Transport hysteresis in electromagnetic microturbulence caused by mesoscale zonal flow pattern-induced mitigation of high β turbulence runaways

Florian Rath

University of Bayreuth

Motivation

Results

Discussion and Outlook

Motivation

Results

Discussion and Outlook

... by mesoscale zonal flow pattern induced ...

Grown evidence of mesoscale zonal flow pattern formation in ...

electrostatic ITG turbulence with adiabatic electrons.
 [G. Dif-Pradalier, et al., Phys. Rev. E 82, 025401(R) (2010); F. Rath, et al., Phys. Plasmas 23, 052309 (2016); A. G. Peeters, et al., Phys. Plasmas 23 082517 (2016)]

electrostatic ITG turbulence with kinetic electrons.
 [F. Rath, et al., Phys. Plasmas 28, 072305 (2021)]

electrostatic ETG turbulence with adiabatic ions.

[G. J. Colyer, et al., Plasma Phys. Controlled Fusion 59, 055002 (2017)]

tokamak experiments.

[J.C. Hillesheim, et al., Phys. Rev. Lett. 116, 065002 (2016); G. Hornung, et al., Nucl. Fusion 57, 014006 (2017)]

... by mesoscale zonal flow pattern induced ...

Properties:

- mesoscale $ho < L_{
 m ZF} < R_{
 m ref}$
- \blacktriangleright long-term dynamics $10^2 R_{\rm ref}/v_{\rm th} < t_{\rm ZF} < 10^3 R_{\rm ref}/v_{\rm th}$
- temporal persistence
- near marginal stability phenomenon
- typical $E \times B$ shearing rate $\omega_{\rm ExB} \sim \gamma$

Example —adiabatic ITG

Gyrokinetic set-up:

• Cyclone Base Case + s- α -geometry + adiabatic electrons

A. G. Peeters, et al., Phys. Plasmas 23 082517 (2016)

Example —kinetic ITG

Gyrokinetic set-up:

- ► Cyclone Base Case
- circular geometry
- kinetic electrons

F. Rath, et al., Phys. Plasmas 28, 072305 (2021)

... in electromagnetic microturbulence caused ...

Additional phenomena in electromagnetic ITG microturbulence:

- Magnetic stochasticity induced by nonlinear excitation of subdominant microtearing modes
 [W. M. Nevins, et al., Phys. Rev. Lett. 106, 065003 (2011); D. R. Hatch, et al., PRL 108, 235002 (2012)]
- Damping of zonal flows through magnetic stochasticity [P. W. Terry, et al., Phys. Plasmas 20, 112502 (2013)]
- High β turbulence runaways or non-zonal transition
 [R. E. Waltz, et al., Phys. Plasmas 17, 072501 (2010); M. J. Pueschel, et al., PRL 110, 155005 (2013)]

Electromagnetic stabilization

[G. G. Whelan, et al., PRL 120, 175002 (2018)]

... mitigation of high β turbulence runaways.

Gyrokinetic set-up:

► Cyclone Base Case + *s*- α -geometry + $A_{1\parallel}$ perturbations

 $\blacktriangleright~~eta_{
m KBM}pprox$ 1.2 %~ [M. J. Pueschel, *et al.*, Phys. Plasmas 15, 102310 (2008)]

... mitigation of high β turbulence runaways.

Gyrokinetic set-up:

► Cyclone Base Case + *s*- α -geometry + $A_{1\parallel}$ perturbations

 $\blacktriangleright~~eta_{
m KBM}pprox$ 1.2 %~ [M. J. Pueschel, *et al.*, Phys. Plasmas 15, 102310 (2008)]

... mitigation of high β turbulence runaways.

Current understanding of high β turbulence runaway:

1. Nonlinear saturation of electromagnetic ITG turbulence is caused by zonal flows.

[G. G. Whelan, et al., PRL 120, 175002 (2018)]

2. Zonal flows are damped through magnetic stochasticity. [P. W. Terry, *et al.*, Phys. Plasmas **20**, 112502 (2013)]

Sufficiently strong depletion of zonal flows through magnetic stochasticiy (supported by field line decorrelation).

→ Lack of zonal flow mediated turbulence saturation. [M. J. Pueschel, *et al.*, PRL **110**, 155005 (2013); M. J. Pueschel, *et al.*, Phys. Plasmas **20**, 102301 (2013)] Motivation

Results

Discussion and Outlook

Does mesoscale zonal flow pattern formation occur also in electromagnetic ITG turbulence?

High β reference case

Long-term evolution of mesoscale zonal flows

Long-term evolution of mesoscale zonal flows

Box size convergence study at $\beta = 0.8$ %

- ► S_1 : 1/2 std. box size
- ► *G*₁: std. box size
- ► L_1 : 3/2 std. box size

Box size convergence study at $\beta = 0.8$ %

What is the role of mesoscale zonal flow patterns for high β turbulence runaways?

transit time $\sim 10^{-5}~s \qquad \leftrightarrow \qquad$ confinement time $\sim 10^0~s$

Transport hysteresis

Is it the mesoscale zonal flow that allows for mitigation of turbulence runaways?

How resilient is the zonal flow pattern against turbulence runaways?

Stability constraints for $\beta > \beta_c$

Zonal flow stability study:

- $\blacktriangleright\,$ Restart late stationary state of cases with $\beta>\beta_{\rm c}$
- ▶ Scale the mesoscale zonal flow amplitude by $0 \le \alpha \le 1$
- Does runaway occur?

Stability constraints for $\beta > \beta_c$

Zonal flow stability study:

- ▶ Restart late stationary state of cases with $\beta > \beta_c$
- $\blacktriangleright\,$ Scale the mesoscale zonal flow amplitude by 0 $\leq \alpha \leq 1$
- Does runaway occur?

Stability constraints for $\beta > \beta_c$

What is the reason for the mitigation of turbulence runaways?

Evolution equation for zonal flow intensity $\mathcal{E}_Z = k_{ZF}^2 |\langle \hat{\phi}_{\mathbf{k}} \rangle|^2$:

- ▶ electrostatic "Reynolds stress" \mathcal{R}
- ▶ electromagnetic "Maxwell stress" M

Evolution equation for zonal flow intensity $\mathcal{E}_Z = k_{ZF}^2 |\langle \hat{\phi}_{\mathbf{k}} \rangle|^2$:

- ▶ electrostatic "Reynolds stress" \mathcal{R}
- electromagnetic "Maxwell stress" $\mathcal{M} \leftarrow \mathsf{zonal} \ \mathsf{flow} \ \mathsf{damping!}$

Mesoscale ($n_{\rm ZF} = 1$) zonal flow intensity evolution:

Mesoscale ($n_{\rm ZF} = 1$) zonal flow intensity evolution:

	trans.	stat.
\mathcal{R}	0.149	0.223
\mathcal{M}	-0.148	-0.084
\mathcal{L}	0.032	-0.138
$ \mathcal{R}/\mathcal{M} $	1.007	

Mesoscale ($n_{\rm ZF} = 1$) zonal flow intensity evolution:

	trans.	stat.	
\mathcal{R}	0.149	0.223	
\mathcal{M}	-0.148	-0.084	\Rightarrow positive feedback effect
\mathcal{L}	0.032	-0.138	
$ \mathcal{R}/\mathcal{M} $	1.007	1.616	

positive feedback effect:

 \Rightarrow nonlinear sustain of mesoscale zonal flows beyond $\beta_{\rm c}$

- Mesoscale zonal flow patterns do develop in electromagnetic near marginal ITG driven turbulence.
- ▶ Zonal flow patterns allow for the access of an improved regime with $\beta > \beta_{\rm c}$.
- Positive feedback effect allows for the nonlinear sustain of mesoscale zonal flows in the improved β-regime.

Motivation

Results

Discussion and Outlook

What is the reason for the positive feedback effect?

What mechanism causes a change in the relative importance of ${\mathcal R}$ and ${\mathcal M}?$

Spectral decomposition of ${\mathcal R}$ and ${\mathcal M}$

Observation:

- ▶ R(k_y) and M(k_y) peak at different k_y
- ► |*M*(*k_y*)|/|*R*(*k_y*)| increases with decreasing *k_y*

A shift of the turbulence spectrum to \ldots

- \blacktriangleright ... smaller k_y
 - \Rightarrow net zonal flow damping
- \blacktriangleright ... larger k_y
 - \Rightarrow net zonal flow drive

Turbulence k_y -centroid

Realizations around β_c :

Observation:

▶ runaway $\rightarrow \langle k_y \rangle$ decreases

• mesoscale zonal flow pattern development $\rightarrow \langle k_v \rangle$ increases

Turbulence k_y -centroid

Zonal flow stability study at $\beta = 1.1$ %:

Observation:

- reduction of mesoscale zonal flow \rightarrow reduction of $\langle k_y \rangle$
- recovering of mesoscale zonal flow \rightarrow increase of $\langle k_y \rangle$

Reason for positive feedback effect

Hypothesis:

Mesoscale zonal flow patterns control the turbulence spectral centroid (k_y) and thereby the net nonlinear zonal flow drive in electromagnetic ITG turbulence (with CBC parameters) in a favorable way.

Open questions:

Why do \mathcal{R} and \mathcal{M} peak at different k_{y} and is this universal?

 \rightarrow Nonlinear excitation of subdominant microtearing modes might be more efficient at small ky (MTM growth rate spectrum often peaks at smaller k_y compared to ITG).

What is the mechanism behind the $\langle k_y \rangle$ evolution?

 \rightarrow Inverse energy cascade might become important at small zonal flow level (and comparably large turbulence level).

 \rightarrow Zonal flows transfer energy to high k_x at fixed k_y ; Isotropization through isotropic $E \times B$ -nonlinearity might cause transfer to high k_y .

 \to Simply a consequence of saturation rule $\propto \gamma/k_{\perp}^2$ with varying level of zonal flow.

Is the change in the turbulence spectral properties the dominant mechanism behind the positive feedback process?

Supplemental material

Results — Mesoscale zonal flow properties

Waltz rule:

 $\omega_{\rm ExB} \sim \gamma$

Convergence study -zonal flow evolution

Convergence study —improved β -regime

Convergence study —saturated and critical zonal flow level

 G_1 -x: double x-resolution

 G_1 -s: double s-resolution

Field line tracing —equations

Field line equations:

$$\frac{\partial y}{\partial s} = \frac{(\nabla y \times \nabla x) \cdot \mathbf{b}}{\nabla s \cdot \mathbf{B}} \frac{\partial A_{\parallel}}{\partial y}$$
(1)
$$\frac{\partial x}{\partial s} = -\frac{(\nabla y \times \nabla x) \cdot \mathbf{b}}{\nabla s \cdot \mathbf{B}} \frac{\partial A_{\parallel}}{\partial x}$$
(2)

Procedure:

- generate $A_{\parallel}(x, y, s)$ data through gyrokinetic simulations
- seed $N_{\rm fl}$ field lines equidistantly in x at LFS midplane
- trace 3D field line trajectories by integrating Eqs. (1) and (2) with respect to s
- ▶ full-turn displacement δx : radial displacement of a field line after one poloidal turn $s = -0.5 \rightarrow +0.5$
- half-turn displacement δx_{1/2} (δx_{2/2}): radial displacement of a field line after the poloidal half-turn s = 0 → +0.5 (s = -0.5 → 0)

Field line tracing —temporal behavior

Reference case $\beta = 0.8$ %:

$$\sim \delta B_x$$

Field line tracing —radial displacement scaling

Zonal flow transfer study — β dependence

Mesoscale zonal flow —exact circular geometry

Transport hysteresis —exact circular geometry

