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Solar-Wind Energization by Turbulent Alfvén Waves
(E.g., Parker 1965, Velli et al 1989, Zhou & Matthaeus 1989, Matthaeus et al 1999, Cranmer et al 2007, Halekas et al 2023)
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* Photospheric motions and/or reconnection launch Alfven waves along open magnetic-field lines
* These outward-propagating waves undergo partial reflection

» Counter-propagating waves interact to produce turbulence, which causes wave energy to
‘cascade’ from long wavelengths to short wavelengths

» Short-wavelength waves dissipate, heating the plasma.
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. 77 represents Alfvén-wave (AW) fluctuations that propagate at velocity —v

» 7 represents AW fluctuations that propagate at velocity v,

.%+($VA+Z“T)-VZi=—VH, H=(p+Bz)/p

» Only counter-propagating AWSs interact

. 7+ follows the field lines of B, plus the part of 6B from 6z . This is the nonlinear
Interaction (Maron & Goldreich 2001).



Anisotropic Energy Cascade in Alfvenic Turbulence
(E.g., Montgomery & Turner 1981, Shebalin et al 1983, Goldreich & Sridhar 1995, Chen et al 2012, Sioulas et al 2024)
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B As Alfvén wave packets break up into smaller wave packets, — increases

Two things we need to know to figure out how turbulence dissipates at small A:

[ V
1. The anisotropy ratio % Determines the characteristic frequency kv, ~ Z_A at small A
A

2. The fluctuation amplitudes — determines rates of nonlinear heating mechanisms like
stochastic ion heating. (1 and 2 are related by critical balance.)
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What Parker Solar Probe (PSP) Tells Us About Anisotropy
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What Parker Solar Probe (PSP) Tells Us About Anisotropy
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e —— we need a new turbulence model for the near-Sun solar wind



Hint from PSP: Solar-Wind Turbulence is Also Intermittent
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e —— we need a new turbulence model for the near-Sun solar wind



What PSP Tells Us About Anisotropy and Intermittency
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e —— we need a new turbulence model for the near-Sun solar wind

* \We have developed such a model that offers an explanation for these observations



Model for the Probability Distribution Function of 5z}

52/1“—“ — 734 B € (0,1) is a constant, ¢ is a random integer, Z™ is a scale-independent
random number that is independent of g,

14
q!

e
P(g) =

Poisson distribution with mean u, which is a function of A

These assumptions are a little like assuming a power-law form for the
energy spectrum. We need some model for how the PDF of fluctuation

amplitudes broaden as 4 decreases. Note: we don’t require the full PDF to
be log-Poisson.

To complete the model, we need to evaluate p(4) and

Same approach in Chandran, Schekochihin, & Mallet 2015 (CSM15), Mallet
& Schekochihin 2017 (MS17). Similar approach in She & Leveque (1994)
and Dubrulle (1995).



Model for the Probability Distribution Function of 5z}

52/1“—“ — 734 B € (0,1) is a constant, ¢ is a random integer, Z™ is a scale-independent
random number that is independent of g,

14
q!

Poisson distribution with mean u, which is a function of A

e
P(g) =

PO)=e " x A filling factor of strongest fluctuations is o« A . Same as in CSM15 and MS17.

L
— U = In (7l> L, is the perpendicular outer scale

Wf = Zi> pH x e Inf o p=Inp the median or typical fluctuation amplitude at scale A



Higher-Order Structure Functions
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Higher-Order Structure Functions
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Higher-Order Structure Functions
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Higher-Order Structure Functions
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Same formula as in CSM15 and MS17.
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Lithwick, Goldreich, & Sridhar (LGS) 2007 Model of Strong Imbalanced MHD Turbulence
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Lithwick, Goldreich, & Sridhar (LGS) 2007 Model of Strong Imbalanced MHD Turbulence
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and that y,” =

[ is the distance 0z, propagates before cascading: [ ~ —



Lithwick, Goldreich, & Sridhar (LGS) 2007 Model of Strong Imbalanced MHD Turbulence
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[ is the distance 0z, propagates before cascading: [ ~ —

0z, is cascaded by 0z;:  — [T ~ I



Lithwick, Goldreich, & Sridhar (LGS) 2007 Model of Strong Imbalanced MHD Turbulence

; _ A .
Assume 0z, > 07, andthat y= = r 2 1, where [;-is the parallel
VA

correlation length of a fluctuation of perpendicular correlation length A.

Vad
[ is the distance 0z, propagates before cascading: [, ~ 5A_+
<2
0z, is cascaded by 0z;:  — [T ~ I
0z, I

/IVA



Lithwick, Goldreich, & Sridhar (LGS) 2007 Model of Strong Imbalanced MHD Turbulence
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Lithwick, Goldreich, & Sridhar (LGS) 2007 Model of Strong Imbalanced MHD Turbulence
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LGS07 thought experiment: let ™ have a broadband power spectrum, but let 7z~ be
infinitesimal and ‘injected’ (forced) with infinite coherence time in the "z frame’ that
propagates along B, with the z ™ fluctuations at speed Va. Then the 7 vector field

becomes time-independent in the 2™ frame at all scales, and the (infinitesimal)
shearing by 7~ has an infinite coherence time in the ™ frame.
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Now, let z~ increase to a finite value but remain << z™. Let 2~ be injected with a
coherence time, as measured in the 7 frame, that is at least as long as the lifetime
of the ™ eddies at the forcing scale ("fanomalous coherence’). How long do you
have to wait until the shearing of a z™ wave packet at scale A by a Z~ wave packet

at scale A changes at a fixed location in the z* frame?

Well, if the 7T packet doesn’t change, then the Z~ wave packet doesn’t change. So
you have to wait until the Z™ wave packets change before the shearing that they

A
experience changes. — Toasc.) —&/1_

NOTE: reflection-driven turbulence yields anomalous coherence
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Energy Cascade Rate
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Assertion: in the sub-volume that dominates <€j> in which 5z/{F > wj, the driving of 0z, is

uniform, but the damping time scale of 6z; is o« 1/0z;".
_I_ —
WaWa

— 07, X > 07, =
/ 0z / oz}



Energy Cascade Rate
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Assertion: in the sub-volume that dominates <€j> in which 5z/{F > wj, the driving of 0z, is

uniform, but the damping time scale of 6z; is o« 1/0z;".
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Anisotropy of the Energetically Dominant Small-Scale Fluctuations
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Comparison with PSP E1 Observations from Sioulas et al (2024 )
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Voila — cyclotron heating.



Not so fast! Are these sheets, or tubes?

PO)=e"x A — this means sheets

Assertion: In the sub-volume that dominates <€j> In which ézj > wj, the

driving of 6z, is uniform, but the damping time scale of 6z; is o« 1/0z;".

1 wiw;
— 07, X —m —> 07, = — this means tubes
/ oz} / 0z

Okay - so let’'s use the observations to decide.
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Conclusion

* |n intermittent reflection-driven turbulence, inertial-range fluctuations

are tube-like, and so stronger fluctuations have shorter parallel length
AV

scales via critical balance, lj — .
_|_
0Z;

» The fluctuations that dominate the energy and energy cascade rate are

unusually strong, and hence have unusually large frequencies, which
enhances perpendicular ion heating.

» Lingering questions over how to reconcile tube-like inertial-range
fluctuations with measurements of higher-order structure functions.



