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Typical steady state kinetic equations 
 

Fokker-Planck equation is of the "big, beautiful" form 
 

resonance + collisions = drive + nonlinearity 
 

*To keep it linear & resolve singularity need collisions 
 
*Nonlinearity enters for weak collisions due to ∇! or ∇ 
 
Can never ignore collisions for a monochromatic wave 
 



Plasma wave and/or lower hybrid current drive 
 

Electron kinetic equation in v||, v# variables 
∂f$
∂t + v||

∂f$
∂z −

eE||
m (

∂f%
∂v||

+
∂f$
∂v||

) = C{f$} 

with B44⃗ = 0 for PW or B44⃗ ≠ 0 for LHCD 
f% 	= n(m/2πT)&/(e)*!!/(+ 

 

f$ = perturbed distribution, but	allow ∂f$/ ∂v||~∂f%/ ∂v|| 
 

E|| = EE||sin(ωt− k||z) is an applied monochromatic wave 
 

C{f$} = collision operator for electrons ~ν,v,( ∂(f$/ ∂v||( 



Widths: island vs. collisional boundary layer 
 

* Collisional boundary layer width = (∆v||)-: balancing 
(k||v|| −ω)f$ = k||Δv||f$~ν,v,( ∂(f$/ ∂v||(~ν,v,(f$/(Δv||)( 

 gives 
(∆v||)-/v,~(ν,/k||v,)$/&  &   ν,..~ν,(k||v,/ν,)(/& ≫ ν, 

 

* Velocity space island width =(∆v||)/0: nonlinearity allows 
f$k||∆v||~(eEE||/m) ∂f$/ ∂v||~(eEE||/m)f$/Δv|| 

 giving 
(∆v||)/0/v,~	(eEE||/mk||v,()$/( ≪ 1 

 



Collisional boundary layer ≫ island width 
 

* Usual quasilinear (QL) limit = resonant plateau (RP)  
 

* Need collisions to resolve singularity! 
Results seem independent of collisions, but are not! 

 

* QL/RP theory fails when 
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* What happens when (∆v||)/0 ≫ (∆v||)- or 
(eEE||/mk||v,()&/( ≫ (ν,/k||v,) 



Full nonlinear equation for PW or LHCD 
 

* Define ϕ = ωt− k||z & u = v|| −ω/k||, consider 

k||u
∂f$
∂ϕ −

eEE||
m sinϕ(

∂f%
∂v||

+
∂f$
∂u) = νv#1(

∂(f$
∂u(  

with ∂f%/ ∂v|| ≈ constant, then f$ = f$(ϕ, u). Let  
f$ = g(u,ϕ) − (u − σα) ∂f%/ ∂v|| 

with α a constant to be determined & σ = u/|u| = ±1 or 0 
 

* Need to solve 

k||u
∂g
∂ϕ −

eEE||
m sinϕ

∂g
∂u = νv#(

∂(g
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Nonlinear effects & collisional phase mixing 
* Hamilton, Tolman, Arzamasskiy, Duarte (AJ 2023) solve 

∂g/ ∂τ + j ∂g/ ∂ϕ − sinϕ	 ∂g/ ∂j = Δ∂(g/ ∂j( 
to find steady state for 𝐣 vs 𝛟 (shown for 𝛥 = 0.001) 
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Collisionless vs collisional contrasted 

 
Kadomstev 1968 Sov. Phys. Usp. vs Hamilton et al. 2023 AJ 
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Nonlinear effects for 𝚫 ≪ 𝟏 
 

* Can't solve Δ~(∆v||)-&/(∆v||)/0&~1, but can solve Δ ≪ 1 
 

* Normalizing gives Hamilton et al. steady state form  

j
∂g
∂ϕ − sinϕ	

∂g
∂j = Δ

∂(g
∂j(  

 with j ∝ u, island centered at j = 0 and 
 

f$ = g(u,ϕ) − (u − σα) ∂f%/ ∂v|| 
 

 where σ = ±1 for unbound and σ = 0 for bound 
 

* Seek skew symmetric solution: g(j, ϕ) = −g(−j, −	ϕ) 



Reduced Hamiltonian 
 

* Introduce reduced Hamilton et al. Hamiltonian 
h = j(/2 − cosϕ 

 so that 
j = ±a2(h + cosϕ) = j(h, ϕ) 

* Changing variables from j, ϕ to h, ϕ 
∂g
∂ϕb2

= Δ
∂
∂hb3

(j
∂g
∂hb3

) 

* Unlike Hamilton et al., interested in steady state 
 

* Collisional boundary layer about separatrix at h = 1 



Change variables 
 

* In h, ϕ variables desire to solve for Δ ≪ 1 
∂g
∂ϕb2

= Δ
∂
∂hb3

(j
∂g
∂hb3

) 

* Lowest order motion is collisionless. Therefore 
g = g$(h, σ) + g((h, φ)+. .. 

 

* Desire skew symmetric solution: g$(j, ϕ) = −g$(−j, −	ϕ) 
 

* No need to solve next order, but must satisfy solubility 
∂g(
∂ϕb2

= Δ
∂
∂hb3

(j
∂g$
∂h b3

) 



Solubility & solution 
 

* Integrate over a full bound period or full circulation 
∂
∂hb3

[(e dϕ
2

j)
∂g$
∂h b3

)] = 0 

* Bound: g$ = 0 (no collisional flux across h surfaces) 
 

* Unbound: g$ ∝ σ∫ dτ/τ(E(τ)$
4  & κ = *2/(h + 1) 

 

* Full solution  

f$ = {σ|
eEE||
mk||

|$/([πj
dτ

τ(E(τ)

$

4(6,3)
+ 1.379] − u}

∂f%
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Plasma wave (PW) 
Power absorbed by electrons in the Landau (1946) limit is 
     P% = (EE||(/8π)(2π$/(ω9

(ω(/k||&v,&)e
):!/;||

!!#!   
Power absorbed in Zakharov & Karpman (1963) limit is  

P ≈ 0.144(Z + 2)mnv,(ν,,|eEE||k||/mω(|$/(e):
!/;||

!!#! 
The ratio vanishes as ∆→ 0  

P
P%
≈ 0.081(Z + 2)

ν,,k||(v,(

ω& |
mk||v,(

eEE||
|&/(~∆≪ 1 

No collisionless (ν ≡ 0) limit for finite EE||: Landau limit is a 
plateau regime with 1 ≫ ν,,/ω ≫ (ω/k||v,)(|eEE||/k||T,|&/( 



Intense applied LHCD vs. quasilinear 
 

* Normalized quasilinear current drive efficiency of Fisch 
J||LH/enve

PcdLH/mnve2νee
=

16ω2

3π1/2(Z+ 5)k||(ve2
 

 

* Normalized intense lower hybrid wave efficiency  
〈J||〉3/env,
P/mnv,(ν,,

=
2.99ω(

(Z + 2)k||(v,(
|
eEE||

mk||v,(
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* Intense limit smaller by (∆!||)$%
!

!#!
~| ,=>||

*;||!#!
| ≪1 



Stellarator: trapped alpha drift resonance at 𝛚x𝛂 = 𝟎 
 

* ωx@ reverses direction at some pitch angle⟹resonance 
 

* Drift reversal results in collisional transport 
 

* Superbanana or resonant plateau neglects nonlinear term 
 

* Islands can form at resonances⟹small radial scale 
 

* Island width ~ collisional boundary layer width when 
∂f{/ ∂r~∂f/̅ ∂r 

 

* Transport transitions from "plateau" to "linear" in 𝜈 



Form of alpha resonance 
 

* At large aspect ratio ωx@ reverses at 2E(κ%) = K(κ%)  
κ( = [1 − (1 − ϵ)λ]/2ϵλ 

 

* Trapped boundary depends on inverse aspect ratio ϵ 
1 − ϵ < λ = 2µB%/v( < 1 + ϵ 

 

* Expand about κ%( = 0.83: ωx@ = −2(κ( − κ%()ωx@A ~v(/Ω%R%(ϵ  
ωx@ = [λ − (1 − 0.66ϵ)]ωx@A /ϵ 

 

* Resonance depends on a different λ at each ϵ ⟹ pods 
 (same ωx@ if ∆λ + 0.66∆ϵ = 0) 
 

* Small departure from QS:  ϵ ≫ δ	= non-QS  



Islands can help in a nearly quasiymmetric stellarator 
Bounce averaged drift kinetic eq. for trapped alphas  

ωx@
∂f{
∂ϕ − V

xsinϕ	
∂(f̅ + f{)
∂r = ν�ϵ

∂(f{
∂λ( 

with f ̅= unperturbed slowing down tail distribution 
 

f{ = perturbed distribution (f̅ ≫ f{, trapped fraction ~√ϵ) 
 

ωx@ = bounce average trapped drift in a flux surface 
 

Vx~ωx@R%δ = bounce average radial drift due to QS departure  
 

ϕ = QS breaking helical angular variation 
 

ν� = vB&/v&τ0 pitch angle collision freq. of alphas by ions 



Superbanana plateau or resonant plateau limit 
 

* Linear eq., no pods, inhomogeneous Airy eq.  

[λ − λ%(ϵ)]
ωx@A

ϵ
∂f{
∂ϕ −

Vx
R%
sinϕ	

∂f̅
∂ϵ = ν�ϵ

∂(f{
∂λ( 

 

* Drift ~ collisions ⟹ RP layer width Δλ~(ϵ(ν�/ωx@)$/&   

ν�,..~ν�ϵ/(Δλ)(~ν�ϵ(ωx@/ϵ(ν�)(/& 
 

* RP diffusivity independent of collisions: v% = birth speed 
 

DC9~(Δλ/ϵ$/()(Vx/ν�,..)(ν�,..~ϵ$/(Vx(/ωx@~qv%(δ(/Ω%ϵ$/( 
 



When does the island width matter? 
 

* Full nonlinear eq. allows pods since λ = 1 − 0.66ϵ 

[λ − (1 − 0.66ϵ)]
ωx@A

ϵ
∂f{
∂ϕ −

Vx
R%
sinϕ	

∂(f̅ + f{)
∂ϵ = ν�ϵ

∂(f{
∂λ( 

* Island width: nonlinear term ~ drift, Vx/R%Δϵ~ωx@A Δϵ/ϵ  
Δϵ~(Vxϵ/ωx@R%)$/(~(ϵδ)$/( ≪ ϵ$/( 

* Collisional boundary layer larger than island width if 
(ϵ(ν�/ωx@)$/&~Δλ ≫ Δϵ~(ϵδ)$/( 

* Plateau limit assumes ∂f{/ ∂ϵ~f{/∆ϵ ≪ ∂f/̅ ∂ϵ~f/̅ϵ or 
f{/f̅ ≪ 	Δϵ/ϵ~(δ/ϵ)$/( ≪ Δλ/ϵ~(ν�/ωx@ϵ)$/& 

* What happens if Δλ~Δϵ or Δλ ≪ Δϵ? 



Nonlinear effects for 𝚫 ≪ 𝟏 
 

* Normalizing the trapped nonlinear drift kinetic equation 

(x − Λ)
∂f{
∂ϕ − sinϕ	(f′̅ +

∂f{
∂x) = Δ

∂(f{
∂Λ( 

with x ∝ ϵ , Λ ∝ (1 − λ) and f′̅ = ∂f/̅ ∂x = constant 
 

* Let  f{ = g − (x − Λ)f′̅  &   j = x − Λ = a2(h + cosφ) 

j
∂g
∂ϕ − sinϕ

∂g
∂j = Δ

∂(g
∂j(  

* Pods because j = j(x, Λ) depends on both ϵ & λ 
 

*	D-/DC9~Δ ≪ 1⟹	large islands reduce radial transport 



What about gyrokinetics? 
  

Keeping the magnetic v4⃗ D & perturbed 〈v4⃗ =〉E drifts 
𝜕h�/ ∂t + [v||b4⃗ + v4⃗ D + 〈v4⃗ =〉E] ∙ [∇Eh� − Ze∇E〈Φ〉E ∂h�/ ∂Ex]

− C${h�} = −(ZefD/T)[(∂〈ΦE〉E/ ∂t) − ω∗
+(∂ΦE/ ∂ζ)] 

with Ex = v(/2 
f{ = h − (ZeΦE/T)fD − (Iv||/Ω) ∂fD/ ∂ψ 

〈v4⃗ =〉E = (c/B)b4⃗ × ∇E〈Φ〉E 
and 

ω∗
+ =

cT
ZefD

∂fD
∂ψ =

cT
Zep �

∂p
∂ψ + Zen

∂Φx
∂ψ + �

Mv(

2T −
5
2�n

∂T
∂ψ 	



Island forming nonlinearity normally neglected 
 

Define 
〈R44⃗ ̇ 〉E = v||b4⃗ + v4⃗ D + 〈v4⃗ =〉E 

then usually assume 
[Ze 〈R44⃗ ̇ 〉E ∙ ∇E〈Φ〉E] ∂h�/ ∂Ex

〈R44⃗ ̇ 〉E ∙ ∇Eh�
~
Ze〈Φ〉E
h�

∂h�

∂Ex
~
Ze〈Φ〉E
T ≪ 1 

If there is velocity space structure due to ΦE  then 
[Ze 〈R44⃗ ̇ 〉E ∙ ∇E〈ΦE〉E] ∂h�/ ∂Ex

〈R44⃗ ̇ 〉E ∙ ∇Eh�
~
Ze〈ΦE〉E
h�

∂h�

∂Ex
~
Ze〈ΦE〉E
T

aT/M
∆v||

~1 



Velocity space structure 
 

Resonances lead to velocity space structure so estimate 
𝜕h�/ ∂t + 〈R44⃗ ̇ 〉E ∙ [∇Eh� − Ze∇E〈ΦE〉E ∂h�/ ∂Ex]~h�∆v||/qR 

As before, balancing with 
C${h�}~(νT/M)h�/(∆v||)-( 

and 
Zev||b4⃗ ∙ ∇E〈ΦE〉E ∂h�/ ∂Ex~h�ZeE||/M(∆v||)/0 

Might matter for "stronger" turbulence 
(∆v||)/0&

(∆v||)-&
~
(ZeE||qR/T)&/(

(νqR/aT/M)
~
1
∆~1 



What about mode coupling term of "weak" turbulence? 
 

Mode coupling 〈v4⃗ =〉E ∙ ∇Eh� drives a cascade to small scales 
but also alters the resonance (as in stellarator transport) 
 

Resonance estimate must depend on tokamak geometry 
〈v4⃗ =〉E ∙ ∇Eh�~〈v4⃗ =〉CGHh�/∆r 

∂h�/ ∂t + 〈R44⃗ ̇ 〉E ∙ ∇Eh�~h�v∆r/qR( 
for crude guesstimate ∂v||/ ∂r~v/R & k||~1/qR. Then  

∆r/R~(q〈v4⃗ =〉CGH/v)$/( ≪ 1	
and perhaps	∆r/R ≫ (∆v||)I/v	implies pods matter?	

 



Comments & crazy thought 
 

There is no collisionless limit (Zakharov & Karpman)  
 

Is phase mixing ever collisionless? 
 

Islands become pods (and uglier) in confined plasmas 
 

Collisions always matter, but do details in codes matter? 
(they do matter for a monochromatic wave) 
 

Do pods/islands and/or resonances need to be resolved?      
(do these details of the cascade to small scales matter) 
 

Will simulations go to the same saturated state? 




