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The classical gravitational Vlasov-Poisson system

∂t f (t , x , ξ) +∇x · (ξf (t , x , ξ)) +∇ξ · (∇φ(t , x)f (t , x , ξ)) = 0, (t , x , ξ) ∈ [0,T ]× Td × Rd ,

f (t , x , ξ) ≥ 0, ∆φ(t , x) = ρ(t , x)− 1, ρ(t , x) =
∫
Rd

f (t , x , ξ)dξ,
∫
Td

ρ(t , x)dx = 1

admits a non-linear, "Monge-Ampère", correction

det(Id + D2φ(t , x)) = ρ(t , x) =
∫
Rd

f (t , x , ξ)dξ

which makes φ much less singular (if d > 1)
as ρ concentrates: |∇φ(t , x)| ≤diam(Td ) (Y. B., G. Loeper GAFA 2004).

N.B. This is similar to Born-Infeld 1934 nonlinear Electromagnetism where any

electrostatic force is unconditionaly bounded (see Y.B. ARMA 2004).
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MONGE-AMPERE GRAVITATION: a 2563 particle simulation of the early universe
based on the 3D version of Mérigot’s semi-discrete Monge-Ampère solver. Each
"Laguerre cell" corresponds to a cluster of galaxies!
With B. Lévy (INRIA) and R. Mohayaee (Institut d’Astrophysique de Paris) 2024.

9

FIG. 5. Simulation of Monge-Ampère gravity (60 Mpc/h, 2563 particles), and zoom on the Laguerre cells of the central region.

(0) : � 0
(1) : while k⇢� ⇢̄ det(D2�)k⇤ < ✏
(2) : solve for �� in �(��) = ⇢� ⇢̄ det(D2�)
(3) : find descent parameter ↵
(4) : � � + ↵��

(37)

We give now more details about the algorithm above:

• in step (0), the potential � is set to 0, which means
�(r) = r2/2, and the transport T = r� is initial-
ized with the identity. The next steps will update
�, which will “morph T from the identity to the
optimal transport;

• in step (1), k.k⇤ denotes some function norm and ✏
a convergence threshold (more on this later);

• in step (2), one solves a Poisson equation to find
�� (one can drop the 4⇡G factor since �� is used as
a direction of descent). For a smooth density ⇢(.),
in periodic space, one could use the Fourier trans-
form to solve the Poisson equation, as suggested in
[36]. However, as mentioned in the previous sec-
tion, in our case, the density ⇢ is singular, and
matter is concentrated on a discrete set of points
(xi)

N
i=1 with masses (mi)

N
i=1. The potential � be-

comes a vector (�i)
N
i=1 of values attached to the

individual points xi. As in the previous section,
we need to consider the di↵erential operators act-
ing on � in a general sense (subdi↵erentials), hence
Equation (36) becomes:

�̂� = mi � ⇢̄|Vi(�)| (38)

where |Vi(�)| denotes the volume of the Laguerre
cell associated with point xi given the vector of po-
tentials (�i), as defined in Equation 32. Figure 5
shows what these Laguerre cells look like in a cos-
mological simulation. In Equation 38, the N ⇥ N
matrix �̂ denotes the P1 Laplacian, that is, the
classical Finite Element discretization of the Lapla-
cian projected onto a basis of piecewise linear func-
tions. The coe�cients cij of the discrete Laplacian
are given by:

cij = ⇢̄ 1
2

1
kxi�xjk |Vi(�) \ Vj(�)| 8i 6= j

cii = �P
j 6=i cij ,

(39)

where |Vi(�) \ Vj(�)| is the area of the common
face shared by the Voronoi cells Vi(�) and Vj(�)
(or ; is there is not such a face).

More formally, as detailed in [32, 37, 38], one can
obtain the same equation by maximizing the Kan-
torovich dual:

K(�) = ⇢̄
X

i

Z

Vi(�)

�
|q� xi|2 � �i

�
dq +

X

i

mi�i,

then the right hand side of the discrete Poisson
equation (38) is obtained from the negated gradient

of K(.), and the discrete Laplacian �̂ is obtained
from the Hessian matrix of K(.). Interestingly, this
equation also gives a physical meaning to the stop-
ping criterion for step (1): one can see that the
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MONGE-AMPERE GRAVITATION (MAG)

(Y.B., G. Loeper GAFA ’04, Y.B.Confl. Math ’11, B. Lévy, Y.B., R. Mohayahee arXiv 24)

ρ(t , x) = det(I + D2φ(t , x)) instead of ρ(t , x) = 1 +△φ(t , x)

i) exact in 1d, asymptotically correct for weak fields;
ii) much less singular as ρ concentrates: |∇φ(t , x)| ≤ diam(Td );
iii) might be as good as the Poisson equation as an approximation to
the Einstein equations (conjecture), based on the analogy

Einstein equation
Ricci curvature

∼ Monge−Ampere equation
Gauss curvature

iv) has a computational complexity similar to Poisson thanks to the
Monge-Ampère solver by Quentin Mérigot (2D) and Bruno Lévy (3D);
v) enjoys a nice stochastic interpretation in terms of brownian clouds!
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MONGE-AMPERE vs NEWTON (B. Lévy, Y.B., R. Mohayaee arxiv 2404.07697v2)
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PURELY STOCHASTIC ORIGIN OF
MONGE-AMPERE GRAVITATION FROM THE
LARGE DEVIATIONS OF BROWNIAN CLOUDS
Ambrosio, Baradat, B., Analysis and PDEs ’22, Léonard, Mohayaee arXiv 24
(picture taken from B. Lévy, Y.B., R. Mohayaee arxiv 2404.07697v2)
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FIG. 1. Left panel: unconditioned motion of M independent Brownian particles; Center panel: motion of independent
Brownian particles conditioned by their initial and final positions (in red and blue respectively); Right: conditioned Brownian
motion with vanishing noise, all trajectories tend to geodesics.

terms, by replacing the Laplace operator (determinant
of the trace of the Hessian) with the Monge-Ampère
operator (determinant of the Hessian), as derived in
equations (3) to (6).

In this section, we detail an alternative derivation,
leading to the the very same equation, but this time
motivated by a physical principle. We shall use later
this alternative physically-motivated path of reasoning
to invent an e�cient numerical simulation algorithm.

Following [10], we shall derive Monge-Ampère grav-
ity from a microscopic model, that shares some simi-
larities with the relation between optimal transport and
Schrödinger bridges [28]. For the sake of completeness,
we mention that there also exists an elegant “pilot-wave-
like derivation [26].

The idea resembles the least action principle: assume
that a motion from a fixed initial condition to a fixed
final configuration minimizes (or extremizes) some crite-
rion, deduce the law of motion in-between as a di↵erential
relation, then extrapolate it.

So we consider the time evolution of a density field
⇢(r, t), that accounts for a (huge) number of M indistin-
guishable particles. The only assumption regarding the
particles is that they move randomly and do not inter-
act. With this only assumption, everything will spread
out and converge to a uniform distribution of particles
(see the left panel of Figure 1).

Now we suppose that the density field ⇢(r, t) was ob-
served at time t = 0 and at a time t = T . Then we seek
for the “most probable motion from the initial condition
at time t = 0 (red particles in Figure 1-center panel) that
accounts for the observations at time t = T (blue parti-
cles in Figure 1-center panel). As can be seen, this may
be thought of as a statistical version of the least action
principle, where we seek for the most probable motion
(instead of extremizing an action).

The initial condition at time t = 0 is represented
by a permutation �0 of M particles, that accounts
for the particle’s indistiguishability :

�
X0

1 , . . . , X0
M

 
=

�
q�0(1), . . . ,q�0(M)

 
. We suppose that each particle’s

trajectory is given by Xi(t) = X0
i + ✏Bi(t) where the

Bi(t)’s are M independent realizations of a Brownian
motion and where ✏ denotes the amount of noise.

Given a set of points (Yi)
M
i=1, the probability of the

(very unlikely, hence large deviation) event that at time
T , each position Yi is occupied by one of the particles
Xi(t) writes:

Prob

✓
X ✏

i (T ) ⇡
perm

Y

◆
⇡ (2⇡✏T )�

3M
2

M !

P
�2SM

exp

"
�P

i
|Y�(i)�X0

i |2

2✏T

#

(21)
where the sum is over all permutations SM of [1 . . . M ]
to account for particle’s indistinguishability.

Similarly to what happens in path integrals, among the
permutations, the one that minimizes

P
i

|Y�(i)�X0
i |2 has

a tremendous influence. As the noise ✏ tends to zero, the
log of this quantity (a “smoothed infimum) becomes the
true infimum (Laplace lemma or Boltzmann distribution
in statistical physics):

�lim
✏!0

✏ log Prob


X ✏

i (T ) ⇡
perm

Y

�
⇡ inf

�2SN

"P
i

|Y�(i)�X0
i |2

2T

#

(22)
This corresponds to a discrete version of the optimal
transport (7) (the permutation � is the discrete version
of the mass-preserving transport T ).

Moreover, when ✏ tends to zero, all the trajectories be-
come geodesics (rectilinear uniform), see Figure 1-right:

Xi(t) = X0
i + t

T (Y(�|Y )(i))�X0
i )

where: (�|Y ) = Arg inf
�2SN

hP
i |Y�(i)�X0

i |2
2T

i (23)

Then, one can derive a law of motion in the form of an
ordinary di↵erential equation by using a simple property:
along a uniform rectilinear trajectory (Eq. 23), X0 is the

We define a brownian cloud to be a finite set of N indistinguishable points in the
euclidean space, i.e. as a point in the quotient space (Rd )N/SN , initially located on
the cubic lattice {A(α) ∈ Rd , α = 1, · · ·,N} and subject to N independent Brownian

motions in Rd , with uniform noise ν.
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BROWNIAN CLOUDS
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DIFFUSION EQUATION AND BROWNIAN CLOUDS

In PDE terms, we just consider the diffusion equation in RNd :

∂ρ

∂t
(t ,X ) =

ν

2
△ ρ(t ,X ), ρ(t = 0,X ) =

1
N!

∑

σ∈SN

N∏

α=1

δ(X (α)− A(σ(α)))

where the initial data take the relabeling symmetry into account so that
ρ(t ,X ) is just the probability density of finding the brownian cloud at

position X (up to a permutation of the labels) at time t

ρ(t ,X ) =
1

N!
(2πνt)−Nd/2

∑

σ∈SN

N∏

α=1

exp(−|X (α)− A(σ(α)|2
2νt

)
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L’ONDE PILOTE aka osmotic velocity or score (AI)

After solving the diffusion equation in the space of "clouds" X ∈ RNd

∂ρ

∂t
(t ,X ) =

ν

2
△ ρ(t ,X ), ρ(t = 0,X ) =

1
N!

∑

σ∈SN

δ(X − Aσ)

we may solve the companion ODE in the same space RNd

dXt

dt
= v(t ,Xt), v(t ,X ) = −ν

2
∇(log ρ)(t ,X ), Xt0 = Y0 given in RNd

This is an adaptation of de Broglie’s "onde pilote" idea. As a matter of fact, a similar
calculation also works for the free Schrödinger equation.
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"ONDE PILOTE" AND ZERO NOISE LIMIT

Setting t = exp(2τ), we more explicitly get
(with abuse of notation Xt → Xτ ):

dXτ

dτ
= −∇XΦν,θ(Xτ ) , Φν,τ (X ) = ν exp(2τ) log

∑

σ∈SN

exp(
−||X − Aσ||2
2ν exp(2τ)

)

Surprisingly enough, we may easily pass to the limit ν → 0
in the class of maximal monotone operators (cf. Brezis’ book)

d+Xτ

dτ
= −∇XΦ(Xτ ), Φ(X ) = lim

ν→0
Φν,τ (X ) = − inf

σ∈SN
||X − Aσ||2/2

Indeed, Φν,τ (X ) reads − ||X ||2+||A||2
2 + a convex function of X .

N.B. Through ∇XΦ, this equation includes sticky collisions in 1D.
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Surprisingly enough, we may easily pass to the limit ν → 0
in the class of maximal monotone operators (cf. Brezis’ book)

d+Xτ

dτ
= −∇XΦ(Xτ ), Φ(X ) = lim

ν→0
Φν,τ (X ) = − inf

σ∈SN
||X − Aσ||2/2

Indeed, Φν,τ (X ) reads − ||X ||2+||A||2
2 + a convex function of X .

N.B. Through ∇XΦ, this equation includes sticky collisions in 1D.
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In 1D this just reduces to "dust" with sticky collisions

horizontal : 51 grid points in x /vertical : 60 grid points in t
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LARGE DEVIATIONS OF THE "ONDE PILOTE"

dXτ

dτ
= −∇XΦν,τ (Xτ ) +

√
η

dBτ

dτ
Φν,τ (X ) = νe2τ log

∑
σ∈SN

exp(−||X−Aσ||2

2νe2τ ),

we easily get a large deviation Freidlin-Wentzell action for the limit
η → 0, WHILE ν > 0 IS KEPT FIXED:

Prob(Xτ0 = Y0, Xτ1 = Y1) ∼ exp

(
− A

2η

)

A = inf
X

∫ τ1

τ0

||dXτ

dτ
+∇XΦν,τ (Xτ )||2dτ, Xτ0 = Y0, Xτ1 = Y1
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ZERO-NOISE LIMIT OF THE ACTION FUNCTIONAL

THEOREM (L. Ambrosio, A. Baradat, Y.B. Analysis and PDE 2023)

∫ τ1

τ0

||dXτ

dτ
+∇XΦ(Xτ )||2dτ, Φ(X ) = − inf

σ∈SN
||X − Aσ||2/2

(which -at least in 1D- handles sticky collisions thanks to ∇XΦ)
is the "Γ−limit", as ν → 0, of the Freidlin-Wentzell Action functional∫ τ1

τ0

||dXτ

dτ
+∇XΦν,τ (Xτ )||2dτ, Φν,τ (X ) = νe2τ log

∑
σ∈SN

exp(
−||X − Aσ||2

2νe2τ )
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RECOVERY OF MONGE-AMPERE GRAVITATION!
Using the least action principle, we obtain

d2Xτ (α)

dτ 2 = Xτ (α)− A(σopt(α)) , Xτ (α) ∈ Rd , α = 1, · · ·,N

σopt = Arginf σ∈SN

N∑
α=1

|Xτ (α)− A(σ(α))|2

Finally, using Optimal Transport tools, we find that, as N → ∞

fN(τ, x , ξ) =
1
N

N∑

α=1

δ(x − Xτ (α))δ

(
ξ − dXτ (α)

dτ

)

asymptotically solves the Monge-Ampère gravitational model

∂τ f +∇x · (ξ f ) +∇ξ · (∇φ f ) = 0, det(Id + D2φ) = ρ =

∫
f dξ

THANKS!

YB (CNRS, LMO Orsay) Monge-Ampère gravitation WPI Wien 30/07/25 14 / 14



RECOVERY OF MONGE-AMPERE GRAVITATION!
Using the least action principle, we obtain

d2Xτ (α)

dτ 2 = Xτ (α)− A(σopt(α)) , Xτ (α) ∈ Rd , α = 1, · · ·,N

σopt = Arginf σ∈SN

N∑
α=1

|Xτ (α)− A(σ(α))|2

Finally, using Optimal Transport tools, we find that, as N → ∞

fN(τ, x , ξ) =
1
N

N∑

α=1

δ(x − Xτ (α))δ

(
ξ − dXτ (α)

dτ

)

asymptotically solves the Monge-Ampère gravitational model

∂τ f +∇x · (ξ f ) +∇ξ · (∇φ f ) = 0, det(Id + D2φ) = ρ =

∫
f dξ

THANKS!

YB (CNRS, LMO Orsay) Monge-Ampère gravitation WPI Wien 30/07/25 14 / 14



RECOVERY OF MONGE-AMPERE GRAVITATION!
Using the least action principle, we obtain

d2Xτ (α)

dτ 2 = Xτ (α)− A(σopt(α)) , Xτ (α) ∈ Rd , α = 1, · · ·,N

σopt = Arginf σ∈SN

N∑
α=1

|Xτ (α)− A(σ(α))|2

Finally, using Optimal Transport tools, we find that, as N → ∞

fN(τ, x , ξ) =
1
N

N∑

α=1

δ(x − Xτ (α))δ

(
ξ − dXτ (α)

dτ

)

asymptotically solves the Monge-Ampère gravitational model

∂τ f +∇x · (ξ f ) +∇ξ · (∇φ f ) = 0, det(Id + D2φ) = ρ =

∫
f dξ

THANKS!

YB (CNRS, LMO Orsay) Monge-Ampère gravitation WPI Wien 30/07/25 14 / 14



THE SEMI-NEWTONIAN GRAVITATIONAL MODEL
OF THE EARLY UNIVERSE (Zeldovich, Peebles...)

The trajectory t ∈ R+ → Xt(a) ∈ R3 of each "particle" labelled by
a ∈ R3 (mod Z3 for simplicity) is driven by

2t
3

d2Xt

dt2 +
dXt

dt
+ (∇φ)(t ,Xt) = 0, 1 + t △ φ = ρ =

∫

T3
δ(x − Xt(a))da

where ρ(t , x) and φ(t , x), x ∈ T3, respectively denote the density field
(supposed to be of unit average) and the gravitational potential.

General relativity is taken into account only through the terms in red
which include Big Bang effects, everything else is Newtonian.

cf. Uriel Frisch and coll. Nature 417 (2002), with a renewed interest after the
launching of the James Webb Space Telescope 25/12/2021.
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VLASOV-POISSON FORMULATION

The Peebles equations

2t
3

d2Xt

dt2 +
dXt

dt
+ (∇φ)(t ,Xt) = 0, 1 + t △ φ = ρ =

∫

T3
δ(x − Xt(a))da

can be translated as the singular (at t = 0), non-autonomous,
Vlasov-Poisson system

∂t f +∇x · (ξf ) +∇ξ · (
3
2t

(ξ+∇φ)f ) = 0, 1 + t △ φ =

∫

R3
f (t , x , ξ)dξ

just by setting

f (t , x , ξ) =
∫
T3

δ (x − Xt(a)) δ
(
ξ − dXt

dt
(a)

)
da, (t , x , ξ) ∈ R+ × R3 × R3.
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ZELDOVICH APPROXIMATION

A very simple approximate solution EXACT in 1D was proposed by
Zeldovich in the 1970s for the semi-newtonian model

2t
3

d2Xt

dt2 +
dXt

dt
+ (∇φ)(t ,Xt) = 0, ρ =

∫
δ(x − Xt(a))da = 1 + t △ φ

→: Xt(a) = a − t∇φ0(a), △φ0(x) = lim
t→0

ρ(t , x)− 1
t

Each particle just travels with a constant velocity due to the initial
density fluctuation, until a collision ocurs, which is somewhat
reminiscent of Lucretius’ (99-55 BC) "DE RERUM NATURA".
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DE RERUM NATURA LIBER SECUNDUS 216 − 224

LUCRETIUS (99 − 55BC)

Quod nisi declinare solerent (corpora), omnia deorsum imbris uti
guttae caderent per inane profundum ...Ita nihil umquam natura
creasset.
But if (corpora) were not in the habit of deviating, they would all fall
straight down through the depths of the void, like drops of rain... In that
case, nature would never have produced anything.
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MONGE-AMPERE GRAVITATION (MAG)
In Confl. Math 2011, I proposed a correction to Peebles’ model:

ρ(t , x) = det(I + tD2φ(t , x)) instead of ρ(t , x) = 1 + t △ φ(t , x)

2t
3

d2Xt

dt2 +
dXt

dt
+ (∇φ)(t ,Xt) = 0, ρ =

∫
δ(x − Xt(a))da

i) exact in 1d, asymptotically correct at early times and for weak fields;
ii) much less singular as ρ concentrates (φ staying Lipschitz in x);
iii) might be as good as the Poisson equation as an approximation to
the Einstein equations (conjecture), based on the "vague" analogy

Einstein equation
Ricci curvature

∼ Monge−Ampere equation
Gauss curvature

iv) has a computational complexity similar to Poisson thanks to the
Monge-Ampère solver by Quentin Mérigot (2D) and Bruno Lévy (3D).
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