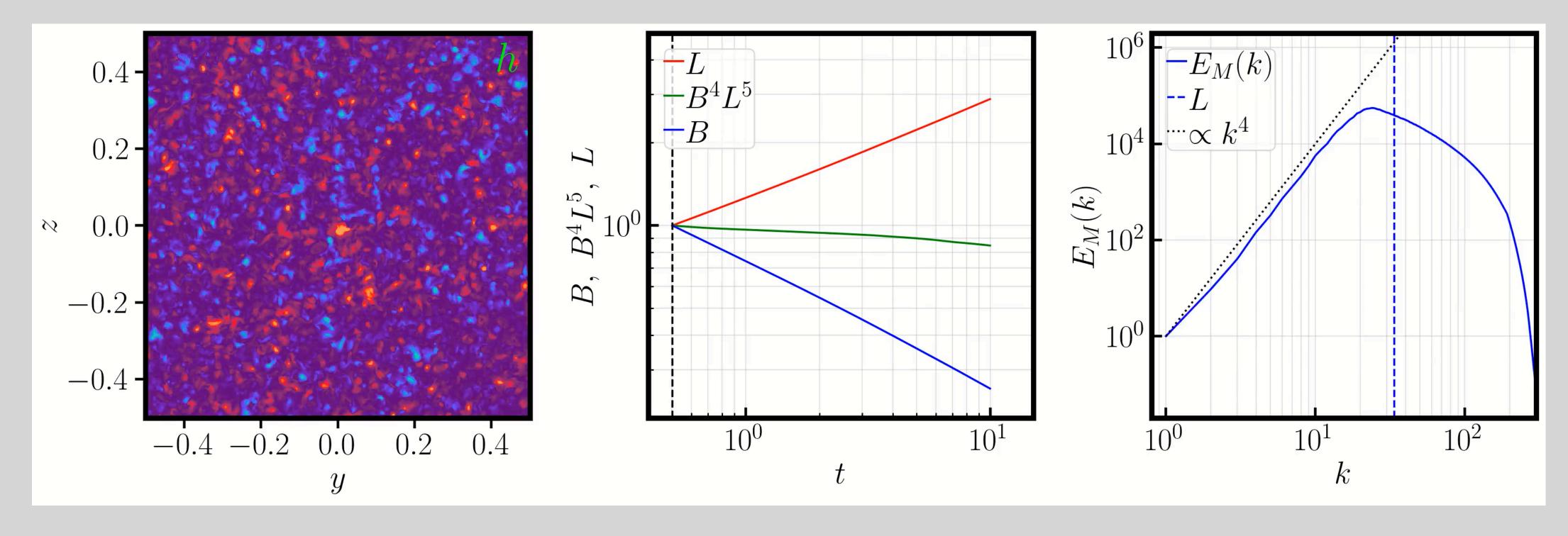
Helicity-constrained merger dynamics, I_H

$$H_V \equiv \int_V d^3x \, h(x)$$





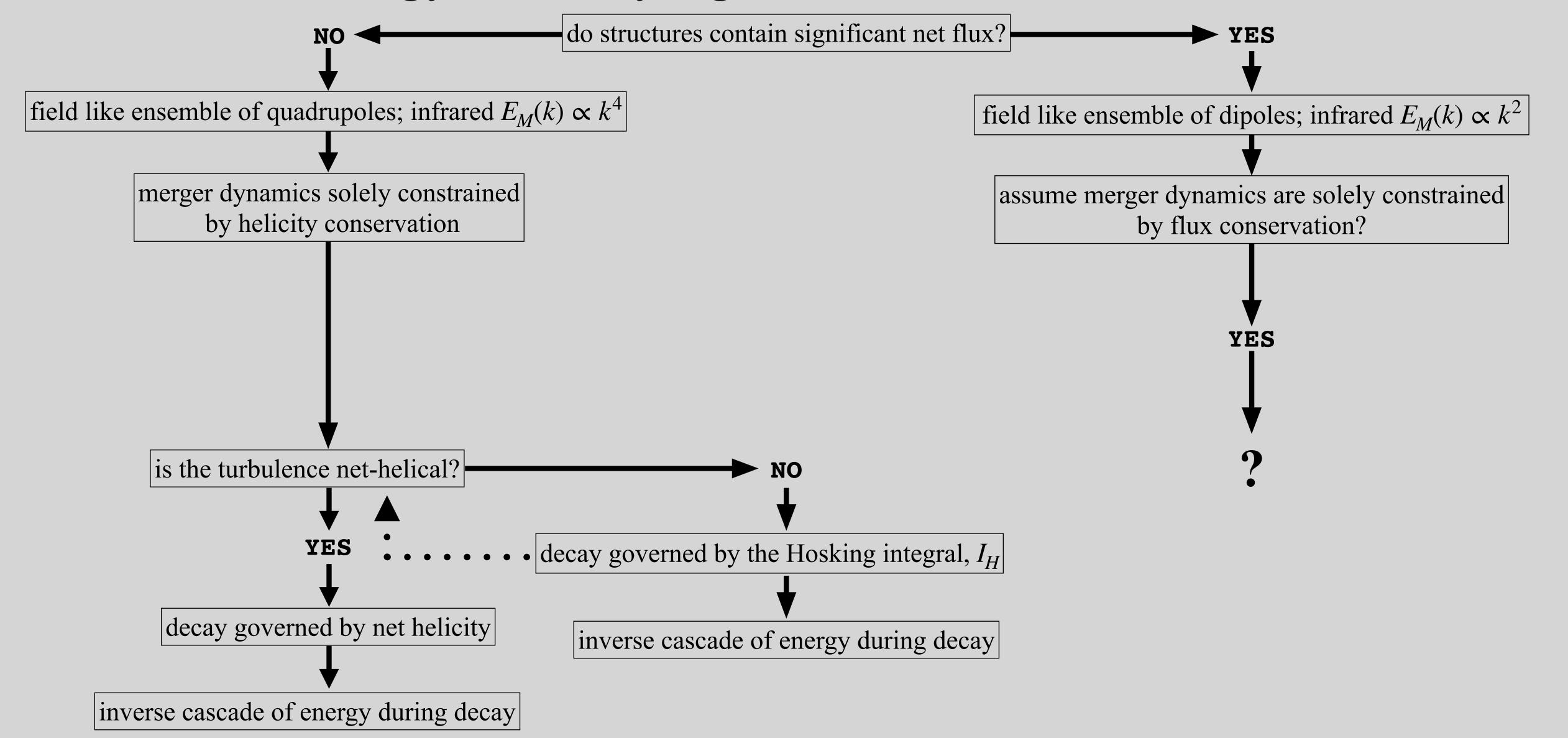
Helicity-constrained merger dynamics, I_H



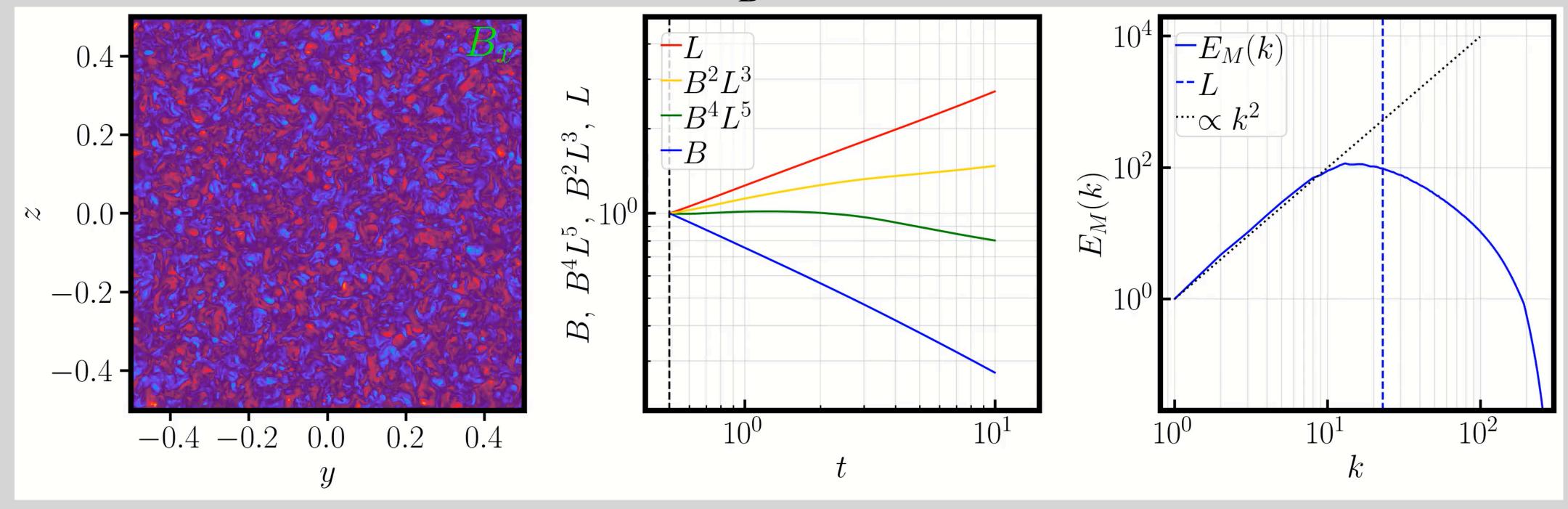
structures **do not** contain significant net flux $\Longrightarrow E_M(k < k_{\rm IR}) \propto k^4$

$$E_M(k < k_{\rm IR}) \sim B(t)^2 L(t)^5 k^4 \sim I_H B(t)^{-2} k^4 \sim B(t)^{-2} k^4$$

 $B \downarrow \Longrightarrow E_M(k < k_{IR}) \uparrow \Longrightarrow inverse cascade!$



Flux-constrained merger dynamics, I_B



flux-constrained merger dynamics, with some assumptions \Longrightarrow global statistical scaling $B^2L^3 \sim$ const

$$I_B \equiv \int \langle \boldsymbol{B}(\boldsymbol{x}) \cdot \boldsymbol{B}(\boldsymbol{x} + \boldsymbol{r}) \rangle d^3 \boldsymbol{r} \qquad [I_B] = B^2 L^3 \sim \text{const}$$

physically, I_B is roughly the characteristic squared net flux per unit volume within structures or, more accurately, the mean-square fluctuation level of net flux per unit volume over large control volumes

Flux-constrained merger dynamics, I_B



structures **do** contain significant net flux $\Longrightarrow E_M(k < k_{\rm IR}) \propto k^2$

$$E_M(k < k_{\rm IR}) \sim B(t)^2 L(t)^3 k^2 \sim I_B k^2 \sim k^2$$

 $B \downarrow \Longrightarrow E_M(k < k_{IR}) \sim \text{const} \Longrightarrow \text{permanence of large scales}$

Flux-constrained merger dynamics, I_B

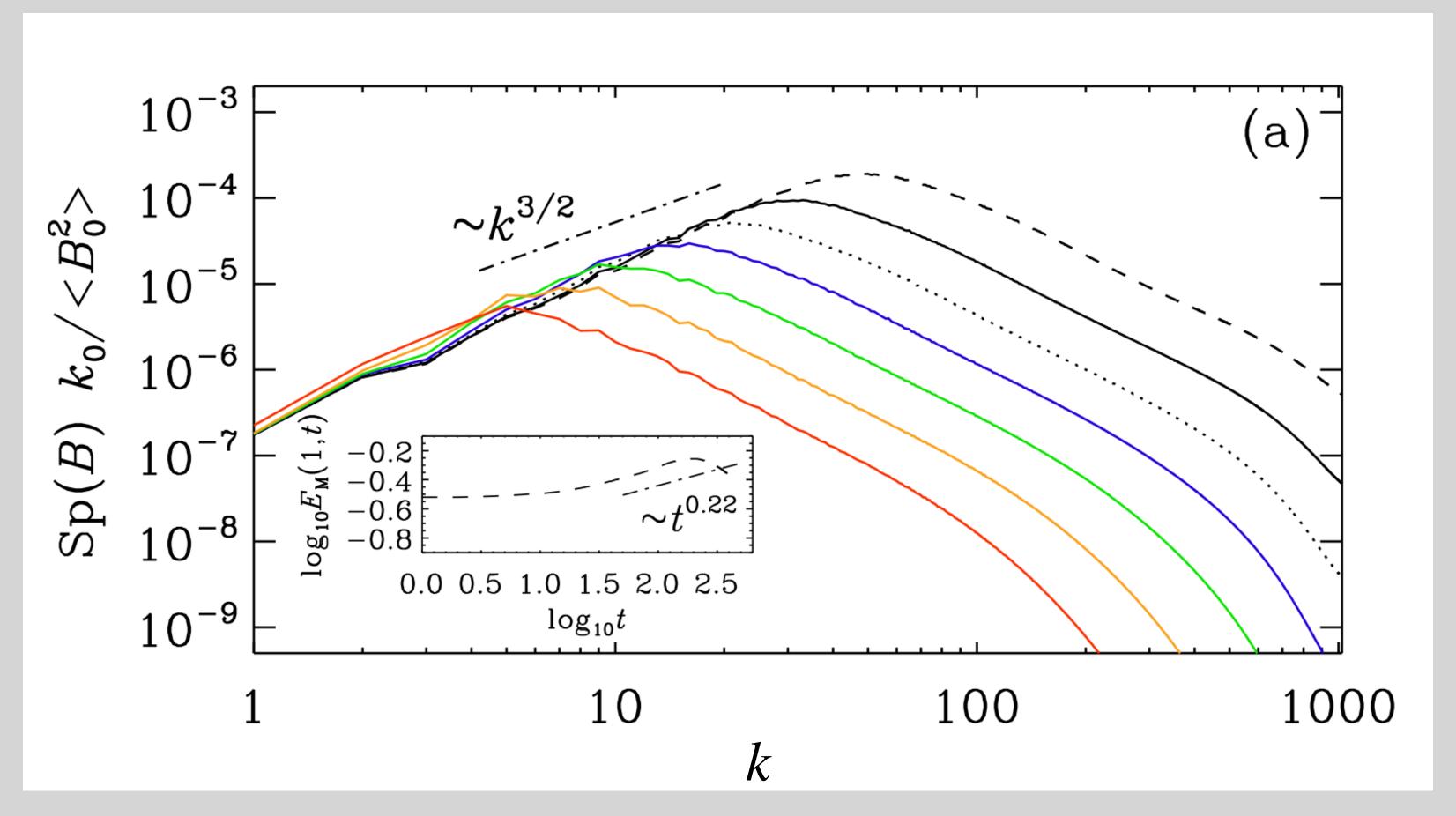
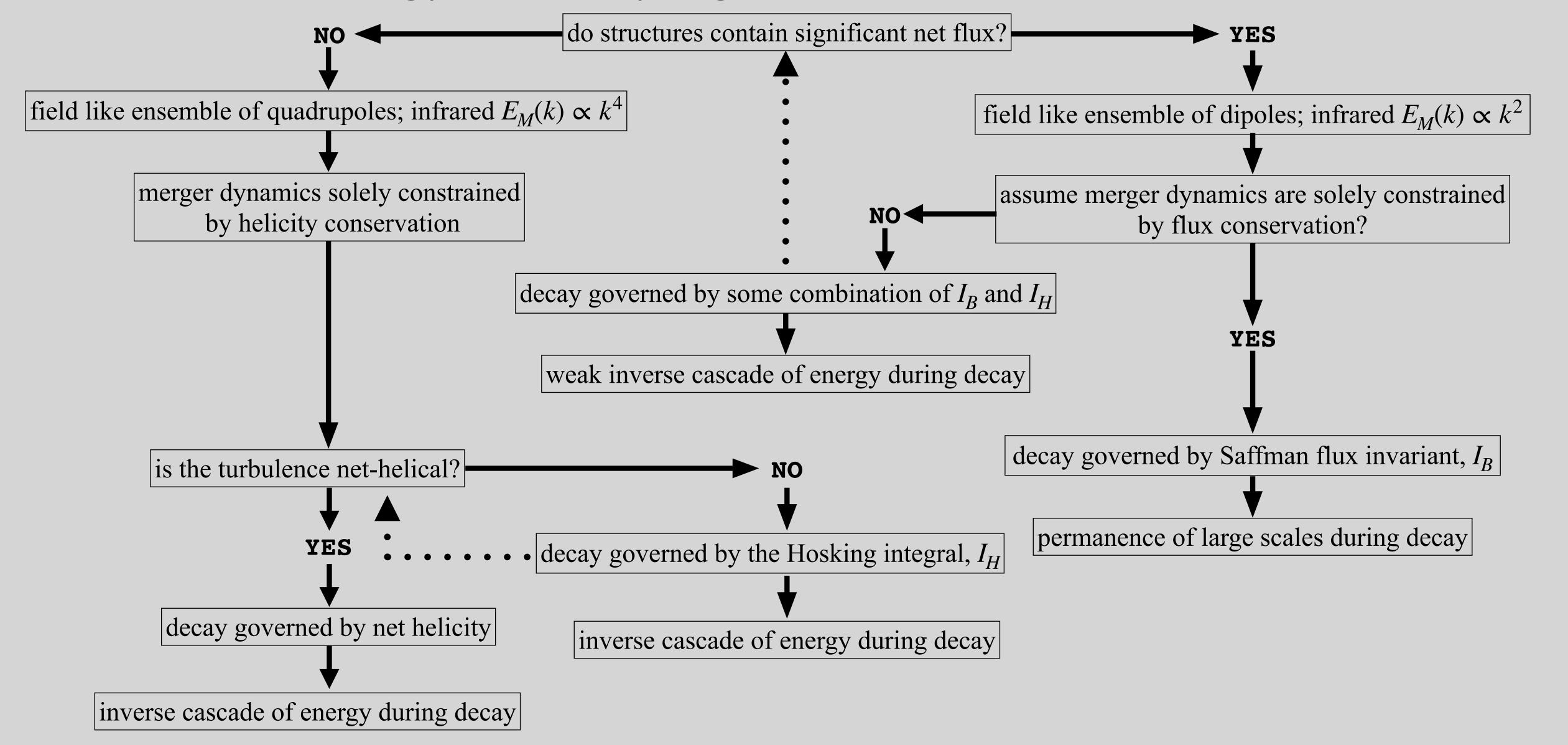
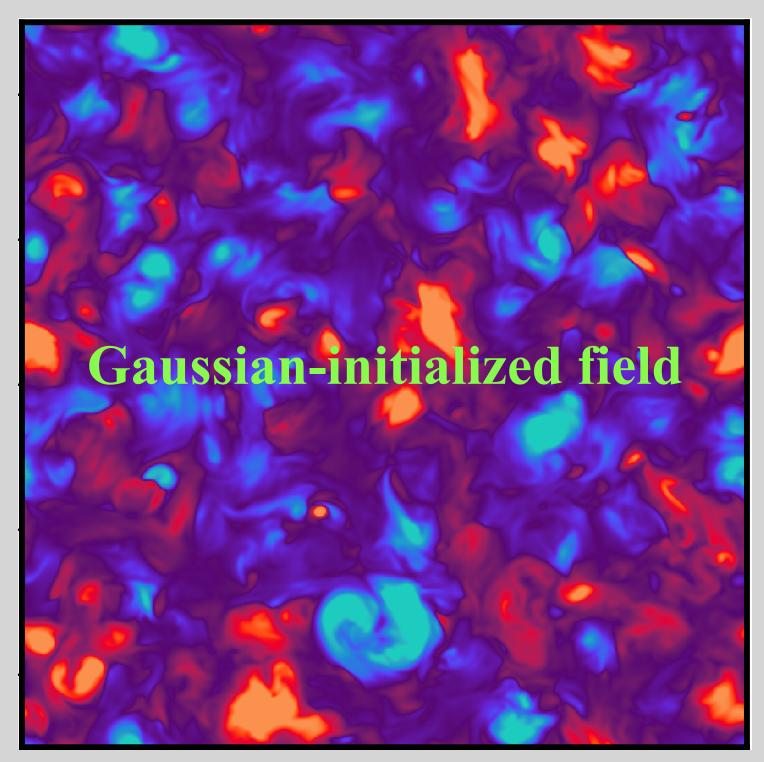


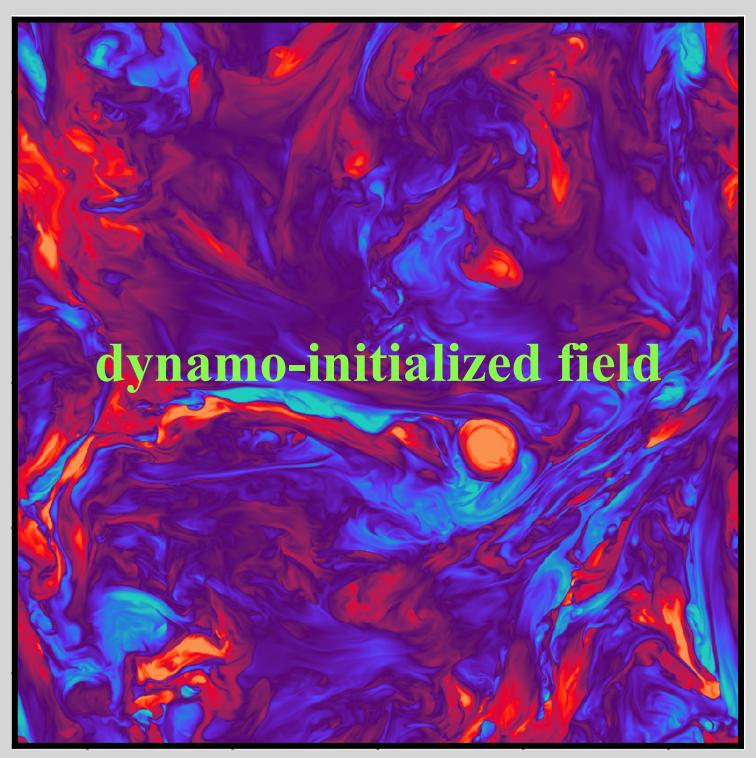
figure courtesy of Brandenburg, Sharma, & Vachaspati (2023)



Gaussian-initialized field vs. dynamo-initialized field



- Artificially initialized (non-physical?)
- Magnetically dominated $(B_{\rm rms} \gg u_{\rm rms})$
- Structures under less tension (i.e., blobs)
- Governing invariant: I_H or I_B

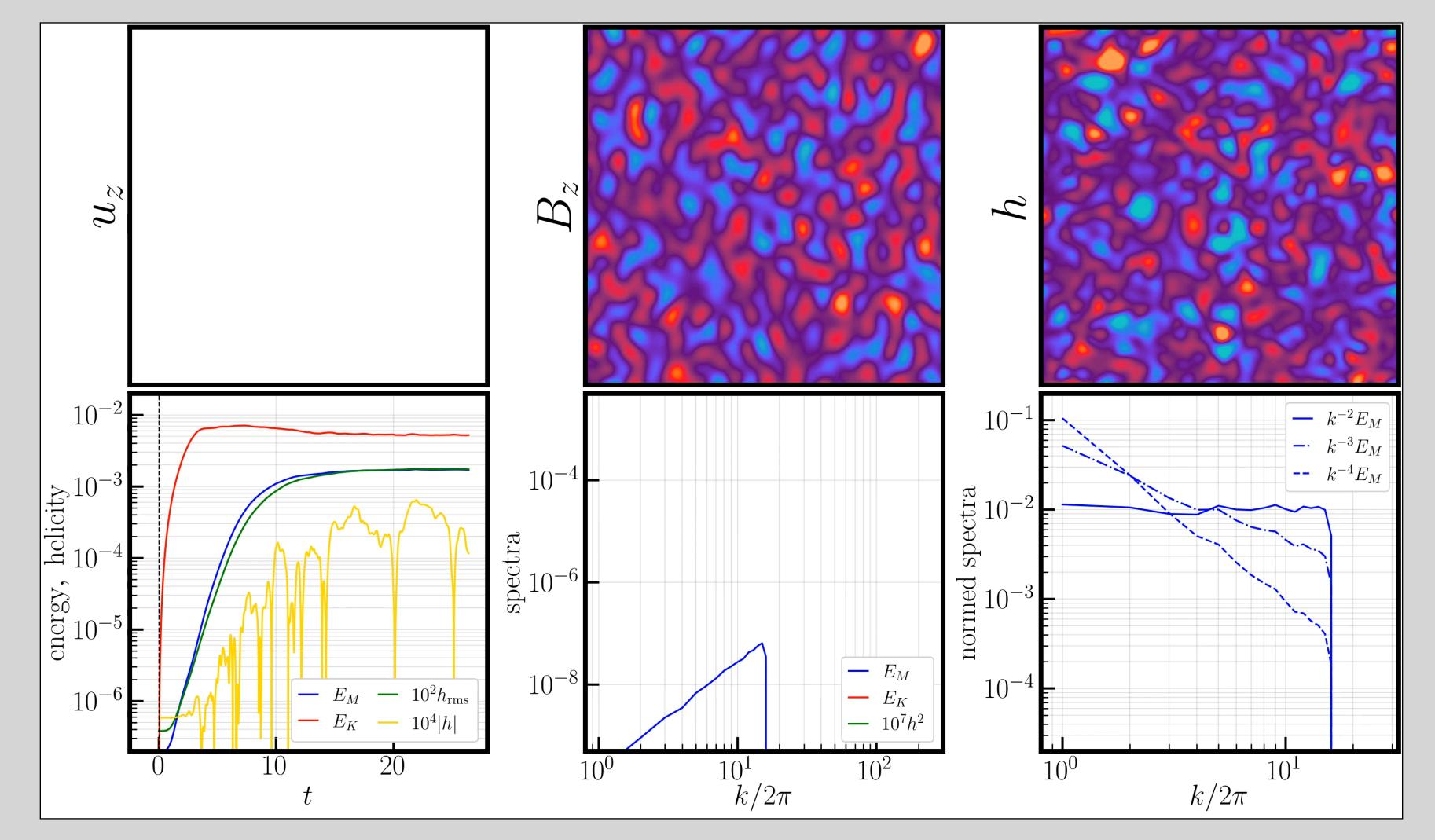


- Develops naturally from field amplification
- Initial energy equipartition $(B_{\rm rms} \sim u_{\rm rms})$
- •Structures under more tension (i.e., folds)
- •Governing invariant: ???

Dynamo phase: field amplification

576³, Rm₄ \approx 1.4E6, Pm = 1, $n_F \in (8, 16)$, 4th-order hyperdissipation

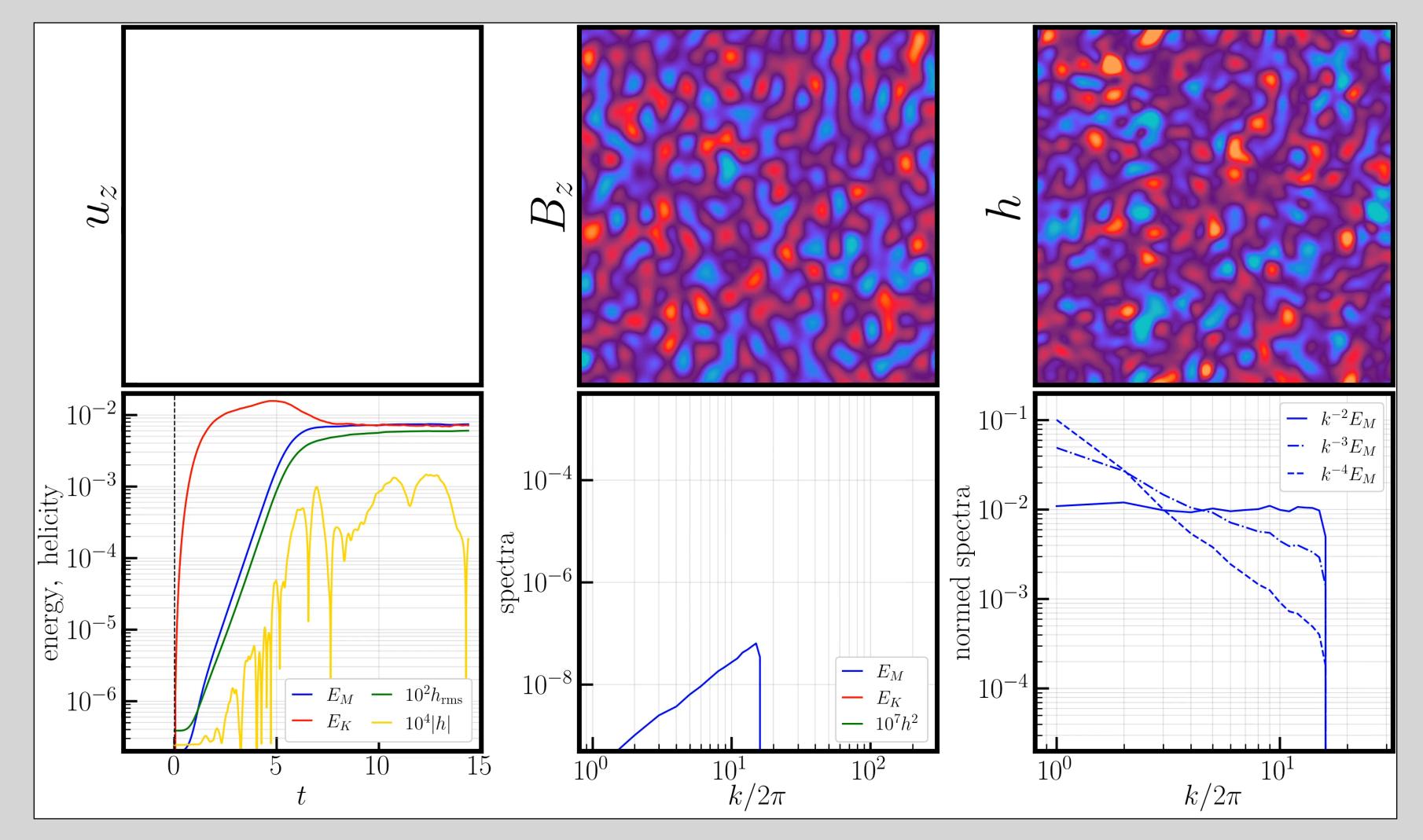
At saturation, magnetic-energy spectrum exhibits $\propto k^2$ infrared spectrum (i.e., fluxy structures)



Dynamo phase: field amplification

1152³, Rm₄ \approx 2.8E6, Pm = 100, $n_F \in (8, 16)$, 4th-order hyperdissipation

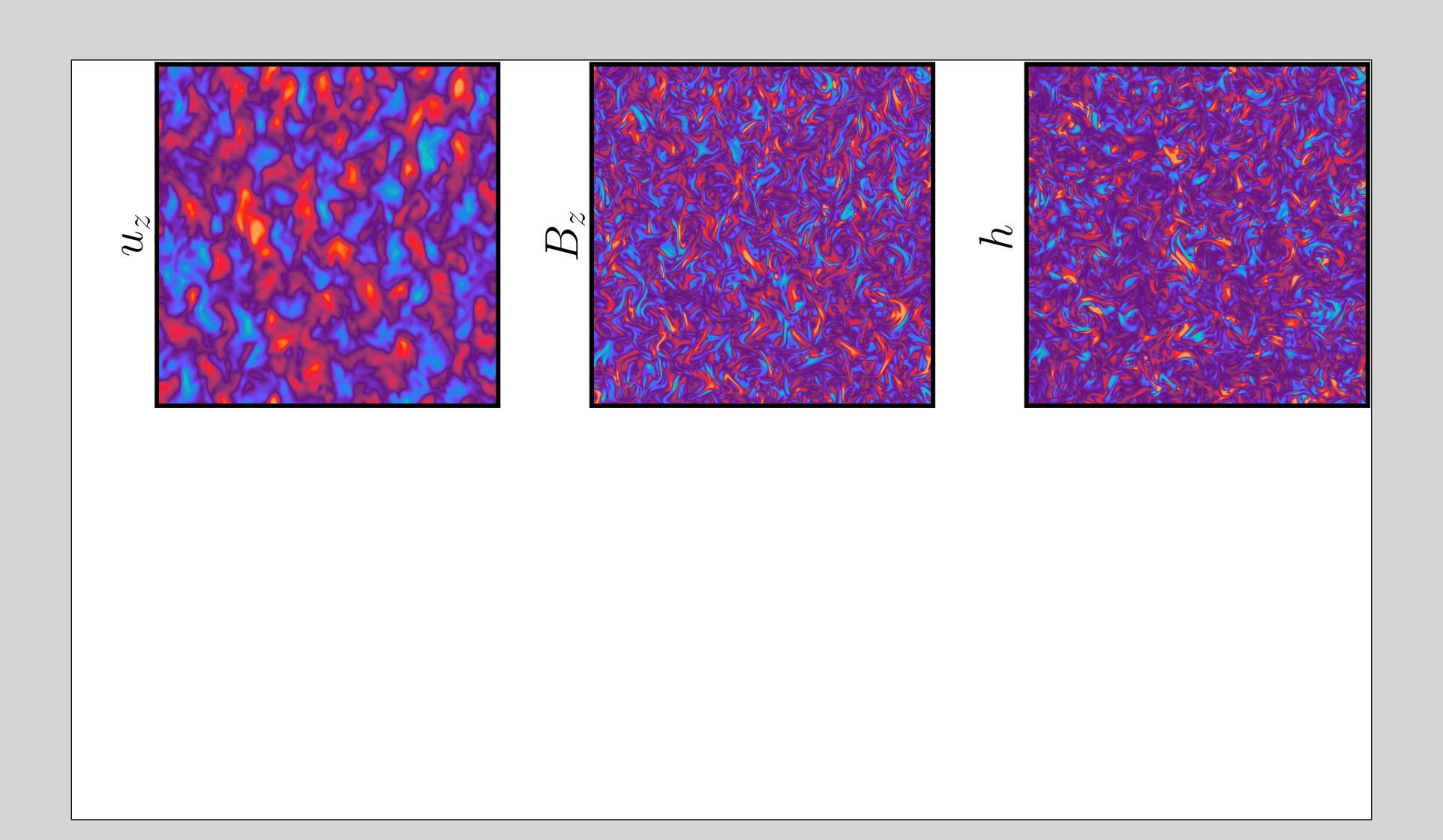
At saturation, magnetic-energy spectrum exhibits $\propto k^2$ infrared spectrum (i.e., fluxy structures)



Decay phase: structure evolution

1152³, Rm₄ \approx 2.8E6, Pm = 100, $n_F \in (8, 16)$, 4th-order hyperdissipation

dynamoinit
field



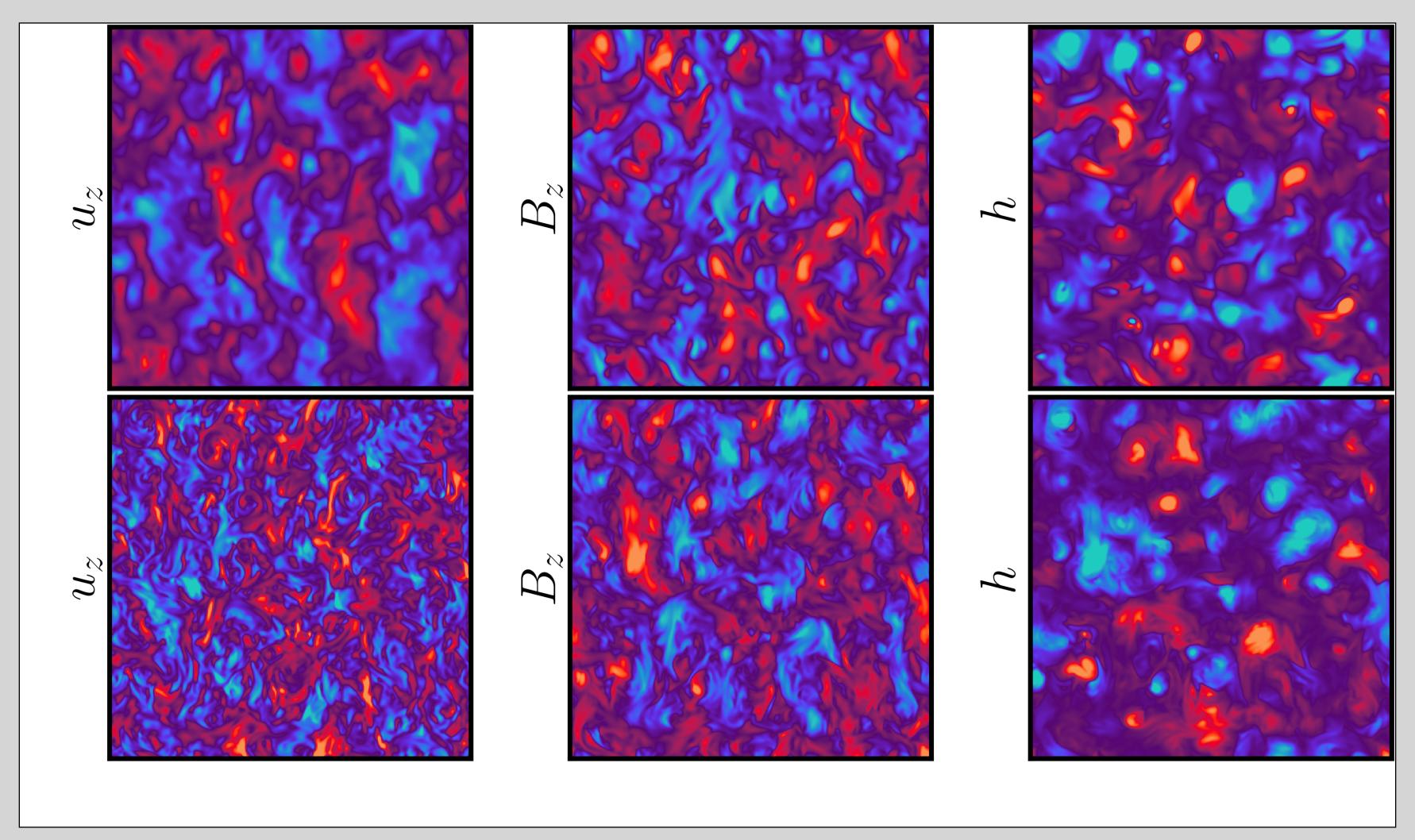
Decay phase: structure evolution

1152³, Rm₄ \approx 2.8E6, Pm = 100, $n_F \in (8, 16)$, 4th-order hyperdissipation

Sufficiently decayed dynamo fields appear qualitatively similar to decayed random fields!

dynamoinit
field

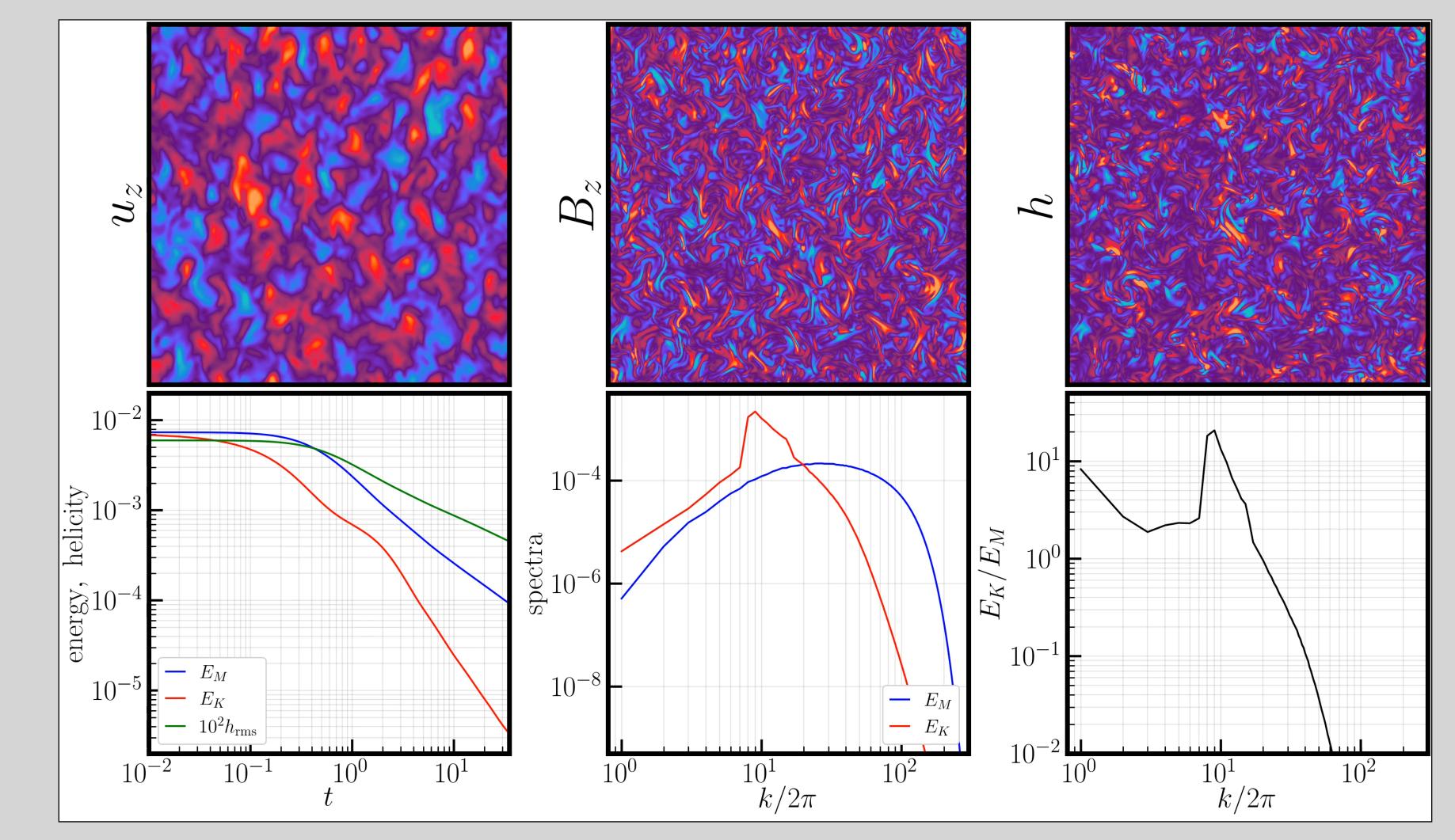
Gaussianinit
field



Decay phase: structure evolution

1152³, Rm₄ \approx 2.8E6, Pm = 100, $n_F \in (8, 16)$, 4th-order hyperdissipation

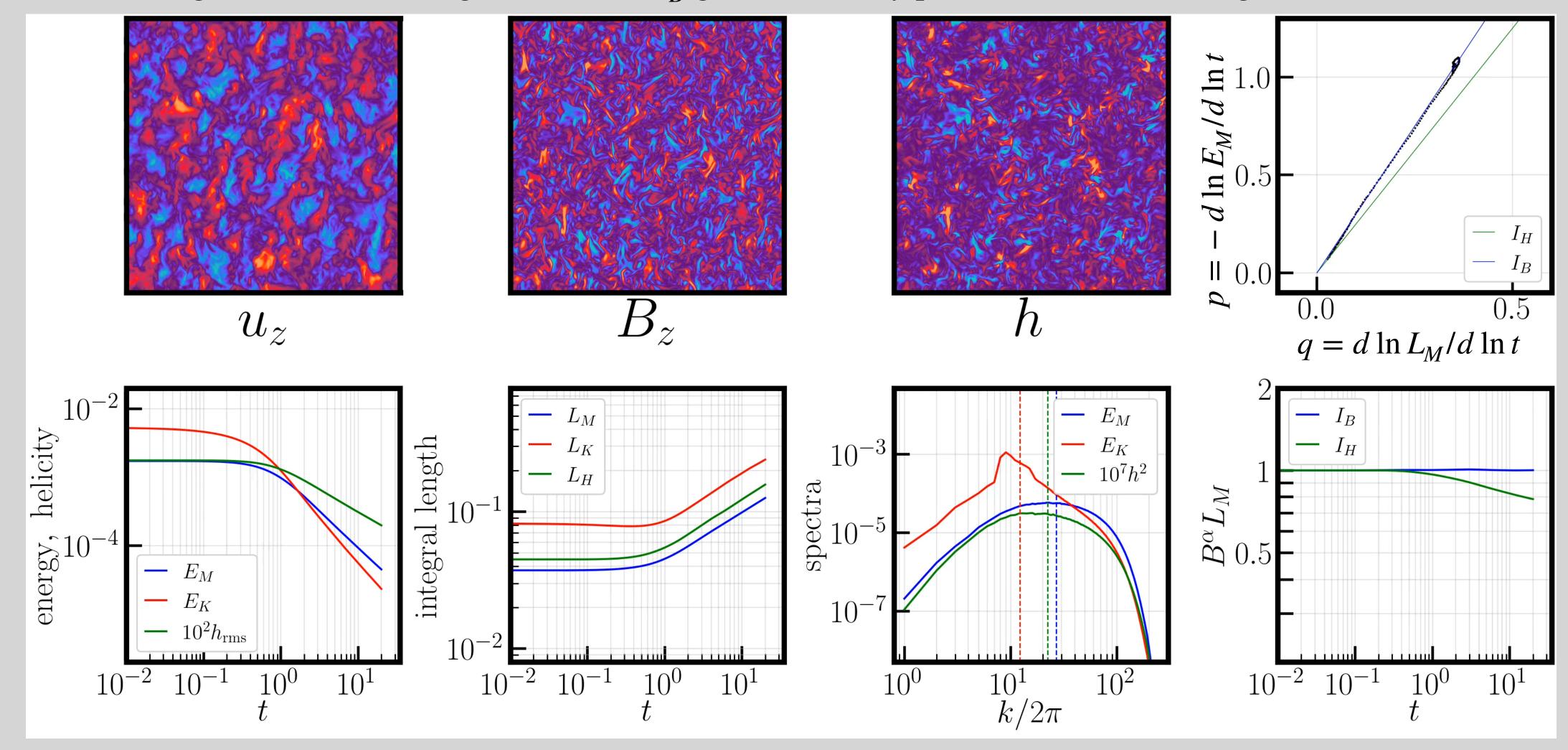
Spectra show evidence that magnetic folds unwrap and drive forcing-scale flows $(\tau_A < \tau_{\rm rec})$



Decay phase: governing invariants

576³, Rm₄ \approx 1.4E6, Pm = 1, $n_F \in (8, 16)$, 4th-order hyperdissipation

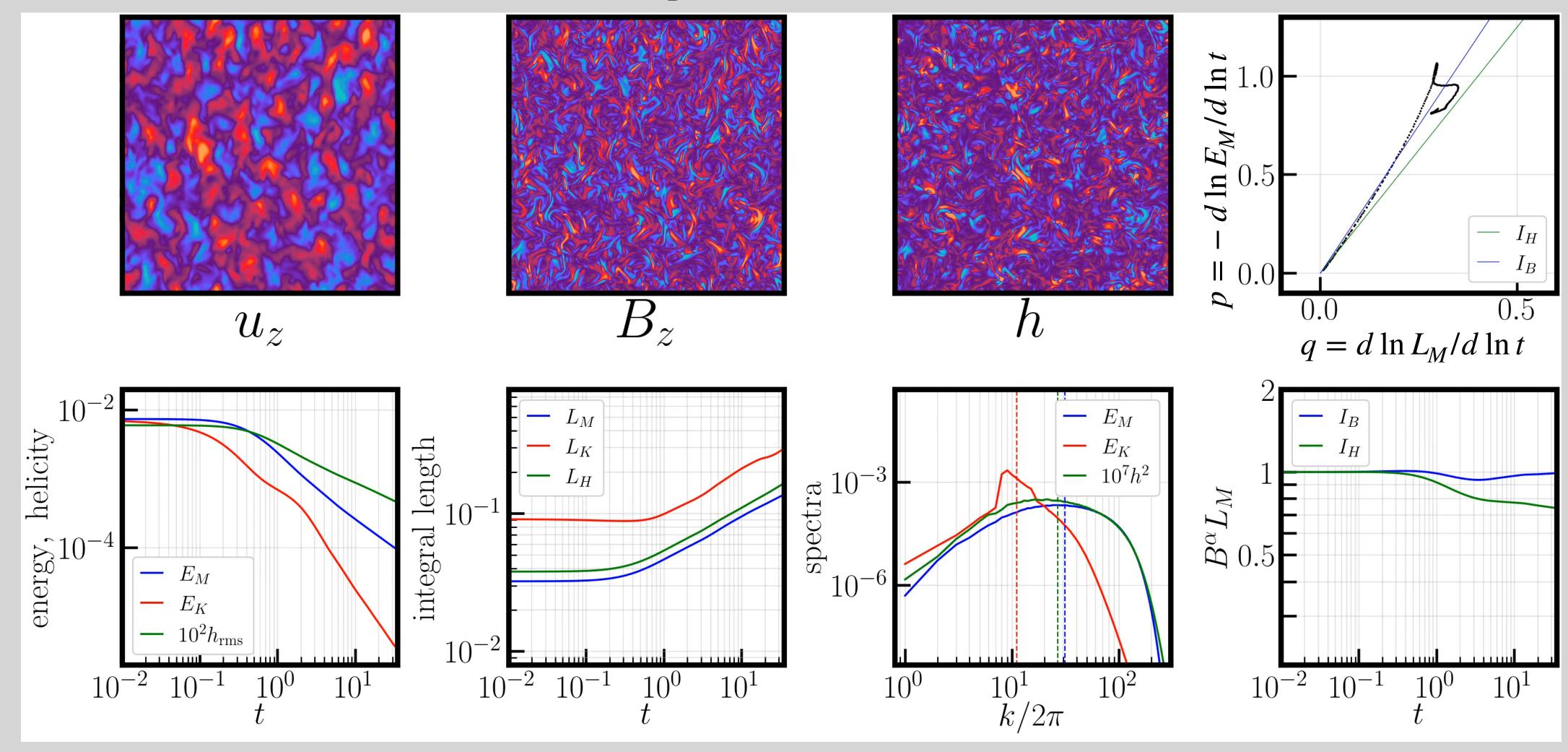
Diagnostics show strong evidence for I_B -governed decay prior to structures hitting the box scale



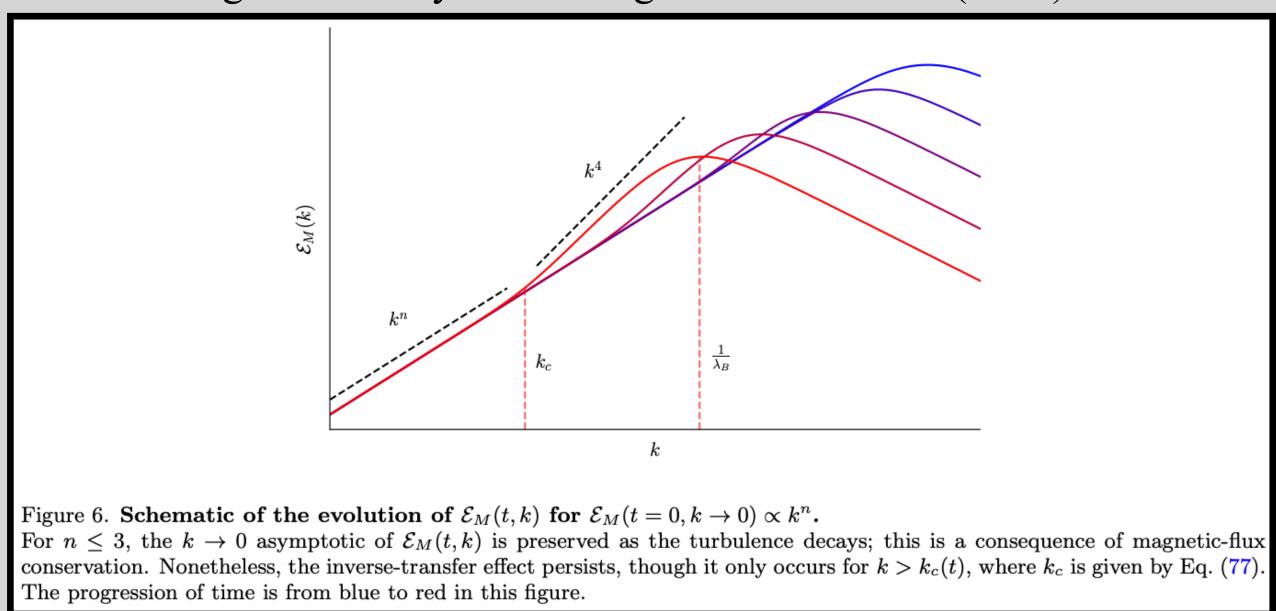
Decay phase: governing invariants

1152³, Rm₄ \approx 2.8E6, Pm = 100, $n_F \in (8, 16)$, 4th-order hyperdissipation

Diagnostics show strong evidence for I_B -governed decay prior to structures hitting the box scale



Decay phase: late-time decay must be I_H -governed?

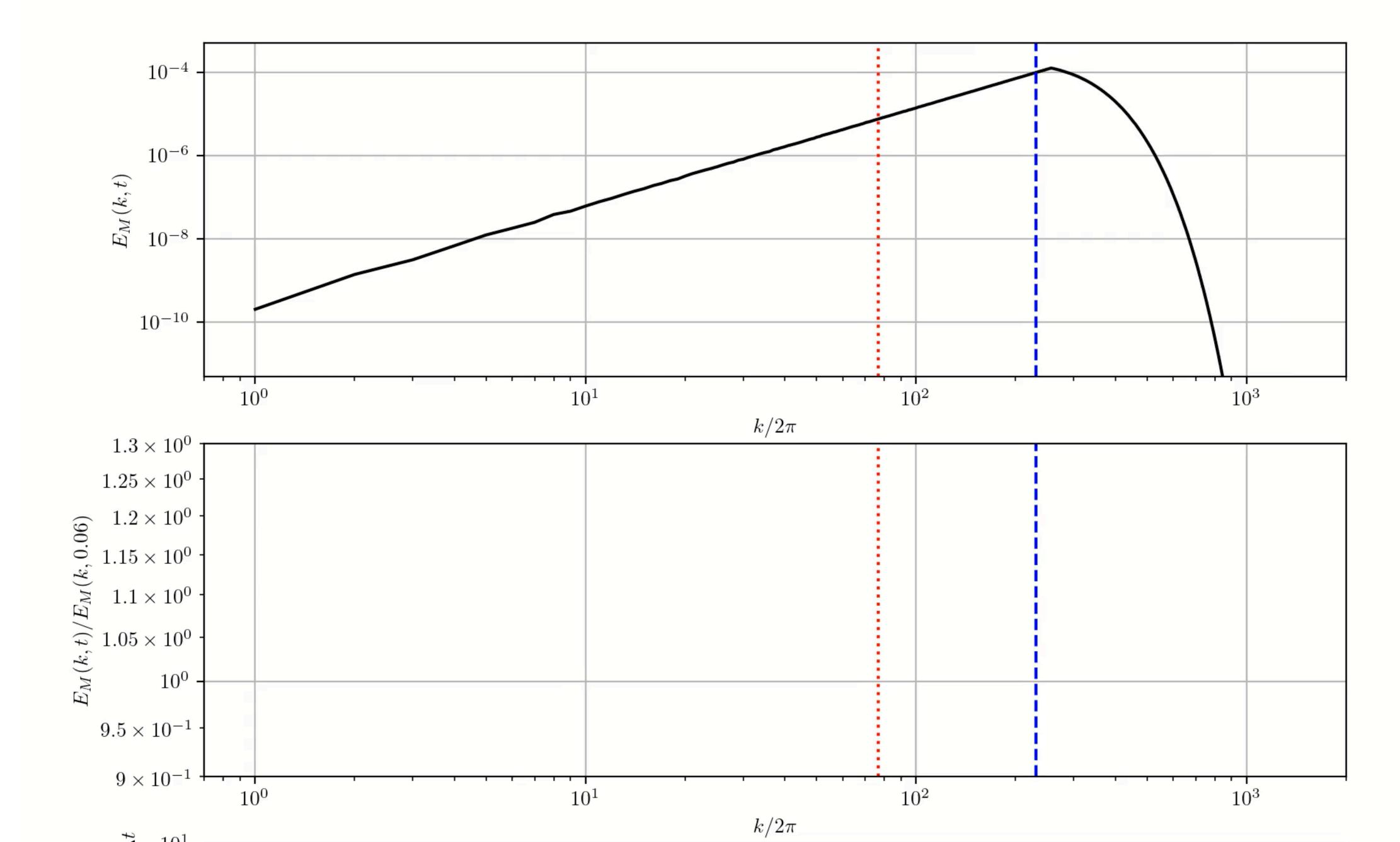


HS23 argues that net flux in structures is dissipated faster than net helicity in structures

Given a sufficiently wide infrared range, I_B -governed decay could transition to I_H -governed decay

If astrophysical dynamos develop fluxy structures, is the infrared range sufficiently wide to dissipate this flux?

If not, how can energy be inverse-transferred to large scales?



The story so far...

- 1. A field generated from a turbulent dynamo (with non-intermittent, spatially homogeneous forcing) develops fluxy structures at saturation.
- 2. At saturation, the field is organized into magnetic folds under tension. Once forcing ceases, $E_K(k_F)$ decays rapidly and equilibrates with $E_M(k_F)$. Once $E_M(k_F) \sim E_K(k_F)$, the magnetic folds unwrap and drive forcing-scale flows.
- 3. Once folds unwrap, the decayed dynamo field appears qualitatively similar to a decayed random field. Thus, the decay of a random field could inform the decay of a dynamo field at this stage.
- 4. It appears that decay I_B governs the decay of (saturated) dynamo fields prior to structures hitting the box scale. However, given a large enough box, the decaying field might become uncorrelated and transition to I_H -governed decay.
- 5. Supplementary high-res simulations of a decaying random field show some evidence for a transition from I_R -governed decay to I_H -governed decay.