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Introduction and background



● Turbulent transport largely dictates the size of a tokamak/stellarator fusion power plant

○ Turbulence is initiated by microinstabilities, on the scale of the gyroradius

○ These tap into the free energy in the radial gradients of temperature and density of the plasma
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● Turbulent transport largely dictates the size of a tokamak/stellarator fusion power plant

○ Turbulence is initiated by microinstabilities, on the scale of the gyroradius

○ These tap into the free energy in the radial gradients of temperature and density of the plasma

● The foundation of our understanding is gyrokinetics

○ Local, electrostatic gyrokinetic equation for species     and Fourier mode    :

○ Simulated by many codes: GENE, STELLA, GX, GS2 etc.

Turbulence, instability and gyrokinetics
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Compact form



Linear instability theory is a cornerstone of our understanding 

● Look for “normal” modes of the form             where 

● Solve the eigenvalue problem             to find instabilities.

Linear gyrokinetics
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Linear instability theory is a cornerstone of our understanding 

● Look for “normal” modes of the form             where 

● Solve the eigenvalue problem             to find instabilities.

○ Understood in some limits -> “zoo” of modes and mechanisms: ITG, TEM, KBM, MTM  etc.

○ This problem is usually hard, particularly in non-uniform magnetic fields (e.g., CHT)

○ Simulations often necessary

Linear gyrokinetics

Neglect 
nonlinearity
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Energetic upper bounds and optimal modes

(avoiding the zoo…)



Instead of solving

● Consider energy balance:  

○ Can be chosen to ‘annihilate’ the nonlinearity (nonlinear invariant)

○        must be a positive definite quadratic ‘norm’

 

 

Energetic bounds: a different approach to instability
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● Ask the question, “Which      gives the fastest possible energy growth?” 

● The solutions to this problem are the optimal modes

Optimal modes and energetic upper bounds



● Ask the question, “Which      gives the fastest possible energy growth?” 

● The solutions to this problem are the optimal modes

● The largest             is an upper bound on any instability growth in the system

○ Bounds linear instability growth at each      :

○ Largest             over all       values bounds nonlinear energy growth

○ Low-dimensionality a system of gyrofluid-like equations

○ Freedom in the choice of ‘energy norm’ 

Optimal modes and energetic upper bounds



● Helmholtz free energy is a simple nonlinear invariant

Helmholtz free energy: a bound on all geometries

Only depends on gradients, no 
geometry! 



● Helmholtz free energy is a simple nonlinear invariant

Helmholtz free energy: a bound on all geometries

Only depends on gradients, no 
geometry! 

(optimal mode problem 2 × 2 
system of fluid moments) [1] P. Helander and G. G. Plunk, Journal of Plasma Physics, 88, (2), 905880207, (2022).

[5] L. Podavini, P. Helander, G. G. Plunk, and A. Zocco, Journal of Plasma Physics, 91, (3), p. E79, (2025).



● Electrostatic energy depends explicitly on geometry

Generalised free energy: geometry dependent bound

Geometry dependent



● Electrostatic energy depends explicitly on geometry

Generalised free energy: geometry dependent bound

Geometry dependent

● But       is not positive definite: not suitable 
for optimal mode analysis.

● Instead consider “generalised free 
energy”:

● Aware of both gradients (     ) and 
geometry (     ).

● Tightest bound found by minimizing 
over      .



● The optimal mode equation (5 × 5 system of fluid moments) 

● For adiabatic electrons, a geometry-dependent bound 

on ITG modes

○ Can be solved analytically in simple (local) limits

Ion Temperature Gradient (ITG) 

[3] G. G. Plunk and P. Helander,  Journal of Plasma Physics, 89, (4), 905890419, (2023).



● The optimal mode equation (5 × 5 system of fluid moments) 

● For adiabatic electrons, a geometry-dependent bound 

on ITG modes

○ Can be solved analytically in simple (local) limits

● Toroidal ITG: curvature driven

○ Captures key features of linear growth

Ion Temperature Gradient (ITG) 

[3] G. G. Plunk and P. Helander,  Journal of Plasma Physics, 89, (4), 905890419, (2023).



● The optimal mode equation (5 × 5 system of fluid moments) 

● For adiabatic electrons, a geometry-dependent bound 

on ITG modes

○ Can be solved analytically in simple (local) limits

● Slab ITG: driven by streaming along

 

○ Difference in behaviour at low-drive

○ Optimal modes and linear eigenmodes in 

disagreement…

Ion Temperature Gradient (ITG) 

[3] G. G. Plunk and P. Helander,  Journal of Plasma Physics, 89, (4), 905890419, (2023).



Tightening energetic bounds on linear gyrokinetic instabilities

1. Tightest possible energetic bounds

2. Constrained optimal modes



Previous work has focused on bounds that are  linear and nonlinear

● If we focus on linear bounds can we capture the

behaviour       ?

1. How tightly can we bound linear

growth with optimal modes?

2. Can we develop general methods that can 

tighten the upper bound on normal mode

growth? 

Optimal modes and linear eigenmodes: bridging the gap



● In the slab geometry, and

●  Focusing on the linear dynamics

● The         coordinate is ignorable here,  we can integrate it out 

Linear gyrokinetic equation: slab ITG

QuasineutralityLinear gyrokinetic equation 



Tightening energetic bounds on linear gyrokinetic instabilities

1. Tightest possible energetic bounds

2. Constrained optimal modes



● It is useful to write

● The linear eigenmodes are given by: 

Linear eigenmodes



● It is useful to write

● The linear eigenmodes are given by: 

For real     : continuum modes

Linear eigenmodes

For complex     : discrete modes



The work of Case and Van Kampen          completeness of eigenmodes.

●  For any 

● The amplitudes             and       can be found using orthogonal adjoint eigenmodes

Completeness and “Case–Van Kampen energy”



The work of Case and Van Kampen          completeness of eigenmodes.

●  For any 

● The amplitudes             and       can be found using orthogonal adjoint eigenmodes

● Now consider an “energy”: Case–Van Kampen energy 

○         is positive definite by the completeness 

○ Grows/damps due to projection onto discrete modes

Completeness and “Case–Van Kampen energy”



● Instantaneous growth rate of 

● Optimal modes

Optimal modes and tightest possible bounds



● Instantaneous growth rate of 

● Optimal modes

● Project with eigenmodes to solve

Optimal modes and tightest possible bounds

Discrete mode projectionContinuum mode projection



1. There is no fundamental limitation on the tightness of energetic bounds on linear eigenmode growth

2. The linear eigenmodes are the optimal modes of the Case–Van Kampen energy

○ Equality of

3. Constructed with complete knowledge of the linear spectrum… can we get away with less?

Key takeaways from the tightest bounds



1. There is no fundamental limitation on the tightness of energetic bounds on linear eigenmode growth

2. The linear eigenmodes are the optimal modes of the Case–Van Kampen energy

○ Equality of

3. Constructed with complete knowledge of the linear spectrum… can we get away with less?

Key takeaways from the tightest bounds

Aside

Systems where        is a nonlinear invariant are 

special [†], they:

●  Are free from subcritical turbulence

● have energetically isolated eigenmodes

†  Plunk, G. G. “On the nonlinear stability of a 
quasi-two-dimensional drift kinetic model for ion 
temperature gradient turbulence”. Physics of 
Plasmas 22 (4), 042305. (2015)



Tightening energetic bounds on linear gyrokinetic instabilities

1. Tightest possible energetic bounds

2. Constrained optimal modes



● From Case–Van Kampen: encoding information on linear modes should tighten the bounds

● Can we encode this into a simple energy norm to get simple but tight bounds? 

○ Helmholtz energy balance for this system

●      depends only on simple fluid moments of     …

○ Can we constrain these moments to behave like linear modes?

  

Simple but still tight?



Take moments of the linear GK equation

● Density moment: 

Gyrofluid equations



Take moments of the linear GK equation

● Density moment: 

● Parallel flow moment: 

Gyrofluid equations



● We would like these moments to behave like eigenmodes

● Where                                is similar to an eigenvalue

Constraining the moments
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● We would like these moments to behave like eigenmodes

● Where                                is similar to an eigenvalue

● These equations are obeyed by linear modes for 

● Can we use these as constraints? 

Constraining the moments



We seek distributions which:

● Maximise Helmholtz free energy growth subject to:

1. Density moment constraint:

2. Flow moment constraint: 

3. Consistent free energy balance: 

●   The solution to this problem gives an upper bound on the growth of linear eigenmodes

● Guaranteed to at least as good as the unconstrained Helmholtz bound

Problem statement



● Problem can be formulated with a Lagrangian and multipliers

 

Constrained optimal mode problem 



● Problem can be formulated with a Lagrangian and multipliers

● Optimal modes:         , 

○ Kinetic eigenvalue problem yields

○ Closes into a 5 × 5 linear system of moments and lagrange multipliers

 

Constrained optimal mode problem 



Upon solving the system of equations we are left with

●     remains as a free parameter.
○  Upper bound on linear eigenmode growth:                      (best done numerically) 

Low-       limit                 :

Energetic upper bound
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●     remains as a free parameter.
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Low-       limit                 :

Energetic upper bound



In the low-    limit

● Constrained optimal modes capture:

Constrained optimals capture “resonant” behaviour

Critical gradient



In the low-    limit

● Constrained optimal modes capture:

Constrained optimals capture “resonant” behaviour

Critical gradient Density gradient stabilisation with



1. Gives a rigorous, tighter upper bound on linear eigenmode growth

2. Qualitative behaviour of linear instability can be captured across parameter space

3. Despite low-dimensionality of the system, critical gradient and density gradient stabilisation can be 

captured due to the inclusion of a “real frequency”

4. Provides a general method for tightening upper bounds to linear growth rates

Key takeaways from the constrained optimal modes



Main results of this work:

● Tightest possible energetic upper bounds: Case–Van Kampen energy

● Simple bounds to capture behaviour of linear modes: constrained optimal modes

Next steps

● Constrained optimal modes in general geometry — stellarator optimisation?

● Optimal modes could be applied to lots of different problems

○ Subcritical turbulence, collisional optimals, ‘global’ optimals etc… 

● Side projects: Van Kampen formulation of linear ZF problem (GAMs, residuals etc.)

Main results and ongoing/future work



Case–Van Kampen optimal modes



In essence: constrained space

$

: entire space of distributions

  :  distributions with 

: Set of linear eigenmodes



Frequency plot



Finite Larmor radius



Constrained optimal system of equations


