Intermittency in Reflection-Driven Turbulence

B. Chandran, N. Sioulas, S. Bale, T. Bowen, V. David, R. Meyrand, E. Yerger, JPP, 91, E57 (2025)

16th Plasma Kinetics Working Meeting, Vienna, July, 2025

Solar-Wind Energization by Turbulent Alfvén Waves

(E.g., Parker 1965, Velli et al 1989, Zhou & Matthaeus 1989, Matthaeus et al 1999, Cranmer et al 2007, Halekas et al 2023)

- Photospheric motions and/or reconnection launch Alfven waves along open magnetic-field lines
- These outward-propagating waves undergo partial reflection
- Counter-propagating waves interact to produce turbulence, which causes wave energy to 'cascade' from long wavelengths to short wavelengths
- Short-wavelength waves dissipate, heating the plasma.

Elsasser Variables

$$z^{\pm} = \delta \mathbf{v} \pm \frac{\delta \mathbf{B}}{\sqrt{4\pi\rho}} \qquad \mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B} \qquad \mathbf{v}_{\mathbf{A}} = \frac{\mathbf{B}_0}{\sqrt{4\pi\rho}}$$

- z^+ represents Alfvén-wave (AW) fluctuations that propagate at velocity $-\nu_{
 m A}$
- z^- represents AW fluctuations that propagate at velocity $v_{\rm A}$

$$\cdot \frac{\partial z^{\pm}}{\partial t} + (\mp v_{\mathrm{A}} + z^{\mp}) \cdot \nabla z^{\pm} = -\nabla \Pi, \qquad \Pi = (p + B^{2})/\rho$$

- Only counter-propagating AWs interact
- z^\pm follows the field lines of B_0 plus the part of δB from δz^\mp . This is the nonlinear interaction (Maron & Goldreich 2001).

Anisotropic Energy Cascade in Alfvénic Turbulence

(E.g., Montgomery & Turner 1981, Shebalin et al 1983, Goldreich & Sridhar 1995, Chen et al 2012, Sioulas et al 2024)

Two things we need to know to figure out how turbulence dissipates at small λ :

- 1. The anisotropy ratio $\frac{l_{\lambda}}{\lambda}$. Determines the characteristic frequency $k_{\parallel}v_{\rm A}\sim\frac{v_{\rm A}}{l_{\lambda}}$ at small λ
- 2. The fluctuation amplitudes determines rates of nonlinear heating mechanisms like stochastic ion heating. (1 and 2 are related by critical balance.)

GS95:
$$\frac{l_{\lambda}}{v_{A}} \sim \frac{\lambda}{\delta z_{\lambda}}$$

GS95:
$$\frac{l_{\lambda}}{v_{A}} \sim \frac{\lambda}{\delta z_{\lambda}}$$

$$\epsilon \sim \frac{(\delta z_{\lambda})^{3}}{\lambda} \propto \lambda^{0} \longrightarrow \delta z_{\lambda} \propto \lambda^{1/3}$$

GS95:
$$\frac{l_{\lambda}}{v_{A}} \sim \frac{\lambda}{\delta z_{\lambda}}$$

$$\epsilon \sim \frac{(\delta z_{\lambda})^{3}}{\lambda} \propto \lambda^{0} \longrightarrow \delta z_{\lambda} \propto \lambda^{1/3}$$

$$\longrightarrow l_{\lambda} \propto \lambda^{2/3}$$

GS95:
$$\frac{l_{\lambda}}{v_{A}} \sim \frac{\lambda}{\delta z_{\lambda}}$$

$$\epsilon \sim \frac{(\delta z_{\lambda})^{3}}{\lambda} \propto \lambda^{0} \longrightarrow \delta z_{\lambda} \propto \lambda^{1/3}$$

$$\longrightarrow l_{\lambda} \propto \lambda^{2/3}$$

$$k_{\perp} E(k_{\perp}) \propto (\delta z_{\lambda})^{2} \propto \lambda^{2/3} \propto k_{\perp}^{-2/3}$$

GS95:
$$\frac{l_{\lambda}}{v_{A}} \sim \frac{\lambda}{\delta z_{\lambda}}$$

$$\epsilon \sim \frac{(\delta z_{\lambda})^{3}}{\lambda} \propto \lambda^{0} \longrightarrow \delta z_{\lambda} \propto \lambda^{1/3}$$

$$\longrightarrow l_{\lambda} \propto \lambda^{2/3}$$

$$k_{\perp} E(k_{\perp}) \propto (\delta z_{\lambda})^{2} \propto \lambda^{2/3} \propto k_{\perp}^{-2/3}$$

$$\longrightarrow E(k_{\perp}) \propto k_{\perp}^{-5/3}$$

GS95:
$$\frac{l_{\lambda}}{v_{A}} \sim \frac{\lambda}{\delta z_{\lambda}}$$

$$\epsilon \sim \frac{(\delta z_{\lambda})^{3}}{\lambda} \propto \lambda^{0} \longrightarrow \delta z_{\lambda} \propto \lambda^{1/3}$$

$$\longrightarrow l_{\lambda} \propto \lambda^{2/3}$$

$$k_{\perp} E(k_{\perp}) \propto (\delta z_{\lambda})^{2} \propto \lambda^{2/3} \propto k_{\perp}^{-2/3}$$

$$\longrightarrow E(k_{\perp}) \propto k_{\perp}^{-5/3}$$

Note: for Alfvén waves, if $\omega=k_\parallel v_{\rm A}\sim \frac{v_{\rm A}}{l_\lambda}\sim \Omega_i$, then $l_\lambda\sim \frac{v_{\rm A}}{\Omega_{\rm i}}=d_{\rm i}$

These theories are for balanced turbulence, in which $z_{\rm rms}^+ \simeq z_{\rm rms}^-$.

What about imbalanced turbulence, in which $z_{\rm rms}^- \ll z_{\rm rms}^+$, near the Sun?

Note: for Alfvén waves, if $\omega = k_\parallel v_{\rm A} \sim \frac{v_{\rm A}}{l_\lambda} \sim \Omega_i$, then $l_\lambda \sim \frac{v_{\rm A}}{\Omega_{\rm i}} = d_{\rm i}$

What Parker Solar Probe (PSP) Tells Us About Anisotropy

Note: for Alfvén waves, if $\omega=k_\parallel v_{\rm A}\sim \frac{v_{\rm A}}{l_\lambda}\sim \Omega_i$, then $l_\lambda\sim \frac{v_{\rm A}}{\Omega_{\rm i}}=d_{\rm i}$

What Parker Solar Probe (PSP) Tells Us About Anisotropy

• we need a new turbulence model for the near-Sun solar wind

Hint from PSP: Solar-Wind Turbulence is Also Intermittent

we need a new turbulence model for the near-Sun solar wind

What PSP Tells Us About Anisotropy and Intermittency

- we need a new turbulence model for the near-Sun solar wind
- We have developed such a model that offers an explanation for these observations

Model for the Probability Distribution Function of δz_{λ}^{\pm}

$$\delta z_{\lambda}^{\pm} = \overline{z}^{\pm} \beta^{q}$$

 $\beta \in (0,1)$ is a constant, q is a random integer, \overline{z}^{\pm} is a scale-independent random number that is independent of q,

$$P(q) = \frac{e^{-\mu}\mu^q}{q!}$$

Poisson distribution with mean μ , which is a function of λ

These assumptions are a little like assuming a power-law form for the energy spectrum. We need some model for how the PDF of fluctuation amplitudes broaden as λ decreases. Note: we don't require the full PDF to be log-Poisson.

To complete the model, we need to evaluate $\mu(\lambda)$ and β

Same approach in Chandran, Schekochihin, & Mallet 2015 (CSM15), Mallet & Schekochihin 2017 (MS17). Similar approach in She & Leveque (1994) and Dubrulle (1995).

Model for the Probability Distribution Function of δz_{λ}^{\pm}

$$\delta z_{\lambda}^{\pm} = \overline{z}^{\pm} \beta^{q}$$

 $\beta \in (0,1)$ is a constant, q is a random integer, \overline{z}^{\pm} is a scale-independent random number that is independent of q,

$$P(q) = \frac{e^{-\mu}\mu^q}{q!}$$

Poisson distribution with mean μ , which is a function of λ

$$P(0) = e^{-\mu} \propto \lambda$$

filling factor of strongest fluctuations is $\propto \lambda$. Same as in CSM15 and MS17.

$$\longrightarrow \mu = \ln \left(\frac{L_{\perp}}{\lambda} \right)$$
 L_{\perp} is the perpendicular outer scale

$$w_{\lambda}^{\pm} = \langle \overline{z}^{\pm} \rangle \beta^{\mu} \propto e^{\mu \ln \beta} \propto \lambda^{-\ln \beta}$$

the median or typical fluctuation amplitude at scale λ

$$\delta z_{\lambda}^{\pm} = \bar{z}^{\pm} \beta^{q} \qquad \qquad P(q) = \frac{e^{-\mu} \mu^{q}}{q!}$$

$$\delta z_{\lambda}^{\pm} = \bar{z}^{\pm} \beta^{q} \qquad \qquad P(q) = \frac{e^{-\mu} \mu^{q}}{q!}$$

$$\left\langle \left(\delta z_{\lambda}^{\pm} \right)^{n} \right\rangle = \int_{0}^{\infty} d\overline{z}^{\pm} Q(\overline{z}^{\pm}) \sum_{q=0}^{\infty} P(q) [\overline{z}^{\pm} \beta^{q}]^{n}$$

$$\delta z_{\lambda}^{\pm} = \bar{z}^{\pm} \beta^{q} \qquad \qquad P(q) = \frac{e^{-\mu} \mu^{q}}{q!}$$

$$\left\langle \left(\delta z_{\lambda}^{\pm} \right)^{n} \right\rangle = \int_{0}^{\infty} d\overline{z}^{\pm} Q(\overline{z}^{\pm}) \sum_{q=0}^{\infty} P(q) [\overline{z}^{\pm} \beta^{q}]^{n} = \left\langle \left(\overline{z}^{\pm} \right)^{n} \right\rangle e^{-\mu} \sum_{q=0}^{\infty} \frac{\left(\mu \beta^{n} \right)^{q}}{q!}$$

$$\delta z_{\lambda}^{\pm} = \bar{z}^{\pm} \beta^{q} \qquad \qquad P(q) = \frac{e^{-\mu} \mu^{q}}{q!}$$

$$\left\langle \left(\delta z_{\lambda}^{\pm} \right)^{n} \right\rangle = \int_{0}^{\infty} d\overline{z}^{\pm} Q(\overline{z}^{\pm}) \sum_{q=0}^{\infty} P(q) [\overline{z}^{\pm} \beta^{q}]^{n} = \left\langle \left(\overline{z}^{\pm} \right)^{n} \right\rangle e^{-\mu} \sum_{q=0}^{\infty} \frac{\left(\mu \beta^{n} \right)^{q}}{q!} = \left\langle \left(\overline{z}^{\pm} \right)^{n} \right\rangle e^{-\mu + \mu \beta^{n}}$$

$$\delta z_{\lambda}^{\pm} = \overline{z}^{\pm} \beta^{q} \qquad \qquad P(q) = \frac{e^{-\mu} \mu^{q}}{q!}$$

$$\left\langle \left(\delta z_{\lambda}^{\pm}\right)^{n}\right\rangle = \int_{0}^{\infty} d\bar{z}^{\pm} Q(\bar{z}^{\pm}) \sum_{q=0}^{\infty} P(q)[\bar{z}^{\pm}\beta^{q}]^{n} = \left\langle \left(\bar{z}^{\pm}\right)^{n}\right\rangle e^{-\mu} \sum_{q=0}^{\infty} \frac{\left(\mu\beta^{n}\right)^{q}}{q!} = \left\langle \left(\bar{z}^{\pm}\right)^{n}\right\rangle e^{-\mu+\mu\beta^{n}}$$

$$e^{-\mu} \propto \lambda \qquad \longrightarrow \left\langle \left(\delta z_{\lambda}^{\pm} \right)^{n} \right\rangle \propto \lambda^{\zeta_{n}} \quad \text{with} \quad \zeta_{n} = 1 - \beta^{n}$$

Same formula as in CSM15 and MS17.

Data from Sioulas et al (2024)

using $\sum_{q=0}^{\infty} \frac{x^q}{q!} = e^x$

Assume $\delta z_{\rm rms}^+ \gg \delta z_{\rm rms}^-$ and that $\chi_{\lambda}^+ \equiv \frac{\delta z_{\lambda}^+ l_{\lambda}^+}{\lambda v_{\rm A}} \gtrsim 1$, where l_{λ}^\pm is the parallel correlation length of a fluctuation of perpendicular correlation length λ .

Assume $\delta z_{\rm rms}^+ \gg \delta z_{\rm rms}^-$ and that $\chi_{\lambda}^+ \equiv \frac{\delta z_{\lambda}^+ l_{\lambda}^+}{\lambda v_{\rm A}} \gtrsim 1$, where l_{λ}^\pm is the parallel correlation length of a fluctuation of perpendicular correlation length λ .

 l_{λ}^- is the distance δz_{λ}^- propagates before cascading: $l_{\lambda}^- \sim \frac{v_{\rm A} \lambda}{\delta z_{\lambda}^+}$

Assume $\delta z_{\rm rms}^+ \gg \delta z_{\rm rms}^-$ and that $\chi_{\lambda}^+ \equiv \frac{\delta z_{\lambda}^+ l_{\lambda}^+}{\lambda v_{\rm A}} \gtrsim 1$, where l_{λ}^\pm is the parallel correlation length of a fluctuation of perpendicular correlation length λ .

 l_{λ}^- is the distance δz_{λ}^- propagates before cascading: $l_{\lambda}^- \sim \frac{v_{\rm A} \lambda}{\delta z_{\lambda}^+}$

 δz_{λ}^{+} is cascaded by δz_{λ}^{-} : $\rightarrow l_{\lambda}^{+} \sim l_{\lambda}^{-}$

Assume $\delta z_{\rm rms}^+ \gg \delta z_{\rm rms}^-$ and that $\chi_{\lambda}^+ \equiv \frac{\delta z_{\lambda}^+ l_{\lambda}^+}{\lambda v_{\rm A}} \gtrsim 1$, where l_{λ}^\pm is the parallel correlation length of a fluctuation of perpendicular correlation length λ .

 l_{λ}^- is the distance δz_{λ}^- propagates before cascading: $l_{\lambda}^- \sim \frac{v_{\rm A} \lambda}{\delta z_{\lambda}^+}$

 δz_{λ}^{+} is cascaded by δz_{λ}^{-} : $\rightarrow l_{\lambda}^{+} \sim l_{\lambda}^{-}$

$$\chi_{\lambda}^{+} = \frac{\delta z_{\lambda}^{+} l_{\lambda}^{+}}{\lambda v_{\lambda}} \sim 1$$

Assume $\delta z_{\rm rms}^+ \gg \delta z_{\rm rms}^-$ and that $\chi_{\lambda}^+ \equiv \frac{\delta z_{\lambda}^+ l_{\lambda}^+}{\lambda v_{\rm A}} \gtrsim 1$, where l_{λ}^\pm is the parallel correlation length of a fluctuation of perpendicular correlation length λ .

 l_{λ}^- is the distance δz_{λ}^- propagates before cascading: $l_{\lambda}^- \sim \frac{v_{\rm A} \lambda}{\delta z_{\lambda}^+}$

$$\delta z_{\lambda}^{+}$$
 is cascaded by δz_{λ}^{-} : $\rightarrow l_{\lambda}^{+} \sim l_{\lambda}^{-}$

$$\chi_{\lambda}^{+} = \frac{\delta z_{\lambda}^{+} l_{\lambda}^{+}}{\lambda v_{\Delta}} \sim 1 \qquad \qquad \chi_{\lambda}^{-} = \frac{\delta z_{\lambda}^{-} l_{\lambda}^{-}}{\lambda v_{\Delta}} \ll$$

Assume $\delta z_{\rm rms}^+ \gg \delta z_{\rm rms}^-$ and that $\chi_{\lambda}^+ \equiv \frac{\delta z_{\lambda}^+ l_{\lambda}^+}{\lambda v_{\rm A}} \gtrsim 1$, where l_{λ}^\pm is the parallel correlation length of a fluctuation of perpendicular correlation length λ .

 l_{λ}^- is the distance δz_{λ}^- propagates before cascading: $l_{\lambda}^- \sim \frac{v_{\rm A} \lambda}{\delta z_{\lambda}^+}$

 δz_{λ}^{+} is cascaded by δz_{λ}^{-} : $\rightarrow l_{\lambda}^{+} \sim l_{\lambda}^{-}$

$$\chi_{\lambda}^{+} = \frac{\delta z_{\lambda}^{+} l_{\lambda}^{+}}{\lambda v_{A}} \sim 1$$

$$\chi_{\lambda}^{-} = \frac{\delta z_{\lambda}^{-} l_{\lambda}^{-}}{\lambda v_{A}} \ll 1$$
And yet $\tau_{\text{casc},\lambda}^{+} \sim \frac{\lambda}{\delta z_{\lambda}^{-}}$ (!)

Why Is
$$\tau_{\text{casc},\lambda}^+ \sim \frac{\lambda}{\delta z_{\lambda}^-}$$
 Even Though $\chi_{\lambda}^- = \frac{\delta z_{\lambda}^- l_{\lambda}^-}{\lambda v_{\text{A}}} \ll 1$?

LGS07 thought experiment: let z^+ have a broadband power spectrum, but let z^- be infinitesimal and 'injected' (forced) with infinite coherence time in the ' z^+ frame' that propagates along \boldsymbol{B}_0 with the z^+ fluctuations at speed v_A . Then the z^- vector field becomes time-independent in the z^+ frame at all scales, and the (infinitesimal) shearing by z^- has an infinite coherence time in the z^+ frame.

Why Is
$$\tau_{\text{casc},\lambda}^+ \sim \frac{\lambda}{\delta z_{\lambda}^-}$$
 Even Though $\chi_{\lambda}^- = \frac{\delta z_{\lambda}^- l_{\lambda}^-}{\lambda v_{A}} \ll 1$?

Now, let z^- increase to a finite value but remain $\ll z^+$. Let z^- be injected with a coherence time, as measured in the z^+ frame, that is at least as long as the lifetime of the z^+ eddies at the forcing scale (`anomalous coherence'). How long do you have to wait until the shearing of a z^+ wave packet at scale λ by a z^- wave packet at scale λ changes at a fixed location in the z^+ frame?

Well, if the z^+ packet doesn't change, then the z^- wave packet doesn't change. So you have to wait until the z^+ wave packets change before the shearing that they experience changes. $\longrightarrow \tau_{\mathrm{casc},\lambda}^+ \sim \frac{\lambda}{\delta z_{\lambda}^-}$

NOTE: reflection-driven turbulence yields anomalous coherence

Energy Cascade Rate

$$\epsilon_{\lambda}^{+} = \frac{\left(\delta z_{\lambda}^{+}\right)^{2}}{\tau_{\mathrm{casc},\lambda}^{+}}$$
 In inertial range, $\left\langle \epsilon_{\lambda}^{+} \right\rangle \propto \lambda^{0}$

$$\langle \epsilon_{\lambda}^{+} \rangle \propto \lambda^{0}$$

$$au_{\mathrm{casc},\lambda}^+ \sim \frac{\lambda}{\delta z_{\lambda}^-}$$

$$\tau_{\text{casc},\lambda}^{+} \sim \frac{\lambda}{\delta z_{\lambda}^{-}} \longrightarrow \left\langle \frac{(\delta z_{\lambda}^{+})^{2} \delta z_{\lambda}^{-}}{\lambda} \right\rangle \propto \lambda^{0}$$

Energy Cascade Rate

$$e_{\lambda}^{+} = \frac{\left(\delta z_{\lambda}^{+}\right)^{2}}{\tau_{\mathrm{casc},\lambda}^{+}}$$
 In inertial range, $\left\langle e_{\lambda}^{+}\right\rangle \propto \lambda^{0}$

$$\tau_{\text{casc},\lambda}^{+} \sim \frac{\lambda}{\delta z_{\lambda}^{-}} \longrightarrow \left\langle \frac{(\delta z_{\lambda}^{+})^{2} \delta z_{\lambda}^{-}}{\lambda} \right\rangle \propto \lambda^{0}$$

Assertion: in the sub-volume that dominates $\langle e_{\lambda}^{+} \rangle$, in which $\delta z_{\lambda}^{+} > w_{\lambda}^{+}$, the driving of δz_{λ}^{-} is uniform, but the damping time scale of δz_{λ}^{-} is $\propto 1/\delta z_{\lambda}^{+}$.

$$\longrightarrow \delta z_{\lambda}^{-} \propto \frac{1}{\delta z_{\lambda}^{+}} \longrightarrow \delta z_{\lambda}^{-} = \frac{w_{\lambda}^{+} w_{\lambda}^{-}}{\delta z_{\lambda}^{+}}$$

Energy Cascade Rate

$$e_{\lambda}^{+} = \frac{\left(\delta z_{\lambda}^{+}\right)^{2}}{\tau_{\mathrm{casc},\lambda}^{+}}$$
 In inertial range, $\left\langle e_{\lambda}^{+}\right\rangle \propto \lambda^{0}$

$$\tau_{\text{casc},\lambda}^{+} \sim \frac{\lambda}{\delta z_{\lambda}^{-}} \longrightarrow \left\langle \frac{(\delta z_{\lambda}^{+})^{2} \delta z_{\lambda}^{-}}{\lambda} \right\rangle \propto \lambda^{0}$$

Assertion: in the sub-volume that dominates $\langle e_{\lambda}^{+} \rangle$, in which $\delta z_{\lambda}^{+} > w_{\lambda}^{+}$, the driving of δz_{λ}^{-} is uniform, but the damping time scale of δz_{λ}^{-} is $\propto 1/\delta z_{\lambda}^{+}$.

$$\longrightarrow \delta z_{\lambda}^{-} \propto \frac{1}{\delta z_{\lambda}^{+}} \longrightarrow \delta z_{\lambda}^{-} = \frac{w_{\lambda}^{+} w_{\lambda}^{-}}{\delta z_{\lambda}^{+}}$$

$$\left\langle \epsilon_{\lambda}^{+} \right\rangle \sim \frac{\left\langle \delta z_{\lambda}^{+} \right\rangle w_{\lambda}^{+} w_{\lambda}^{-}}{\lambda} \propto \lambda^{-\beta - 2\ln\beta} \longrightarrow \beta = -2\ln\beta \longrightarrow \beta = 2W_{0}(1/2) = 0.7035$$

$$\longrightarrow \left\langle \left(\delta z_{\lambda}^{+} \right)^{2} \right\rangle \propto \lambda^{1-\beta^{2}} = \lambda^{0.505} \qquad \longrightarrow E(k_{\perp}) \propto k_{\perp}^{-1.51}$$

Anisotropy of the Energetically Dominant Small-Scale Fluctuations

Recall:
$$\delta z_{\lambda}^{\pm} = \overline{z}^{\pm} \beta^q$$

$$P(q) = \frac{e^{-\mu} \mu^q}{q!}$$

$$\left\langle \left(\delta z_{\lambda}^{\pm} \right)^{n} \right\rangle = \left\langle \left(\overline{z}^{\pm} \right)^{n} \right\rangle e^{-\mu} \sum_{q=0}^{\infty} \frac{\left(\mu \beta^{n} \right)^{q}}{q!} = \left\langle \left(\overline{z}^{\pm} \right)^{n} \right\rangle e^{-\mu + \mu \beta^{n}} \qquad \left(\text{using } \sum_{q=0}^{\infty} \frac{x^{q}}{q!} = e^{x} \right)$$

This sum is dominated by $q \simeq \mu \beta^n$, and by fluctuations with amplitude

$$\delta z_{(n),\lambda}^{\pm} = \bar{z}^{\pm} \beta^{\mu \beta^n} \propto \lambda^{-\beta^n \ln \beta}$$
 that have parallel correlation lengths $l_{(n),\lambda} = \frac{v_A \lambda}{\delta z_{(n),\lambda}^+}$

Recall: $e^{-\mu} \propto \lambda$

$$\longrightarrow \delta z_{(2),\lambda}^{\pm} \propto \lambda^{-\beta^2 \ln \beta} = \lambda^{0.174} \quad \text{and} \quad l_{(2),\lambda} \equiv \frac{v_{\text{A}} \lambda}{\delta z_{(2),\lambda}^+} \propto \lambda^{1+\beta^2 \ln \beta} = \lambda^{0.826}$$

Comparison with PSP E1 Observations from Sioulas et al (2024)

Voilà — cyclotron heating.

Not so fast! Are these sheets, or tubes?

$$P(0) = e^{-\mu} \propto \lambda$$
 — this means sheets

Assertion: in the sub-volume that dominates $\langle \epsilon_{\lambda}^{+} \rangle$, in which $\delta z_{\lambda}^{+} > w_{\lambda}^{+}$, the driving of δz_{λ}^{-} is uniform, but the damping time scale of δz_{λ}^{-} is $\propto 1/\delta z_{\lambda}^{+}$.

$$\longrightarrow \delta z_{\lambda}^{-} \propto \frac{1}{\delta z_{\lambda}^{+}} \longrightarrow \delta z_{\lambda}^{-} = \frac{w_{\lambda}^{+} w_{\lambda}^{-}}{\delta z_{\lambda}^{+}} \qquad - \text{ this means tubes}$$

Okay - so let's use the observations to decide.

— this means sheets. As $n \to \infty$, $\left\langle (\delta z_{\lambda}^+)^n \right\rangle \to f_{\lambda}^{(\infty)} (\delta z_{\infty,\lambda}^+)^n$

— this means tubes

Conclusion

• In intermittent reflection-driven turbulence, inertial-range fluctuations are tube-like, and so stronger fluctuations have shorter parallel length scales via critical balance, $l_{\lambda}^{+} = \frac{\lambda v_{\rm A}}{\delta z_{\lambda}^{+}}$.

- The fluctuations that dominate the energy and energy cascade rate are unusually strong, and hence have unusually large frequencies, which enhances perpendicular ion heating.
- Lingering questions over how to reconcile tube-like inertial-range fluctuations with measurements of higher-order structure functions.