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The classical gravitational Vlasov-Poisson system

(. x,€) + Vi - (€1(8,X,€)) + Vi - (Vep(t, (1, %, ) = 0, (£,x,€) € [0, T] x T x B,

f(t,x,6) >0, Ap(t,x)=p(t,x)—1, p(t, x) /ftx{d& /Ap(tx



The classical gravitational Vlasov-Poisson system

Of(t, X,€) + Vi - (€F(t, %,€)) + Ve - (Voo(t, x)(t,x,)) = 0, (t,x,€) € [0, T] x T x R,
f(t,x,£) >0, Ap(t,x)=p(t,x)—1, p(t x) /ftx{d£ / (t,x)d.
admits a non-linear, "Monge-Ampere", correction

det(lg + DPo(t, x)) = p(t,x) = [ f(t, x,€)d¢

R



The classical gravitational Vlasov-Poisson system

Of(1, X, €) + Vix - (€F(1, %, €)) + Ve - (Voo(t, ), x,€)) = 0, (t,x,€) € [0, T] x T? x R,
(x>0, Bp(tX) = plto) — 1, pltx) = [ ftxe)de [ p(txde =1
RA Td
admits a non-linear, "Monge-Ampere", correction
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which makes ¢ much less singular (if d > 1)
as p concentrates: |ve(t, x)| <diam(T9) (Y. B., G. Loeper GAFA 2004).
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admits a non-linear, "Monge-Ampere", correction

det(lg + DPo(t, x)) = p(t,x) = [ f(t, x,€)d¢

R

which makes ¢ much less singular (if d > 1)
as p concentrates: |ve(t, x)| <diam(T9) (Y. B., G. Loeper GAFA 2004).

N.B. This is similar to Born-Infeld 1934 nonlinear Electromagnetism where any

electrostatic force is unconditionaly bounded (see Y.B. ARMA 2004).
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MONGE-AMPERE GRAVITATION: a 256° particle simulation of the early universe
based on the 3D version of Mérigot's semi-discrete Monge-Ampére solver. Each
"Laguerre cell" corresponds to a cluster of galaxies!

With B. Lévy (INRIA) and R. Mohayaee (Institut d’Astrophysique de Paris) 2024.

FIG. 5. Simulation of Monge-Ampére gravity (60 Mpc/h, 256° particles), and zoom on the Laguerre cells of the central region.
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MONGE-AMPERE GRAVITATION (MAG)

(Y.B., G. Loeper GAFA '04, Y.B.Confl. Math 11, B. Lévy, Y.B., R. Mohayahee arXiv 24)

p(t, x) = det(/ + D?¢(t, x)) instead of p(t,x) =1+ Ap(t, X)
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i) exact in 1d, asymptotically correct for weak fields;

ii) much less singular as p concentrates: |Vy(t, x)| < diam(T9);

iii) might be as good as the Poisson equation as an approximation to
the Einstein equations (conjecture), based on the analogy

Einstein equation = Monge—Ampere equation
Y]
Ricci curvature Gauss curvature
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iv) has a computational complexity similar to Poisson thanks to the
Monge-Ampére solver by Quentin Mérigot (2D) and Bruno Lévy (3D);
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p(t, x) = det(/ + D?¢(t, x)) instead of p(t,x) =1+ Ap(t, X)

i) exact in 1d, asymptotically correct for weak fields;

ii) much less singular as p concentrates: |Vy(t, x)| < diam(T9);

iii) might be as good as the Poisson equation as an approximation to
the Einstein equations (conjecture), based on the analogy

Einstein equation = Monge—Ampere equation

Ricci curvature Gauss curvature

iv) has a computational complexity similar to Poisson thanks to the
Monge-Ampére solver by Quentin Mérigot (2D) and Bruno Lévy (3D);
V) enjoys a nice stochastic interpretation in terms of brownian clouds!
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MONGE-AMPERE vs NEWTON (B. Lévy, Y.B., R. Mohayaee arxiv 2404.07697v2)

eoe ~  roya-bruno-p12 . Q v 3 y

Monge-Ampere, z = 0

FIG. 8.  Comparison between 3D simulations of ACDM (using an adaptive-mesh algorithm similar to [2I]) and Monge-
Ampere in a cube of 300 Mpe/h, 512° particles, z=5, 3 and 0. Projected integrated density in a 15 Mpc/h thick slab, using a
logarithmic color scale. Large-scale similarity between the two models is striking, however MAG creates more abundant and
diffuse filaments, whereas ACDM creates highly-clustered small haloes. There is weaker clustering because MAG does not
diverge and is screened at short distances.
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PURELY STOCHASTIC ORIGIN OF
MONGE-AMPERE GRAVITATION FROM THE
LARGE DEVIATIONS OF BROWNIAN CLOUDS

Ambrosio, Baradat, B., Analysis and PDEs '22, Léonard, Mohayaee arXiv 24
(picture taken from B. Lévy, Y.B., R. Mohayaee arxiv 2404.07697v2)

FIG. 1.  Left panel: unconditioned motion of M independent Brownian particles; Center panel: motion of independent
Brownian particles conditioned by their initial and final positions (in red and blue respectively); Right: conditioned Brownian
motion with vanishing noise, all trajectories tend to geodesics.
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BROWNIAN CLOUDS

We define a brownian cloud to be a finite set of N indistinguishable

points in the euclidean space, initially located on a finite cubic lattice

{A(e) € R, a =1,---,N} and subject to N independent Brownian
motions in RY, with uniform noise v.
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DIFFUSION EQUATION AND BROWNIAN CLOUDS

In PDE terms, we just consider the diffusion equation in RNY:

D x)= L8630, plt=0.5)= 1 3 T[50X(a) ~ Aw(a))

JGGN a=1
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g’;(tX) L ApX), plt=0.X)= N.Z Ha ()

ceCy a=1

where the initial data take the relabeling symmetry into account
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DIFFUSION EQUATION AND BROWNIAN CLOUDS

In PDE terms, we just consider the diffusion equation in RNY:

Z’;(tX) L ApX), plt=0.X)= N.Z H5 ()

ceCy a=1

where the initial data take the relabeling symmetry into account so that
p(t, X) is just the probability density of finding the brownian cloud at
position X (up to a permutation of the labels) at time ¢

o, X) = (2m/t) Na/z 3 Hexp [ X(a) — (0(04)12)

2ut
ceCy a=1
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LONDE PILOTE aka osmotic velocity or score (Al)

After solving the diffusion equation in the space of "clouds" X ¢ RNd

dp

Bt(t X) =

2

NIZ(SX As)

SISV
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LONDE PILOTE aka osmotic velocity or score (Al)

After solving the diffusion equation in the space of "clouds" X ¢ RNd

dp

Bt(t X) =

A p(t,X), p(t=0,X)= NIZax As)

SISV

2

we may solve the companion ODE in the same space RV

X _
at

v(t, Xt), v(t,X)= —%V(Iogp)(l‘7 X), X, = Yo given in RM

YB (CNRS, LMO Orsay) Monge-Ampére gravitation WPI Wien 30/07/25 9/14



LONDE PILOTE aka osmotic velocity or score (Al)

After solving the diffusion equation in the space of "clouds" X ¢ RNd

dp

Bt(t X) =

A p(t,X), p(t=0,X)= NIZax As)

SISV

2

we may solve the companion ODE in the same space RV

X _
at

v(t, Xt), v(t,X)= —%V(Iogp)(t, X), Xy, = Yo given in RM

This is an adaptation of de Broglie’s "onde pilote" idea. As a matter of fact, a similar
calculation also works for the free Schrddinger equation.
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"ONDE PILOTE" AND ZERO NOISE LIMIT

Setting t = exp(27), we more explicitly get
(with abuse of notation X; — X;):

aX-
dr

—[1X — A2
2v exp(27)

= —Vx®,0(X:), ®,-(X)=vexp(2r)log Y exp(

oSN
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Setting t = exp(27), we more explicitly get
(with abuse of notation X; — X;):

aX-
dr

—[1X — A |2
2v exp(27)

= —Vx®,0(X:), ®,-(X)=vexp(2r)log Y exp(

oSN

Surprisingly enough, we may easily pass to the limit v — 0
in the class of maximal monotone operators (cf. Brezis’ book)

d. X,
ar

= —VUx®(X,), &(X)=limd, (X)=— inf [|X—A?/2
v—0 oeSN

Indeed, &, -(X)reads ,M + a convex function of X.
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"ONDE PILOTE" AND ZERO NOISE LIMIT

Setting t = exp(27), we more explicitly get
(with abuse of notation X; — X;):

aX-
dr

—[1X — A |2
2v exp(27)

= —Vx®,0(X:), ®,-(X)=vexp(2r)log Y exp(

oSN

Surprisingly enough, we may easily pass to the limit v — 0
in the class of maximal monotone operators (cf. Brezis’ book)

d. X,
ar

= —VUx®(X,), &(X)=limd, (X)=— inf [|X—A?/2
v—0 oeSN

Indeed, &, -(X)reads ,M + a convex function of X.
N.B. Through Vx®, this equation includes sticky collisions in 1D.
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In 1D this just reduces to "dust" with sticky collisions

horizontal : 51 grid points in x /vertical : 60 grid points in t

25

15
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LARGE DEVIATIONS OF THE "ONDE PILOTE"

ax, dB,
dr - _VX(DV,T(XT) + \/77 ar

_ _ 2
&, (X) =ve*Tlogy, o, exp(%)z
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LARGE DEVIATIONS OF THE "ONDE PILOTE"

aX;
dr

aB;
dr

= —Vx®,(X:)+ /1 ®,.-(X) = V€7 log Y, e, xp( X2,

we easily get a large deviation Freidlin-Wentzell action for the limit
n— 0, WHILE v > 0 IS KEPT FIXED:
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LARGE DEVIATIONS OF THE "ONDE PILOTE"

aX;
dr

aB;
dr

= —VX(D,,,T(XT) +/n ¢, - (X) = ve® log >ocey exp(%ﬁf”z),

we easily get a large deviation Freidlin-Wentzell action for the limit
n— 0, WHILE v > 0 IS KEPT FIXED:

T dX
A = inf T+ Vx®, . (X)|2dr, X, = Yo, X, = Y-
I /TO Hdr xPur(X)|[7dT, Xz 05 Ay 1
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ZERO-NOISE LIMIT OF THE ACTION FUNCTIONAL

THEOREM (L. Ambrosio, A. Baradat, Y.B. Analysis and PDE 2023)

A s 2 . 2
| 1GE TR0 Fa o) =~ int (X A2

(which -at least in 1D- handles sticky collisions thanks to V x®)
is the "I —limit", as v — 0, of the Freidlin-Wentzell Action functional

—|IX — A |2
2ve27

T dXs .
/ = + Vx®, - (X,)[[Pd7, - (X) =ve" log > exp(

0 oeGy

)

YB (CNRS, LMO Orsay) Monge-Ampére gravitation WPI Wien 30/07/25 13/14



RECOVERY OF MONGE-AMPERE GRAVITATION!

Using the least action principle, we obtain

a2X.(a)
ar?

= X, (@) — Aloop(a)), X-(a)€eR?, a=1,-- N

N
Oopt = Arginf ceEGy Z |X'r(a) - A(U(a))|2

a=1
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Using the least action principle, we obtain

a2X.(a)
ar?

= X, (@) — Aloop(a)), X-(a)€eR?, a=1,-- N

N
Oopt = Arginf ceEGy Z |X'r(a) - A(U(a))|2

a=1

Finally, using Optimal Transport tools, we find that, as N — ~o

fn (T, x, ) = NZ“ X ( (g—d)i;ia)>

asymptotically solves the Monge-Ampére gravitational model

Orf+ V- (EF)+ Ve (Vi £) =0, det(]Id—i-chp):p:/fdg
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Using the least action principle, we obtain

a2X.(a)
ar?

= X, (@) — Aloop(a)), X-(a)€eR?, a=1,-- N

N
Oopt = Arginf ceEGy Z |X'r(a) - A(U(a))|2

a=1

Finally, using Optimal Transport tools, we find that, as N — ~o

fn (T, x, ) = NZ“ X ( (g—d)i;ia)>

asymptotically solves the Monge-Ampére gravitational model

Orf+ V- (EF)+ Ve (Vi £) =0, det(]Id—i-chp):p:/fdg

THANKS!
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THE SEMI-NEWTONIAN GRAVITATIONAL MODEL
OF THE EARLY UNIVERSE (Zeldovich, Peebles...)

The trajectory t € R, — X;(a) € R® of each "particle" labelled by
a € R3 (mod Z2 for simplicity) is driven by

2t d?X;  dX
3 ot S (Ve x) =0, 1—|—l‘Ag0—p—/5X X,(a))da

where p(t, x) and ¢(t, x), x € T3, respectively denote the density field
(supposed to be of unit average) and the gravitational potential.
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The trajectory t € R, — X;(a) € R® of each "particle" labelled by
a € R3 (mod Z2 for simplicity) is driven by

2t d*X; | dX
3 ot S (Ve x) =0, 1—|—l‘Ag0—p—/5X Xi(a))da

where p(t, x) and ¢(t, x), x € T3, respectively denote the density field
(supposed to be of unit average) and the gravitational potential.
General relativity is taken into account only through the terms in red
which include Big Bang effects, everything else is Newtonian.
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THE SEMI-NEWTONIAN GRAVITATIONAL MODEL
OF THE EARLY UNIVERSE (Zeldovich, Peebles...)

The trajectory t € R, — X;(a) € R® of each "particle" labelled by
a € R3 (mod Z2 for simplicity) is driven by

2t d?X; dXt
3 de

" (V) (%) =0, 1—|—l‘Ag0—p—/5X X,(a))da

where p(t, x) and ¢(t, x), x € T3, respectively denote the density field
(supposed to be of unit average) and the gravitational potential.
General relativity is taken into account only through the terms in red
which include Big Bang effects, everything else is Newtonian.

cf. Uriel Frisch and coll. Nature 417 (2002), with a renewed interest after the
launching of the James Webb Space Telescope 25/12/2021.
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VLASOV-POISSON FORMULATION

The Peebles equations

2 e | X,
3 a2 at

F (VLX) =0, 14+tAp=p= /Ts 5(x — X,(a))da

can be translated as the singular (at t = 0), nhon-autonomous,
Vlasov-Poisson system

Of + Vi (€1) + Ve (V) =0, 1+ 18— [ f(tx.0)d

just by setting

f(t,x, &) = /Ta §(x—Xi(a)o (5 - %(a)) da, (t,x,&)eR; xR® xRS
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ZELDOVICH APPROXIMATION

A very simple approximate solution EXACT in 1D was proposed by
Zeldovich in the 1970s for the semi-newtonian model

2t d?X; dX[

o+ L (Tt X) =0, p= [6x—X(a)da= 1+t
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ZELDOVICH APPROXIMATION

A very simple approximate solution EXACT in 1D was proposed by
Zeldovich in the 1970s for the semi-newtonian model

2t d?X, axX;
3 et VX =0, o= [d0-X(@)da=1+ 1oy
p(t,x) —1
S X(a) = a— tVo(a), Apo(x) = |n5(t)

Each particle just travels with a constant velocity due to the initial
density fluctuation, until a collision ocurs, which is somewhat
reminiscent of Lucretius’ (99-55 BC) "DE RERUM NATURA".
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’ DE RERUM NATURA LIBER SECUNDUS 216 — 224

|LUCRETIUS (99 — 55BC)

Quod nisi declinare solerent (corpora), omnia deorsum imbris uti
guttae caderent per inane profundum ...Ita nihil umquam natura
creasset.

But if (corpora) were not in the habit of deviating, they would all fall
straight down through the depths of the void, like drops of rain... In that
case, nature would never have produced anything.
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MONGE-AMPERE GRAVITATION (MAG)

In Confl. Math 2011, | proposed a correction to Peebles’ model:

p(t, x) = det(/ + tD?p(t, x)) instead of p(t,x) =1-+1A p(t,x)

2t d?X;  dX;

3 G G A X) =0, o= [o(x— X (a)da
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p(t, x) = det(/ + tD?p(t, x)) instead of p(t,x) =1-+1A p(t,x)

ot d2X;  dX;
3 gz g TVAELX)=0, p= /5(X — Xi(a))da
i) exact in 1d,
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p(t, x) = det(/ + tD?p(t, x)) instead of p(t,x) =1-+1A p(t,x)

2t dPX,
3 dr

dXi

dt

(V) X) =0, p= / 5(x — Xy(a))da

i) exact in 1d, asymptotically correct at early times and for weak fields;
ii) much less singular as p concentrates (, staying Lipschitz in x);
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MONGE-AMPERE GRAVITATION (MAG)

In Confl. Math 2011, | proposed a correction to Peebles’ model:

p(t, x) = det(/ + tD?p(t, x)) instead of p(t,x) =1-+1A p(t,x)

2t dPX,
3 dr

dXi

dt

(V) X) =0, p= / 5(x — Xy(a))da

i) exact in 1d, asymptotically correct at early times and for weak fields;

ii) much less singular as p concentrates (, staying Lipschitz in x);
iii) might be as good as the Poisson equation as an approximation to
the Einstein equations (conjecture), based on the "vague" analogy

Einstein equation
~Y

Monge—Ampere equation

Ricci curvature
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MONGE-AMPERE GRAVITATION (MAG)

In Confl. Math 2011, | proposed a correction to Peebles’ model:

p(t, x) = det(/ + tD?p(t, x)) instead of p(t,x) =1-+1A p(t,x)

2t d°X;  dX; .
3 Gt G T RX) =0, p= [ (x— X(a))da

i) exact in 1d, asymptotically correct at early times and for weak fields;
ii) much less singular as p concentrates (, staying Lipschitz in x);

iii) might be as good as the Poisson equation as an approximation to
the Einstein equations (conjecture), based on the "vague" analogy

Einstein equation = Monge—Ampere equation

Ricci curvature Gauss curvature

iv) has a computational complexity similar to Poisson thanks to the
Monge-Ampére solver by Quentin Mérigot (2D) and Bruno Lévy (3D).
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