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Two ancient aristocratic disciplines

- Math (wiki) Earliest mathematical texts available are from :
Mesopotamia and Egypt-Plimpton 322 (Babylonian 2000-1900 BC),
the Rhind Mathematical Papyrus (Egyptian 1800 BC),
and the Moscow Mathematical Papyrus (Egyptian 1890 BC).

- Plasma physics (wiki)
Plasma was first identified in laboratory by Sir William Crookes. Crookes
presented a lecture on what he called ”radiant matter” to the British
Association for the Advancement of Science, in Sheffield, on Friday, 22
August 1879.
Systematic studies of plasma began with the research of Irving Langmuir
and his colleagues in the 1920s. Langmuir also introduced the term
”plasma” as a description of ionized gas in 1928.
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A new comer : Machine Learning (NN, IA, . . .)

DeepBlue beats Kasparov at chess in 1997.

Classification, MNIST, NLP and more discussed in review paper :

Deep learning, LeCun, Bengio, Hinton, 2015 = 95 965 GS citations ! !

AlphaGo beats Ke Jie at Go in 2017.

Chatbots explosion (ChatGPT, Deepseek, Mistral AI, . . .)

Nobel prize in physics 2024 : Hopfield, Hinton.

Nobel prize in chemistry 2024 : David Baker (Seattle), Demis
Hassabis and John Jumper (Google DeepMind).
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Recent progress

Michael Brenner (Harvard+Google)

Nowadays many theoretical works on turbulence modeling with ML/AI/NN
absolutely everywhere : WPI, Turin, Paris, US, . . .,
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The usual aristocratic reaction

La réaction du roi est connue à l’annonce de la prise de la Bastille.
≪ Mais c’est une révolte ? ≫, demande-t-il.
≪ Non, Sire, c’est une révolution ≫, lui répond le duc de la
Rochefoucauld-Liancourt.
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Data set

● Take a large enough dataset : D = {(xi , yi), i = 1, . . .} ⊂ Rm ×Rn

(yi)

f obj

(xi)

Postulate : dataset corresponds to unknown objective/transfer function

H ∶ Rm Ð→ Rn

with xi ∈ Rm, yi = H(xi) + εi ∈ Rn, and noise εi ∈ Rn.
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Least square representation with composition

● Take a linear function f with weight W ∈ Mmn(R) and bias b ∈ Rn

f ∶ Rm Ð→ Rn,
x z→ f (x) =Wx + b.

(1)

● Notations
a0 = m is the input layer
ap+1 = n is the output layer
(a1, a2, . . . , ap) ∈ Np are the (dense) hidden layers with neurons

● Consider
fr ∶ Rar Ð→ Rar+1 ,

Xr z→ fr(Xr) =WrXr + br

and the function f = fp ○ fp−1 . . . f2 ○ f1 ○ f0.

Depth p is the number of layers.
Width N = maxr ar is the maximal number of neurons per layer.
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Non linearity and composition

● Non linearity is added with an activation function.

Sigmoid ∈ C 1(R). A sigmoid σ is monotone, 0 < σ′ < 1,
with limit value 0 at −∞ and limit value 1 at +∞.

ReLU ∈ C 0(R). It is defined by R(x) = max(0, x).
Thresholding yields T(x) = min(R(x),1).

Generalization component wise to activation functions Rq → Rq.

R

S = σ

T

A function f defined through a generic feed-forward neural network is :

f = fp+1 ○ Sp+1 ○ fp ○ ⋅ ⋅ ⋅ ○ f1 ○ S1 ○ f0,

where the activation function is either Sr = σ or S = R .
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Yarotsky Theorem 2017

Theorem
There exists a ReLU-NN architecture
which approximates all bounded functions in W n,∞([0,1]d)
with uniform accuracy ε and at most O(ε−d/n log 1/ε) computational units.

Taking O(ε−d/n) neurons per layer, one needs O(log 1/ε) layers.

It has the flavor of magic non linear interpolation, but it is not.
It is truly linear interpolation (go to the details of the proof).
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SGD, training, autodiff, . . .

A generic cost function=loss function is

J(W ) = 1

cardD ∑
(x,y)∈D

∣f (x) − y ∣2 , f (x) = f NN
W (x).

Definition
SGD=stochastic gradient algorithm is an ad-hoc version of

W ′(t) = −∇J(W (t)) or W n+1 =W n − λ∇J(W n)).

It is used for training=minimization session on the computer with SGD.

Assume J = v ○ u and v ,u ∈ C 1. Then

∇J = ∇v ○ u ∇u⇐⇒∇J(W ) = ∇v(u(W )) ∇u(W ).

All derivatives are exactly calculated with automatic differentiation
(Tensorflow, Pytorch, Jax, ScikiLearn, . . .) based on the chain rule which is
the main tool for composition of functions
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The regularity issue/problem

ReLU activations functions (and alike) are more and more popular for some
excellent reasons,
but not without contradictions.

In practice the accuracy if often similar as for regular activation
functions.

The cost of the derivative is almost nul :

think of the CPU cost of the calculation of b = a × R ′(x).

However it raises the issue of understanding the usual choice in
softwares (Tensorflow, Pytorch, Scikitlearn, . . .)

R ′(0) = 0.

Some paradoxes arise. For example

x = R(x) − R(−x)

but it is not correct for the derivative at x = 0

1 = 0.
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A recent result on composition of non smooth
ReLU-type functions

Directly comes from F. Murat-C. Trombetti : A chain rule formula for
the composition of a vector-valued function by a piecewise smooth
function. 2003.

Theorem (Murat-Trombetti Theorem)

Consider two functions. The first one u ∈ Lip(Ra ∶ Rb) is
Lipschitz-continuous. The second one v ∈ Lip(Rb ∶ Rc) is
Lipschitz-continuous and piecewise-C 1 with a representation with an
associated gradient.

Then the chain rule identity holds in L∞(Ra ∶ Mc,a(R))

∇(v ○ u) = ∇̃v ○ u ∇u

where ∇̃v ○ u(x) = ∇̃v(u(x)) for all x ∈ Ra.

Proof rewritten in the context of Machine Learning : D., TMLR, 2025.

As a consequence ∇̃v = ∇v in L∞(Ra ∶ Mc,a(R))
WPI 2025 p. 12 / 22
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Proposed to us (Ruiyang Dai+D.)
by V. Grandgirard and P. Donnel

Solve numerically systems of equations like (Ji-Held 2006)

∂t fa + v ⋅ ∇fa +
ea
ma

(E + v ∧B) ⋅ ∂vfa = ∑
b

C(fa, fb)

where the Coulomb operators are expressed with the Rosenbluth potentials

C(fa, fb) =
γab
2ma

∂v ⋅ [∂v ⋅ (fa∂v∂vGb) − 2(1 + ma

mb
) fa∂vHb] .

The Rosenbluth potentials are

Hb = ∫
fb(v′)
∣v − v′∣dv′ and Gb = ∫ fb(v′)∣v − v′∣dv′.

On numerical grounds, the equation is written in dimension
9=3+3+3 ! !
In consequence, it is just impossible to solve as is on the computer.
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Objective : use learning techniques to hopefully
compress and accelerate the calculations

We intended to use linearized moment methods (Donnel et al 2018) in
order to generate synthetic datas, then to learn the Fokker-Planck
operator from them.

For many reasons, it was not satisfactory.
In particular, linearized moment methods (Donnel et al 2018) are far to be
a reference method.

Therefore we move to a more basic question :
is there a best ML structure for learning such problems ?

WPI 2025 p. 14 / 22



Thoughts

Basic ML
principles

Two
applications

Fokker-Planck
equation

Transport equation
and VOF

First try

Fourier discretization (∣k ∣ ≤ ∣N ∣ ⇔ k = (k1, k2, k3) ∈ {−N, . . . ,N}3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fN(v) = ∑
∣m∣≤∣N ∣

f̂k exp(ik ⋅ v),

f̂k =
1

(2π)2 ∫B(0,π)
f (t, v) exp(−ik ⋅ v)dv ,

∂ f̂k
∂t

= ∑
∣m∣≤∣N ∣

f̂k−m f̂mβ̂L(k −m,m), ∣k ∣ ≤ ∣N ∣.

where the coefficients β̂L(m,n) have analytical formulas (Pareschi et al
2000).
We generate synthetic data, here extremely simple,

f (0, v) = v 2

πσ2
exp(− v

2

σ2
). (2)

This problem has an exact solution (Lemou 1998)

f (t, v) = 1

2πS2
(2S − 1 + 1 − S

2S

v 2

σ2
) exp(− v 2

2Sσ2
), (3)

where S = 1 − exp(−σ2t/8)/2.
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We use a seemingly important idea which is to train with time series
TensorFlow Team. Time Series Forecasting https:

//www.tensorflow.org/tutorials/structured_data/time_series

Minimize
1

ms(nt − 1)
ms

∑
j=1

nt−1

∑
i=0

∣∣FNN (i , j) − F(i + 1, j)∣∣
l2

where Fi,j is a vector of moments ∣m∣ ≤ ∣N ∣ for the coefficient σj and the
time i∆t.
Then we use the trained function FNN in our numerical solver :
it fails as shown below ! !

Figure – Left=prediction. Middle=true. Right=difference.
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Second try : residual NN

Minimize
1

ms(nt − 1)
ms

∑
j=1

nt−1

∑
i=0

∣∣FNN (i , j) + F(i , j) − F(i + 1, j)∣∣
l2
.

The map FNN serves as a residual in our iterations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F(i + 1, j) = F + FNN (i , j), 0 ≤ i < nt ,

f̂ (0)k = 1

(2π)2 ∫B(0,π)
f (0, v) exp(−ik ⋅ v)dv , ∣k ∣ ≤ ∣N ∣.

Results are much better as shown below

Figure – Left=prediction. Middle=true. Right=difference.
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Proposed to us (Moreno Pintore+D.)
by S. Jaouen

Solve transport equations the transport equation with interface datas

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu(t, x) + c(x) ⋅ ∇xu(t, x) = 0,
u(x,0) = Iω(x), Iθ is the indicatrix function of ω ⊂ R3,
∇ ⋅ c(x) = 0, for simplicity,

for numerical modeling of early stage of multimaterial ICF flows.
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Setting of the VOFML solution

Here we train the numerical flux from 3D synthetic data on blocks of
N ×N ×N Finite Volume cells.

Then we use the VOFML numerical flux in a Finite Volume solver.
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Some results

u1 = 2 sin(πx)2 sin(2πy) sin(2πz) cos(πt/T),
u2 = − sin(πy)2 sin(2πx) sin(2πz) cos(πt/T),
u3 = − sin(πz)2 sin(2πx) sin(2πy) cos(πt/T).

(4)

Initial condition as the indicator function of a sphere centered in
[0.35,0.35,0.35] with radius 0.15.

Theory and results in 2025 preprint
https://hal.sorbonne-universite.fr/hal-05149322v1
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Conclusions

ML (NN, IA) is a revolution in numerical technology,

and so is a revolution in all applied sciences.

The fundamental mathematical principles behind are still to be
identified with certainty,

even if almost all branches of mathematics work on it.

Applications to transport equations show a potential in plasma
physics, still to be explored and confirmed.

WPI 2025 p. 21 / 22



Thoughts

Basic ML
principles

Two
applications

Fokker-Planck
equation

Transport equation
and VOF

Allegory of the possible (but not certain) fate of
scientific aristocracy confronted with ML
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