

Tightening energetic bounds on linear gyrokinetic instabilities

Paul Costello & Gabe Plunk With thanks to L. Podavini, A. Zocco & P. Helander

[1] P. Helander and G. G. Plunk, Journal of Plasma Physics, 88, (2), 905880207, (2022).

[2] G. G. Plunk and P. Helander, Journal of Plasma Physics, 88, (3), 905880313, (2022).

[3] G. G. Plunk and P. Helander, Journal of Plasma Physics, 89, (4), 905890419, (2023).

[4] P. J. Costello and G. G. Plunk, Journal of Plasma Physics, 91, (1), E12, (2025).

[5] L. Podavini, P. Helander, G. G. Plunk, and A. Zocco, *Journal of Plasma Physics*, **91**, (3), p. E79, (2025)

[6] P. J. Costello and G. G. Plunk, Submitted to Journal of Plasma Physics, arXiv:2505.17757, (2025)

Outline

1. Introduction and Background

- a. Turbulence, instabilities and gyrokinetics
- b. Energetic upper bounds and optimal modes: a brief primer

2. Tightening energetic bounds on linear gyrokinetic instabilities

- a. Tightest possible energetic bounds
- b. Constrained optimal modes

3. Conclusions and future/ongoing work

Introduction and background

Turbulence, instability and gyrokinetics

- Turbulent transport *largely* dictates the size of a tokamak/stellarator fusion power plant
 - Turbulence is initiated by *microinstabilities*, on the scale of the gyroradius
 - These tap into the free energy in the radial gradients of temperature and density of the plasma

Turbulence, instability and gyrokinetics

- Turbulent transport *largely* dictates the size of a tokamak/stellarator fusion power plant
 - Turbulence is initiated by *microinstabilities*, on the scale of the gyroradius
 - These tap into the free energy in the radial gradients of temperature and density of the plasma
- The foundation of our understanding is *gyrokinetics*
 - \circ Local, electrostatic gyrokinetic equation for species a and Fourier mode k:

$$\frac{\partial g_{a,k}}{\partial t} + v_{\parallel} \frac{\partial g_{a,k}}{\partial l} + i\omega_{da} g_{a,k} + [\delta \phi_k, g_{a,k}] = \frac{e_a F_{a0}}{T_a} \left(\frac{\partial}{\partial t} + i\omega_{*a}^T \right) \delta \phi_k J_{0a}$$

o Simulated by many codes: GENE, STELLA, GX, GS2 etc.

Electrostatic, collisionless gyrokinetics

Electrostatic, collisionless gyrokinetics

$$\delta\phi_k$$
 given by $\sum_a \frac{e_a^2 n_a}{T_a} \delta\phi_k = \sum_a e_a \int g_a J_{0a} \mathrm{d}^3v$

7

Electrostatic, collisionless gyrokinetics

$$\delta\phi_k$$
 given by $\sum_a \frac{e_a^2 n_a}{T_a} \delta\phi_k = \sum_a e_a \int g_a J_{0a} \mathrm{d}^3v$

Compact form

$$\frac{\partial g_{a,k}}{\partial t} = \mathcal{L}g_{a,k} + \mathcal{N}g_{a,k}$$

Linear gyrokinetics

Linear instability theory is a cornerstone of our understanding

$$rac{\partial g_{a,k}}{\partial t} = \mathcal{L}g_{a,k} + \mathcal{N}g_{a,k}$$
 Neglect nonlinearity

- Look for "normal" modes of the form $g_{a,k} \sim \exp(-i\omega t)$ where $\omega = \omega_r + i\gamma$
- Solve the eigenvalue problem $-i\omega g_{a,k}=\mathcal{L}g_{a,k}$ to find instabilities.

Linear gyrokinetics

Linear instability theory is a cornerstone of our understanding

$$rac{\partial g_{a,k}}{\partial t} = \mathcal{L}g_{a,k} + \mathcal{N}g_{a,k}$$
 Neglect nonlinearity

- Look for "normal" modes of the form $g_{a,k} \sim \exp{(-i\omega t)}$ where $\omega = \omega_r + i\gamma$
- Solve the eigenvalue problem $-i\omega g_{a,k}=\mathcal{L}g_{a,k}$ to find instabilities.
 - Understood in some limits -> "zoo" of modes and mechanisms: ITG, TEM, KBM, MTM etc.
 - This problem is usually *hard*, particularly in non-uniform magnetic fields (e.g., CHT)
 - Simulations often necessary

Energetic upper bounds and optimal modes

(avoiding the zoo...)

Energetic bounds: a different approach to instability

Instead of solving $-i\omega g_{a,k}=\mathcal{L}g_{a,k}$

• Consider **energy balance**:

$$\frac{\partial g_{a,k}}{\partial t} = \mathcal{L}g_{a,k} + \mathcal{N}g_{a,k} \xrightarrow{(\mathbf{g}, \tilde{\mathcal{H}}(\ldots))} \frac{\mathrm{d}}{\mathrm{d}t}\tilde{H} = 2\tilde{D}$$

 $(\mathbf{g}_{1}, \mathbf{g}_{2}) = \sum_{a,k} \left\langle T_{a} \int \frac{g_{a,1}^{*} g_{a,2}}{F_{a0}} d^{3}v \right\rangle$ $\langle \ldots \rangle = \lim_{L \to \infty} \int_{-L}^{L} (\ldots) \frac{dl}{B} \left/ \int_{-L}^{L} \frac{dl}{B} \right|$

Energy \tilde{H} grows via the energy source \tilde{D}

- Can be chosen to 'annihilate' the nonlinearity (nonlinear invariant)
- \circ $ilde{H}$ must be a positive definite quadratic 'norm'

Energetic bounds: a different approach to instability

Instead of solving $-i\omega g_{a,k}=\mathcal{L}g_{a,k}$

• Consider **energy balance**:

$$\frac{\partial g_{a,k}}{\partial t} = \mathcal{L}g_{a,k} + \mathcal{N}g_{a,k} \xrightarrow{(\mathbf{g}, \tilde{\mathcal{H}}(\ldots))} \frac{\mathrm{d}}{\mathrm{d}t}\tilde{H} = 2\tilde{D}$$

 $(\mathbf{g}_1, \mathbf{g}_2) = \sum_{a,k} \left\langle T_a \int \frac{g_{a,1}^* g_{a,2}}{F_{a0}} d^3 v \right\rangle$ $\langle \ldots \rangle = \lim_{L \to \infty} \int_{-L}^{L} (\ldots) \frac{dl}{B} \left/ \int_{-L}^{L} \frac{dl}{B} \right|$

Energy \tilde{H} grows via the energy source \tilde{D}

- Can be chosen to 'annihilate' the nonlinearity (nonlinear invariant)
- \circ $ilde{H}$ must be a positive definite quadratic 'norm'
- ullet Instantaneous growth rate of \tilde{H}

$$\Lambda \equiv \frac{1}{2\tilde{H}} \frac{\mathrm{d}\tilde{H}}{\mathrm{d}t}$$

Energetic bounds: a different approach to instability

Instead of solving $-i\omega g_{a,k}=\mathcal{L}g_{a,k}$

• Consider **energy balance**:

$$\frac{\partial g_{a,k}}{\partial t} = \mathcal{L}g_{a,k} + \mathcal{N}g_{a,k} \xrightarrow{(\mathbf{g}, \tilde{\mathcal{H}}(\ldots))} \frac{\mathrm{d}}{\mathrm{d}t}\tilde{H} = 2\tilde{D}$$

 $(\mathbf{g}_{1}, \mathbf{g}_{2}) = \sum_{a,k} \left\langle T_{a} \int \frac{g_{a,1}^{*} g_{a,2}}{F_{a0}} d^{3}v \right\rangle$ $\langle \ldots \rangle = \lim_{L \to \infty} \int_{-L}^{L} (\ldots) \frac{dl}{B} \left/ \int_{-L}^{L} \frac{dl}{B} \right|$

Energy \tilde{H} grows via the energy source \tilde{D}

- Can be chosen to 'annihilate' the nonlinearity (nonlinear invariant)
- \circ $ilde{H}$ must be a positive definite quadratic 'norm'
- Instantaneous growth rate of \tilde{H}

$$\Lambda \equiv \frac{1}{2\tilde{H}} \frac{d\tilde{H}}{dt} = \frac{\tilde{D}}{\tilde{H}} \longrightarrow \Lambda = \frac{(\mathbf{g}, \tilde{\mathcal{D}}\mathbf{g})}{(\mathbf{g}, \tilde{\mathcal{H}}\mathbf{g})}$$

Optimal modes and energetic upper bounds

• Ask the question, "Which g gives the fastest possible energy growth?"

$$\Lambda \equiv \frac{(\mathbf{g}, \tilde{\mathcal{D}}\mathbf{g})}{(\mathbf{g}, \tilde{\mathcal{H}}\mathbf{g})} \qquad \frac{\delta \Lambda}{\delta \mathbf{g}} = 0$$

$$\Lambda \tilde{\mathcal{H}}\mathbf{g} = \tilde{\mathcal{D}}\mathbf{g}$$

ullet The solutions to this problem are the optimal modes $(\Lambda, {f g})$

Optimal modes and energetic upper bounds

• Ask the question, "Which g gives the fastest possible energy growth?"

$$\Lambda \equiv \frac{(\mathbf{g}, \tilde{\mathcal{D}}\mathbf{g})}{(\mathbf{g}, \tilde{\mathcal{H}}\mathbf{g})} \qquad \frac{\delta \Lambda}{\delta \mathbf{g}} = 0$$

$$\Lambda \tilde{\mathcal{H}}\mathbf{g} = \tilde{\mathcal{D}}\mathbf{g}$$

- ullet The solutions to this problem are the *optimal modes* $(\Lambda, {f g})$
- The largest Λ_{max} is an **upper bound on** *any* **instability growth** in the system
 - $\circ \quad$ Bounds linear instability growth at each ${f k}_\perp$: $\gamma_L \le \Lambda_{
 m max}$
 - \circ Largest Λ_{\max} over all \mathbf{k}_{\perp} values bounds nonlinear energy growth
 - \circ Low-dimensionality \longrightarrow a system of gyrofluid-like equations
 - Freedom in the choice of 'energy norm'

Helmholtz free energy: a bound on all geometries

• Helmholtz free energy is a simple nonlinear invariant

$$\frac{\mathrm{d}}{\mathrm{d}t}H = 2D$$

$$H = \sum_{k,a} \left\langle T_a \int \frac{|g_{a,k}|^2}{F_{a0}} \mathrm{d}^3 \mathbf{v} - \frac{n_a e_a^2}{T_a} |\delta \phi_k|^2 \right\rangle$$

$$D = \operatorname{Re} \sum_{k,a} \left\langle e_a \int i\omega_{*a}^T g_{a,k}^* \delta \phi_k J_{0a} \mathrm{d}^3 v \right\rangle$$
Only depends on gradients, no

Only depends on gradients, no geometry!

Helmholtz free energy: a bound on all geometries

• Helmholtz free energy is a simple nonlinear invariant

$$\frac{\mathrm{d}}{\mathrm{d}t}H = 2D$$

$$H = \sum_{k,a} \left\langle T_a \int \frac{|g_{a,k}|^2}{F_{a0}} \mathrm{d}^3 \mathbf{v} - \frac{n_a e_a^2}{T_a} |\delta \phi_k|^2 \right\rangle$$

$$D = \operatorname{Re} \sum_{k,a} \left\langle e_a \int i\omega_{*a}^T g_{a,k}^* \delta \phi_k J_{0a} \mathrm{d}^3 v \right\rangle$$

Only depends on gradients, no geometry!

$$\Lambda \mathcal{H} \mathbf{g} = \mathcal{D} \mathbf{g}$$
 (optimal mode problem 2 × 2 system of fluid moments)

[1] P. Helander and G. G. Plunk, *Journal of Plasma Physics*, **88**, (2), 905880207, (2022). [5] L. Podavini, P. Helander, G. G. Plunk, and A. Zocco, *Journal of Plasma Physics*, **91**, (3), p. E79, (2025).

Generalised free energy: geometry dependent bound

Electrostatic energy depends explicitly on geometry

$$\frac{\mathrm{d}E}{\mathrm{d}t} = 2K$$

$$E = \sum_{k} \frac{ne_a^2}{T_a} \left\langle [1 - \Gamma_0(b_{ak})] |\delta\phi_k|^2 \right\rangle$$

$$K = -\operatorname{Re} \sum_{a,k} \left\langle e_a \int \left(v_{\parallel} \frac{\partial g_{a,k}}{\partial l} + i \omega_{da} g_{ak} \right) \delta \phi_k^* J_{0ak} \mathrm{d}^3 v \right\rangle$$
Geometry dependent

Generalised free energy: geometry dependent bound

Electrostatic energy depends explicitly on geometry

$$\frac{\mathrm{d}E}{\mathrm{d}t} = 2K$$

$$E = \sum_{k} \frac{ne_a^2}{T_a} \left\langle [1 - \Gamma_0(b_{ak})] |\delta\phi_k|^2 \right\rangle$$

$$K = -\operatorname{Re} \sum_{a,k} \left\langle e_a \int \left(v_{\parallel} \frac{\partial g_{a,k}}{\partial l} + i \omega_{da} g_{ak} \right) \delta \phi_k^* J_{0ak} \mathrm{d}^3 v \right\rangle$$
Geometry dependent

- But *E* is not *positive definite*: not suitable for optimal mode analysis.
- Instead consider "generalised free energy":

$$\tilde{H} = H - \Delta E$$
 $\frac{\mathrm{d}\tilde{H}}{\mathrm{d}t} = 2(D - \Delta K)$

- Aware of both gradients (D) and geometry (K).
- Tightest bound found by minimizing over Δ .

Ion Temperature Gradient (ITG)

• The optimal mode equation (5 × 5 system of fluid moments)

$$\Lambda \tilde{\mathcal{H}} g = (\mathcal{D} - \Delta \mathcal{K}) g$$

- For adiabatic electrons, a geometry-dependent bound on ITG modes
 - Can be solved analytically in simple (local) limits

Ion Temperature Gradient (ITG)

• The optimal mode equation $(5 \times 5 \text{ system of fluid moments})$

$$\Lambda \tilde{\mathcal{H}} g = (\mathcal{D} - \Delta \mathcal{K}) g$$

- For adiabatic electrons, a geometry-dependent bound on ITG modes
 - o Can be solved analytically in simple (local) limits
- **Toroidal ITG**: curvature driven

$$\kappa_d = \omega_{*i} \eta_i / (\hat{\omega}_{di}) \sim R / L_T$$

o Captures key features of linear growth

Ion Temperature Gradient (ITG)

The optimal mode equation $(5 \times 5 \text{ system of fluid moments})$

$$\Lambda \tilde{\mathcal{H}} g = (\mathcal{D} - \Delta \mathcal{K}) g$$

- For adiabatic electrons, a geometry-dependent bound on ITG modes
 - Can be solved analytically in simple (local) limits
- **Slab ITG:** driven by streaming along B

$$\kappa_{\parallel} = \omega_{*i} \eta_i / (v_{Ti} k_{\parallel})$$

- Difference in behaviour at low-drive
- Optimal modes and linear eigenmodes in disagreement...

Tightening energetic bounds on linear gyrokinetic instabilities

- 1. Tightest possible energetic bounds
- 2. Constrained optimal modes

Previous work has focused on bounds that are linear and nonlinear

- If we focus on linear bounds can we capture the behaviour γ_L ?
 - 1. How **tightly** can we bound linear growth with optimal modes?
 - 2. Can we develop **general methods** that can tighten the upper bound on normal mode growth?

Linear gyrokinetic equation: slab ITG

- In the slab geometry, $\omega_{di}=0$ and $\partial/\partial l\to ik_{\parallel}$
- Focusing on the linear dynamics

Linear gyrokinetic equation

Quasineutrality

$$\frac{\partial g}{\partial t} + iv_{\parallel}k_{\parallel}g = \frac{eF_{i0}}{T_i} \left(\frac{\partial}{\partial t} + i\omega_*^T\right) \phi J_0 \qquad \frac{e^2n}{T_i} (1+\tau)\phi = e \int gJ_0 d^3v$$

$$\frac{e^2n}{T_i}(1+\tau)\phi = e\int gJ_0\mathrm{d}^3v$$

The v_{\perp} coordinate is ignorable here, we can integrate it out

$$\bar{g} = 2\pi \int_0^\infty dv_{\perp} v_{\perp} g J_0 \longrightarrow \frac{\partial \bar{g}}{\partial t} + i v_{\parallel} k_{\parallel} \bar{g} = \frac{e \bar{F}_0}{T_i} \left[G_{\perp 0} \left(\frac{\partial}{\partial t} + i \omega_* (1 + \eta (x_{\parallel}^2 - 3/2)) \right) + i \omega_* \eta G_{\perp 2} \right] \phi$$

Tightening energetic bounds on linear gyrokinetic instabilities

- 1. Tightest possible energetic bounds
- 2. Constrained optimal modes

Linear eigenmodes

• It is useful to write $f = \bar{g} - e\bar{F}_0 G_{\perp 0} \phi/T_i$

$$\frac{\partial f}{\partial t} + iv_{\parallel}k_{\parallel}f = -ik_{\parallel}S(v_{\parallel}, k_{\parallel}, b) \int f dv_{\parallel}$$

• The **linear eigenmodes** are given by:

$$(\omega - v_{\parallel}k_{\parallel})f = k_{\parallel}S(v_{\parallel}) \int f(v_{\parallel}') dv_{\parallel}'$$

Linear eigenmodes

• It is useful to write $f = \bar{g} - e\bar{F}_0 G_{\perp 0} \phi/T_i$

$$\frac{\partial f}{\partial t} + iv_{\parallel}k_{\parallel}f = -ik_{\parallel}S(v_{\parallel}, k_{\parallel}, b) \int f dv_{\parallel}$$

• The **linear eigenmodes** are given by:

$$(\omega - v_{\parallel}k_{\parallel})f = k_{\parallel}S(v_{\parallel})\int f(v_{\parallel}')\mathrm{d}v_{\parallel}'$$

For complex ω : discrete modes

$$f_n = \frac{S(v_{\parallel})}{\omega_n/k_{\parallel} - v_{\parallel}}$$

For real ω : continuum modes

$$f_{\omega} = P\left[\frac{S(v_{\parallel})}{(\omega/k_{\parallel} - v_{\parallel})}\right] + \lambda(\omega)\delta(\omega/k_{\parallel} - v_{\parallel})$$

Completeness and "Case-Van Kampen energy"

The work of Case and Van Kampen \rightarrow **completeness** of eigenmodes.

- For any $f(v_\parallel,t)$ $f(v_\parallel,t)=\sum_n a_n(t)f_n(v_\parallel)+\int A(\omega,t)f_\omega(v_\parallel)\,\mathrm{d}\omega$
- The amplitudes $a_n(t)$ and $A(\omega, t)$ can be found using orthogonal adjoint eigenmodes

Completeness and "Case-Van Kampen energy"

The work of Case and Van Kampen \rightarrow **completeness** of eigenmodes.

- For any $f(v_\parallel,t)$ $f(v_\parallel,t)=\sum_n a_n(t)f_n(v_\parallel)+\int A(\omega,t)f_\omega(v_\parallel)\,\mathrm{d}\omega$
- The amplitudes $a_n(t)$ and $A(\omega, t)$ can be found using orthogonal adjoint eigenmodes
- Now consider an "energy": Case-Van Kampen energy

$$E_C = \sum_n |a_n(t)|^2 + \int |A(\omega, t)|^2 d\omega \qquad \frac{dE_C}{dt} = 2\sum_n \gamma_n |a_n|^2$$

- \circ E_C is **positive definite** by the completeness
- o Grows/damps due to projection onto discrete modes

Optimal modes and tightest possible bounds

• Instantaneous growth rate of E_C

$$\Lambda = \frac{1}{2E_C} \frac{\mathrm{d}E_C}{\mathrm{d}t}$$

$$\Lambda = \frac{\sum_{n} \gamma_n |a_n|^2}{\sum_{n} |a_n|^2 + \int |A(\omega)|^2 d\omega}$$

• Optimal modes

$$\frac{\delta\Lambda}{\delta f} = 0$$

$$\Lambda \mathcal{E}f = \mathcal{K}f$$

Optimal modes and tightest possible bounds

• Instantaneous growth rate of E_C

$$\Lambda = \frac{1}{2E_C} \frac{\mathrm{d}E_C}{\mathrm{d}t}$$

$$\Lambda = \frac{\sum_{n} \gamma_n |a_n|^2}{\sum_{n} |a_n|^2 + \int |A(\omega)|^2 d\omega}$$

• Optimal modes

$$\frac{\delta\Lambda}{\delta f} = 0$$

$$\Lambda \mathcal{E}f = \mathcal{K}f$$

• Project with eigenmodes to solve

$$(f_1, f_2) = \int \frac{f_1^* f_2}{\bar{F}_0} d^3 v$$

Continuum mode projection

$$\Lambda(f_{\omega}, \mathcal{E}f) = (f_{\omega}, \mathcal{K}f)$$
$$\Lambda = 0$$

$$\Lambda(f_m, \mathcal{E}f) = (f_m, \mathcal{K}f)$$

$$\Lambda = \gamma_m$$

Key takeaways from the tightest bounds

- 1. There is no fundamental limitation on the tightness of energetic bounds on linear eigenmode growth
- 2. The linear eigenmodes $\it are$ the optimal modes of the Case–Van Kampen energy $\, \Lambda = \gamma_m \,$
 - \circ Equality of $\gamma_L \leq \Lambda$
- 3. Constructed with **complete knowledge** of the linear spectrum... can we get away with less?

Key takeaways from the tightest bounds

- 1. There is no fundamental limitation on the tightness of energetic bounds on linear eigenmode growth
- 2. The linear eigenmodes $\it are$ the optimal modes of the Case–Van Kampen energy $\, \Lambda = \gamma_m \,$
 - Equality of $\gamma_L \leq \Lambda$
- 3. Constructed with **complete knowledge** of the linear spectrum... can we get away with less?

Aside

Systems where E_C is a nonlinear invariant are special [†], they:

- Are free from subcritical turbulence
- have energetically isolated eigenmodes

† Plunk, G. G. "On the nonlinear stability of a quasi-two-dimensional drift kinetic model for ion temperature gradient turbulence". Physics of Plasmas 22 (4), 042305. (2015)

Tightening energetic bounds on linear gyrokinetic instabilities

- 1. Tightest possible energetic bounds
- 2. Constrained optimal modes

Simple but still tight?

- From Case–Van Kampen: encoding information on linear modes should tighten the bounds
- Can we encode this into a simple energy norm to get simple but tight bounds?
 - **Helmholtz energy balance** for this system

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 2D \quad \left\{ \begin{array}{l} H = T_i \int \frac{|\bar{g}|^2}{\bar{F}_0} \mathrm{d}v_{\parallel} - \frac{e^2 n}{T_i} (1+\tau) G_{\perp 0} |\phi|^2 \\ D = \mathrm{Re} \left\{ i\omega_* \eta G_{\perp 0} e\phi \int \bar{g}^* x_{\parallel}^2 \, \mathrm{d}v_{\parallel} \right\} \end{array} \right.$$

- D depends only on simple fluid moments of \bar{g} ...
 - Can we constrain these moments to behave like linear modes?

Gyrofluid equations

Take moments of the linear GK equation

$$\frac{\partial \bar{g}}{\partial t} + i v_{\parallel} k_{\parallel} \bar{g} = \frac{e \bar{F}_0}{T_i} \left[G_{\perp 0} \left(\frac{\partial}{\partial t} + i \omega_* (1 + \eta (x_{\parallel}^2 - 3/2)) \right) + i \omega_* \eta G_{\perp 2} \right] \phi$$

• Density moment: κ_1

$$\frac{\partial \kappa_1}{\partial t} + i v_T k_{\parallel} \kappa_2 = \frac{1}{1+\tau} \left[G_{\perp 0} \left(\frac{\partial}{\partial t} + i \omega_* (1-\eta) \right) + i \omega_* \eta G_{\perp 2} \right] \kappa_1$$

$$\kappa_1 = \frac{1}{n} \int \bar{g} dv_{\parallel}$$

$$\kappa_2 = \frac{1}{n} \int \left(\frac{v_{\parallel}}{v_T} \right) \bar{g} dv_{\parallel}$$

$$\kappa_3 = \frac{1}{n} \int \left(\frac{v_{\parallel}^2}{v_T^2} \right) \bar{g} dv_{\parallel}$$

Gyrofluid equations

Take moments of the linear GK equation

$$\frac{\partial \bar{g}}{\partial t} + i v_{\parallel} k_{\parallel} \bar{g} = \frac{e \bar{F}_0}{T_i} \left[G_{\perp 0} \left(\frac{\partial}{\partial t} + i \omega_* (1 + \eta (x_{\parallel}^2 - 3/2)) \right) + i \omega_* \eta G_{\perp 2} \right] \phi$$

• Density moment: κ_1

$$\frac{\partial \kappa_1}{\partial t} + i v_T k_{\parallel} \kappa_2 = \frac{1}{1+\tau} \left[G_{\perp 0} \left(\frac{\partial}{\partial t} + i \omega_* (1-\eta) \right) + i \omega_* \eta G_{\perp 2} \right] \kappa_1$$

• Parallel flow moment: κ_2

$$\kappa_{1} = \frac{1}{n} \int \bar{g} dv_{\parallel}$$

$$\kappa_{2} = \frac{1}{n} \int \left(\frac{v_{\parallel}}{v_{T}}\right) \bar{g} dv_{\parallel}$$

$$\kappa_{3} = \frac{1}{n} \int \left(\frac{v_{\parallel}}{v_{T}}\right) \bar{g} dv_{\parallel}$$

$$\kappa_{3} = \frac{1}{n} \int \left(\frac{v_{\parallel}^{2}}{v_{T}^{2}}\right) \bar{g} dv_{\parallel}$$

• We would like these moments to behave **like eigenmodes**

$$\partial \kappa_{1,2}/\partial t = -i\omega' \kappa_{1,2}$$

• Where $\,\omega' = \omega'_r + i\gamma'\,$ is similar to an eigenvalue

We would like these moments to behave **like eigenmodes**

$$\partial \kappa_{1,2}/\partial t = -i\omega' \kappa_{1,2}$$

Where $\,\omega' = \omega'_r + i\gamma'\,$ is similar to an eigenvalue

$$\frac{\partial \kappa_1}{\partial t} + i v_T k_{\parallel} \kappa_2 = \frac{1}{1+\tau} \left[G_{\perp 0} \left(\frac{\partial}{\partial t} + i \omega_* (1-\eta) \right) + i \omega_* \eta G_{\perp 2} \right] \kappa_1 \qquad \alpha \kappa_1 - v_T k_{\parallel} \kappa_2 = 0$$

• We would like these moments to behave like eigenmodes

$$\partial \kappa_{1,2}/\partial t = -i\omega' \kappa_{1,2}$$

• Where $\,\omega' = \omega'_r + i\gamma'\,$ is similar to an eigenvalue

$$\frac{\partial \kappa_1}{\partial t} + i v_T k_{\parallel} \kappa_2 = \frac{1}{1+\tau} \left[G_{\perp 0} \left(\frac{\partial}{\partial t} + i \omega_* (1-\eta) \right) + i \omega_* \eta G_{\perp 2} \right] \kappa_1 \qquad \alpha \kappa_1 - v_T k_{\parallel} \kappa_2 = 0$$

 $\alpha = \omega' - \frac{1}{1+\tau} \left(G_{\perp 0} \left[\omega' - \omega_* (1-\eta) \right] - \omega_* \eta G_{\perp 2} \right)$

$$\frac{\partial \kappa_2}{\partial t} + i v_T k_{\parallel} \kappa_3 = 0 \qquad \longrightarrow \qquad \omega' \kappa_2 - v_T k_{\parallel} \kappa_3 = 0$$

 $\alpha = \omega' - \frac{1}{1+\tau} \left(G_{\perp 0} \left[\omega' - \omega_* (1-\eta) \right] - \omega_* \eta G_{\perp 2} \right)$

• We would like these moments to behave like eigenmodes

$$\partial \kappa_{1,2}/\partial t = -i\omega' \kappa_{1,2}$$

• Where $\,\omega' = \omega'_r + i\gamma'$ is similar to an eigenvalue

$$\frac{\partial \kappa_1}{\partial t} + i v_T k_{\parallel} \kappa_2 = \frac{1}{1+\tau} \left[G_{\perp 0} \left(\frac{\partial}{\partial t} + i \omega_* (1-\eta) \right) + i \omega_* \eta G_{\perp 2} \right] \kappa_1 \qquad \alpha \kappa_1 - v_T k_{\parallel} \kappa_2 = 0$$

$$\frac{\partial \kappa_2}{\partial t} + i v_T k_{\parallel} \kappa_3 = 0 \qquad \longrightarrow \qquad \omega' \kappa_2 - v_T k_{\parallel} \kappa_3 = 0$$

- These equations are obeyed by linear modes for $\omega' \to \omega$
- Can we use these as constraints?

Problem statement

We seek distributions which:

• Maximise Helmholtz free energy growth subject to:

1. Density moment constraint: $lpha \kappa_1 - v_T k_\parallel \kappa_2 = 0$

2. Flow moment constraint: $\omega' \kappa_2 - v_T k_{\parallel} \kappa_3 = 0$

3. Consistent free energy balance: $\gamma' H = D$

- The solution to this problem gives an **upper bound on the growth of linear eigenmodes**
 - Guaranteed to at least as good as the unconstrained Helmholtz bound

Constrained optimal mode problem

• Problem can be formulated with a Lagrangian and multipliers

$$L \equiv D - \Lambda(H - H_0) - \lambda_1(\gamma'H - D) - \lambda_2(\alpha^*\kappa_1^* - v_T k_{\parallel}\kappa_2^*) - \lambda_2(\alpha\kappa_1 - v_T k_{\parallel}\kappa_2) - \lambda_3(\omega'^*\kappa_2^* - v_T k_{\parallel}\kappa_3^*) - \lambda_3(\omega'\kappa_2 - v_T k_{\parallel}\kappa_3)$$

Constrained optimal mode problem

• Problem can be formulated with a Lagrangian and multipliers

$$L \equiv D - \Lambda(H - H_0) - \lambda_1(\gamma'H - D) - \lambda_2(\alpha^*\kappa_1^* - v_T k_{\parallel}\kappa_2^*) - \lambda_2(\alpha\kappa_1 - v_T k_{\parallel}\kappa_2) - \lambda_3^*(\omega'^*\kappa_2^* - v_T k_{\parallel}\kappa_3^*) - \lambda_3(\omega'\kappa_2 - v_T k_{\parallel}\kappa_3)$$

- Optimal modes: $\delta L/\delta \bar{g} = 0$, $\delta L/\delta \lambda_n = 0$
 - \circ Kinetic eigenvalue problem yields $\Lambda=\gamma'$

$$\Lambda\left(\bar{g} - \frac{\bar{F}_0 G_{\perp 0}}{(1+\tau)}\kappa_1\right) = \frac{i\omega_* \eta \bar{F}_0 G_{\perp 0}}{2(1+\tau)} (x_{\parallel}^2 \kappa_1 - \kappa_3) - \lambda_2^* \bar{F}_0(\alpha^* - x_{\parallel} v_T k_{\parallel}) - \lambda_3^* \bar{F}_0(\omega'^* x_{\parallel} - x_{\parallel}^2 v_T k_{\parallel})$$

• Closes into a 5 × 5 linear system of moments and lagrange multipliers

Energetic upper bound

Upon solving the system of equations we are left with

$$P\tilde{\Lambda}^4 + Q\tilde{\Lambda}^2 + R = 0$$

- ω_r' remains as a free parameter.
 - \circ Upper bound on linear eigenmode growth: $\Lambda_{\max} \equiv \max_{\omega'_r} \Lambda$ (best done numerically)

Low- k_{\perp} limit $\eta \to \infty$:

Energetic upper bound

Upon solving the system of equations we are left with

$$P\tilde{\Lambda}^4 + Q\tilde{\Lambda}^2 + R = 0$$

- ω_r' remains as a free parameter.
 - Upper bound on linear eigenmode growth: $\Lambda_{\max} \equiv \max_{\alpha'} \Lambda$ (best done numerically)

Low- k_{\perp} limit $\eta \to \infty$:

Constrained optimals capture "resonant" behaviour

In the low- k_{\perp} limit

• Constrained optimal modes capture:

Critical gradient
$$\kappa_{\parallel} = \omega_* \eta/(v_{Ti} k_{\parallel})$$

In the low- k_\perp limit

• Constrained optimal modes capture:

Critical gradient
$$\kappa_{\parallel} = \omega_* \eta/(v_{Ti} k_{\parallel})$$

Density gradient stabilisation with $\frac{1}{n} = \frac{\mathrm{d} \ln T_i}{\mathrm{d} \ln n}$

Key takeaways from the constrained optimal modes

- 1. Gives a rigorous, **tighter** upper bound on linear eigenmode growth
- 2. Qualitative behaviour of linear instability can be captured across parameter space
- 3. Despite **low-dimensionality of the system**, critical gradient and density gradient stabilisation can be captured due to the inclusion of a "real frequency"
- 4. Provides a **general method** for tightening upper bounds to linear growth rates

Main results and ongoing/future work

Main results of this work:

- Tightest possible energetic upper bounds: Case–Van Kampen energy
- Simple bounds to capture behaviour of linear modes: constrained optimal modes

Next steps

- Constrained optimal modes in general geometry stellarator optimisation?
- Optimal modes could be applied to lots of different problems
 - Subcritical turbulence, collisional optimals, 'global' optimals etc...
- Side projects: Van Kampen formulation of linear ZF problem (GAMs, residuals etc.)

Case-Van Kampen optimal modes

$$\Lambda \mathcal{E}f = \mathcal{K}f$$

$$\mathcal{E}f = \bar{F}_0 \left(\sum_n \frac{\tilde{f}_n^*}{|C_n|^2} \int \tilde{f}_n' f' \, \mathrm{d}v_{\parallel}' + \int \mathrm{d}\omega \frac{\tilde{f}_\omega^*}{|C_\omega|^2} \int \tilde{f}_\omega' f' \, \mathrm{d}v_{\parallel}' \right)$$

$$\mathcal{K} f = \bar{F}_0 \sum_n \gamma_n \frac{\tilde{f}_n^*}{|C_n|^2} \int \tilde{f}_n' f' \, \mathrm{d} \, v_{\parallel}'$$

In essence: constrained space

G: entire space of distributions

$$G_{\omega'} \text{: distributions with } \begin{cases} & \alpha \kappa_1 - v_T k_\| \kappa_2 = 0 \\ & \omega' \kappa_2 - v_T k_\| \kappa_3 = 0 \end{cases}$$

 G_{ω} : Set of linear eigenmodes

Frequency plot

Finite Larmor radius

Constrained optimal system of equations

$$\tilde{\Lambda} \left(1 - \frac{G_{\perp 0}}{(1+\tau)} \right) \kappa_1 = \frac{i}{2} \frac{G_{\perp 0}}{1+\tau} \left(\frac{\kappa_1}{2} - \kappa_3 \right) - \tilde{\lambda}_2^* \tilde{\alpha}^* + \tilde{\lambda}_3^* \frac{\kappa_{\parallel}^{-1}}{2}$$

$$\tilde{\Lambda} \left(\kappa_3 - \frac{G_{\perp 0}}{2(1+\tau)} \kappa_1 \right) = \frac{i}{2} \frac{G_{\perp 0}}{1+\tau} \left(\frac{3\kappa_1}{4} - \frac{\kappa_3}{2} \right) - \tilde{\lambda}_2^* \frac{\tilde{\alpha}^*}{2} + \tilde{\lambda}_3^* \frac{3\kappa_{\parallel}^{-1}}{4}$$

$$2\tilde{\Lambda} \kappa_2 = \tilde{\lambda}_2^* \kappa_{\parallel}^{-1} - \tilde{\lambda}_3^* \tilde{\omega}'^*$$

$$\tilde{\omega}' \kappa_2 - \kappa_{\parallel}^{-1} \kappa_3 = 0$$

$$\tilde{\alpha} \kappa_1 - \kappa_{\parallel}^{-1} \kappa_2 = 0$$