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Curvature-driven instabilities

• Instabilities whose feedback loop depends on B nonuniformity.

• =⇒ they do not exist in simple slab models.

• The quintessential example is the (toroidal) ion-temperature-gradient
(ITG) mode.

• One can show that ITG is
• unstable if LBLTi

> 0 (bad curvature),

• a stable wave if LBLTi
< 0 (good curvature).

L−1
B ≡ −∂ ln |B| /∂x, L−1

Ts
≡ −∂ lnTs/∂x. (1)

Questions:

• Are all curvature-driven instabilities unstable only in bad curvature?

• If not, what distinguishes a good-curvature instability form a
bad-curvature one?
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Linear gyrokinetics

∂

∂t

(
hs −

qs⟨χ⟩Rs

T0s
f0s

)
+
(
v∥b̂0 + Vds

)
· ∇hs +⟨Vχ⟩Rs

· ∇f0s = 0, (2)

χ = ϕ− v · δA
c

. (3)

Linear drive (advection of equilibrium):

⟨Vχ⟩Rs
· ∇f0s = − c

B0

(
b̂0 ×

∂⟨χ⟩Rs

∂Rs

)
· ∇x

[
1

Lns

+
1

LTs

(
v2

v2ths
− 3

2

)]
f0s.

(4)

where the gradients are

Lns ≡ −∂ lnn0s/∂x, LTs ≡ −∂ lnTs/∂x. (5)

Magnetic drifts:

Vds =
b̂0
Ωs

×
(
v2∥b̂0 · ∇b̂0 +

1

2
v2⊥∇ logB0

)
. (6)

In what follows x, y, and z are the radial, poloidal, and parallel
coordinate, respectively.
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Linear gyrokinetics

∂

∂t

(
hs −

qs⟨χ⟩Rs

T0s
f0s

)
+
(
v∥b̂0 + Vds

)
· ∇hs +⟨Vχ⟩Rs

· ∇f0s = 0, (7)

Field equations:∑
s

q2sn0s

T0s
ϕ =

∑
s

qs

∫
d3v ⟨hs⟩r , (8)

∇2
⊥δA∥ = −4π

c

∑
s

qs

∫
d3v v∥⟨hs⟩r , (9)

∇2
⊥δB∥ = − 4π

B0
∇⊥∇⊥ :

∑
s

ms

∫
d3v ⟨v⊥v⊥hs⟩r . (10)
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Minimal model for curvature-driven instabilities

∂

∂t

(
hs −

qs⟨χ⟩Rs

T0s
f0s

)
+
(
v∥b̂0 + Vds

)
· ∇hs +⟨Vχ⟩Rs

· ∇f0s = 0. (11)

• In general, Vds = Vds(z). Instead, assume Vds is constant
along z. Sometimes called the ‘local kinetic approximation’ (Terry
et al., 1982; Romanelli, 1989; Zocco et al., 2018); this is essentially a
Z-pinch geometry.

• Assume zero magnetic shear.

Much of what follows is equally valid in proper toroidal geometry.

However, the above assumptions will allow us to get some nice analytical
results for the instabilities.
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GK conservation laws

• GK conserves (nonlinearly) the free energy

W =
∑
s

∫
d3r

∫
d3v

T0sδf
2
s

2f0s
+

∫
d3r

|δB|2

8π
, (12)

whose time evolution is

dW

dt
=
∑
s

(
1

Lns

− 3

2

1

LTs

)
T0sΓs +

∑
s

1

LTs

Qs, (13)

where Γs and Qs are the particle and heat (energy) fluxes, respectively.

• W > 0 =⇒ the right-hand side of (13) must be positive for an
instability.

• This says nothing about the magnetic-field curvature. . .
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GK conservation laws

• One can construct other nonlinear invariants using

Is(v) =

∫
d3Rs

T0s

2f0s

(
hs −

qs⟨χ⟩Rs

T0s
f0s

)2

. (14)

that satisfies

dIs
dt

=

∫
d3Rs

[
qs⟨χ⟩Rs

v∥b̂0 · ∇hs + qs⟨χ⟩Rs
Vds · ∇hs − hsVχ · ∇ ln f0s

]
.

(15)

• Sometimes called ‘general two-dimensional invariants’ (Schekochihin
et al., 2009; Plunk et al., 2010).

• In general, not very revealing. . . However, consider

Y ≡
∑
s

∫
d3v Is −W. (16)

There are (at least) two reasons why Y is interesting. . .
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GK conservation laws

• Y depends only on the EM fields, not the distribution functions:

Y =−
∑
k,s

q2sn0s

2T0s

(
1− Γ0s +

Γ1s

2

)
|ϕk|2 + V

∑
k

(
k2
⊥
8π

+
∑
s

Γ0s

8πd2s

)∣∣δA∥k
∣∣2

+ V
∑
k

[(∣∣δB∥k
∣∣2

8π
+
∑
s

n0sT0sΓ1s

∣∣∣∣δB∥k

B0
+

qsϕk

2T0s

∣∣∣∣2
)]

, (17)

where

Γ0s = I0(αs)e
−αs , Γ1s = [I0(αs)− I1(αs)] e

−αs . (18)

• The evolution equation for Y does not have the usual ‘injection’ terms:

dY

dt
=
∑
s

∫
d3Rs

∫
d3v qs⟨χ⟩Rs

v∥b̂0 · ∇hs

− 1

R

∑
s

2Q∥s −
1

LB

∑
s

Q⊥s, (19)

where Q∥s and Q⊥s are the radial fluxes of v∥ and v⊥ energy.
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Probably the most important slide

• Consider unstable modes that satisfy two assumptions:
• The W drive is dominated by the heat flux rather than the particle flux.

• Sufficiently low k∥ so that they are essentially (or truly) 2D.

• These modes satisfy both
dW

dt
=
∑
s

1

LTs

Qs, (20)

dY

dt
= − 1

R

∑
s

2Q∥s −
1

LB

∑
s

Q⊥s, (21)

Y =−
∑
k,s

q2sn0s

2T0s

(
1− Γ0s +

Γ1s

2

)
|ϕk|2 + V

∑
k

(
k2
⊥
8π

+
∑
s

Γ0s

8πd2s

)∣∣δA∥k
∣∣2

+ V
∑
k

[(∣∣δB∥k
∣∣2

8π
+
∑
s

n0sT0sΓ1s

∣∣∣∣δB∥k

B0
+

qsϕk

2T0s

∣∣∣∣2
)]

. (22)

• Expect electrostatic modes to be unstable when LBLTs > 0, i.e., bad
curvature.

• If anything is unstable in good curvature, then it is likely
electromagnetic!
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∣∣2

8π
+
∑
s

n0sT0sΓ1s

∣∣∣∣δB∥k

B0
+

qsϕk

2T0s

∣∣∣∣2
)]

. (22)

• Expect electrostatic modes to be unstable when LBLTs > 0, i.e., bad
curvature.

• If anything is unstable in good curvature, then it is likely
electromagnetic!
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Probably the most important slide

• Consider unstable modes that satisfy two assumptions:
• The W drive is dominated by the heat flux rather than the particle flux.

• Sufficiently low k∥ so that they are essentially (or truly) 2D.

• These modes satisfy both
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dt
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∑
s

1

LTs

Qs, (20)
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R

∑
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2Q∥s −
1

LB
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s
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Low-beta electromagnetic fluctuations at the de scale

Consider fluctuations with
me

mi
≪ βe ∼ k2

⊥ρ
2
e ≪ k2

⊥d
2
e ∼ 1 ≪ k2

⊥ρ
2
i (23)

and
ω ∼ k∥vthe ∼ ω∗e ∼ ωTe ∼ ωde, (24)

where
ω∗e =

ρevtheky
2Lne

, ωTe =
ρevtheky
2LTe

, ωde =
ρevtheky
2LB

. (25)
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Low-beta electromagnetic fluctuations at the de scale

• Defining

φ ≡ eϕ

T0e
, A ≡

δA∥

ρeB0
, (26)

GK reduces to electron drift kinetics (DK):

∂

∂t

[
he + φf0e −

2v∥
vthe

Af0e

]
+ v∥

∂he

∂z
+

ρevthe

2LB

(
2v2∥
v2the

+
v2⊥
v2the

)
∂he

∂y

+
ρevthe

2

[
1

Lne

+
1

LTe

(
v2

v2ths
− 3

2

)]
∂

∂y

(
φ−

2v∥
vthe

A
)
f0e = 0. (27)

• The field equations are

−(1 + τ−1)φ =
1

n0e

∫
d3v he, (28)

d2e∇2
⊥A =

1

n0e

∫
d3v

v∥
vthe

he =
u∥e

vthe
, (29)

where u∥e is the perturbed parallel flow, τ ≡ eT0i/qiT0e is the
temperature ratio, de = ρe/

√
βe is the electron skin depth.
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2D low-beta fluctuations

• The low-beta, linear electron DK equation has a known analytical
dispersion relation (Ivanov & Adkins, 2023).

• For now, consider only the 2D case. In this case, electrostatic and
electromagnetic fluctuations decouple!
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2D electrostatic fluctuations

• Even (in v∥) part of the DK equation

∂

∂t

[
h(even)
e + φf0e

]
+

ρevthe

2LB

(
2v2∥
v2the

+
v2⊥
v2the

)
∂h

(even)
e

∂y

+
ρevthe

2

[
1

Lne

+
1

LTe

(
v2

v2ths
− 3

2

)]
∂φ

∂y
f0e = 0, (30)

together with quasineutrality

−(1 + τ−1)φ =
1

n0e

∫
d3v h(even)

e . (31)

• Contains the usual slab ETG and curvature-driven ETG instabilities.

• Has a curvature-driven instability only if the curvature is bad.
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2D electromagnetic fluctuations

• The odd part is

∂

∂t

[
h(odd)
e −

2v∥
vthe

Af0e

]
+

ρevthe

2LB

(
2v2∥
v2the

+
v2⊥
v2the

)
∂h

(odd)
e

∂y

− ρevthe

2

[
1

Lne

+
1

LTe

(
v2

v2ths
− 3

2

)]
2v∥
vthe

∂A
∂y

f0e = 0, (32)

closed by Ampère’s law

d2e∇2
⊥A =

1

n0e

∫
d3v

v∥
vthe

h(odd)
e . (33)

• Contains only fluctuations that are odd in v∥ moments of he.

• E.g., has no density or temperature fluctuations.

• Contains a novel instability, the magnetic-drift mode, that is
unstable only if the curvature is good.
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Conservation laws

The conserved quantities are

W =

∫
d3r

∫
d3v

T0eh
2
e

2f0e
+ n0eT0e

∫
d3r

(
d2e |∇⊥A|2 − 1 + τ−1

2
φ2

)
,

(34)

Y = n0eT0e

∫
d3r

(
A2 + d2e |∇⊥A|2 − τ−1

2
φ2

)
, (35)

and they satisfy

dW

dt
=

Q∥e +Q⊥e

LTe

, (36)

dY

dt
= −

2Q∥e +Q⊥e

LB
, (37)

where

Q∥e = ρevtheT0e

∫
d3r

∫
d3v

v2∥
v2the

(
−1

2

∂φ

∂y
he +

∂A
∂y

v∥
vthe

he

)
, (38)

Q⊥e = ρevtheT0e

∫
d3r

∫
d3v

v2⊥
v2the

(
−1

2

∂φ

∂y
he +

∂A
∂y

v∥
vthe

he

)
. (39)
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The magnetic-drift mode

0 5 10
−LB/LTe

0

2

4k
2 ⊥
d

2 e
(a) Im ω/ωde

0 5 10
−LB/LTe

(b) Re ω/ωde

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
ω/ωde
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The magnetic-drift mode

• The MDM dispersion relation is

0 =− k2
⊥d

2
e +

ω − ω∗e

ωde

[
2 + 2

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]

− ωωTe

ω2
de

[
1 +

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]
. (40)

• Unstable only in good curvature at k2
⊥d

2
e ∼ −LB/LTe .

• A back-of-the-envelope estimate for its growth rate and frequency is

ω ∼
√

βe
vthe√

−LBLTe

. (41)

• Can have Re ω of either sign.

• Neither resonant nor fluid.

• Seems to be related to a magnetic drift wave propagating against the
magnetic drifts.

17 / 29



The magnetic-drift mode

• The MDM dispersion relation is

0 =− k2
⊥d

2
e +

ω − ω∗e

ωde

[
2 + 2

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]

− ωωTe

ω2
de

[
1 +

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]
. (40)

• Unstable only in good curvature at k2
⊥d

2
e ∼ −LB/LTe .

• A back-of-the-envelope estimate for its growth rate and frequency is

ω ∼
√

βe
vthe√

−LBLTe

. (41)

• Can have Re ω of either sign.

• Neither resonant nor fluid.

• Seems to be related to a magnetic drift wave propagating against the
magnetic drifts.

17 / 29



The magnetic-drift mode

• The MDM dispersion relation is

0 =− k2
⊥d

2
e +

ω − ω∗e

ωde

[
2 + 2

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]

− ωωTe

ω2
de

[
1 +

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]
. (40)

• Unstable only in good curvature at k2
⊥d

2
e ∼ −LB/LTe .

• A back-of-the-envelope estimate for its growth rate and frequency is

ω ∼
√

βe
vthe√

−LBLTe

. (41)

• Can have Re ω of either sign.

• Neither resonant nor fluid.

• Seems to be related to a magnetic drift wave propagating against the
magnetic drifts.

17 / 29



The magnetic-drift mode

• The MDM dispersion relation is

0 =− k2
⊥d

2
e +

ω − ω∗e

ωde

[
2 + 2

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]

− ωωTe

ω2
de

[
1 +

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]
. (40)

• Unstable only in good curvature at k2
⊥d

2
e ∼ −LB/LTe .

• A back-of-the-envelope estimate for its growth rate and frequency is

ω ∼
√

βe
vthe√

−LBLTe

. (41)

• Can have Re ω of either sign.

• Neither resonant nor fluid.

• Seems to be related to a magnetic drift wave propagating against the
magnetic drifts.

17 / 29



The magnetic-drift mode

• The MDM dispersion relation is

0 =− k2
⊥d

2
e +

ω − ω∗e

ωde

[
2 + 2

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]

− ωωTe

ω2
de

[
1 +

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]
. (40)

• Unstable only in good curvature at k2
⊥d

2
e ∼ −LB/LTe .

• A back-of-the-envelope estimate for its growth rate and frequency is

ω ∼
√

βe
vthe√

−LBLTe

. (41)

• Can have Re ω of either sign.

• Neither resonant nor fluid.

• Seems to be related to a magnetic drift wave propagating against the
magnetic drifts.

17 / 29



The magnetic-drift mode

• The MDM dispersion relation is

0 =− k2
⊥d

2
e +

ω − ω∗e

ωde

[
2 + 2

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]

− ωωTe

ω2
de

[
1 +

√
ω

2ωde
Z

(√
ω

2ωde

)
+

1

2
Z

(√
ω

2ωde

)2
]
. (40)

• Unstable only in good curvature at k2
⊥d

2
e ∼ −LB/LTe .

• A back-of-the-envelope estimate for its growth rate and frequency is

ω ∼
√

βe
vthe√

−LBLTe

. (41)

• Can have Re ω of either sign.

• Neither resonant nor fluid.

• Seems to be related to a magnetic drift wave propagating against the
magnetic drifts.

17 / 29



The magnetic drift wave

• If we set L−1
B = 0, the (odd) electron DK equation is stable.

∂

∂t

[
h(odd)
e −

2v∥
vthe

Af0e

]
− ρevthe

2

[
1

Lne

+
1

LTe

(
v2

v2ths
− 3

2

)]
2v∥
vthe

∂A
∂y

f0e = 0.

(42)

• The solution is the magnetic drift wave

ω =
ω∗e + ωTe

1 + k2
⊥d

2
e

. (43)

• If we add small ωde ≪ ωTe, we find a perturbed magnetic drift wave
and another wave with

ω ∼ ω2
de

ωTe
. (44)

• The MDM instability exists only if the wave also exists.

• This wave exists if and only if there are curvature drifts.

18 / 29



The magnetic drift wave

• If we set L−1
B = 0, the (odd) electron DK equation is stable.

∂

∂t

[
h(odd)
e −

2v∥
vthe

Af0e

]
− ρevthe

2

[
1

Lne

+
1

LTe

(
v2

v2ths
− 3

2

)]
2v∥
vthe

∂A
∂y

f0e = 0.

(42)

• The solution is the magnetic drift wave

ω =
ω∗e + ωTe

1 + k2
⊥d

2
e

. (43)

• If we add small ωde ≪ ωTe, we find a perturbed magnetic drift wave
and another wave with

ω ∼ ω2
de

ωTe
. (44)

• The MDM instability exists only if the wave also exists.

• This wave exists if and only if there are curvature drifts.

18 / 29



The magnetic drift wave

• If we set L−1
B = 0, the (odd) electron DK equation is stable.

∂

∂t

[
h(odd)
e −

2v∥
vthe

Af0e

]
− ρevthe

2

[
1

Lne

+
1

LTe

(
v2

v2ths
− 3

2

)]
2v∥
vthe

∂A
∂y

f0e = 0.

(42)

• The solution is the magnetic drift wave

ω =
ω∗e + ωTe

1 + k2
⊥d

2
e

. (43)

• If we add small ωde ≪ ωTe, we find a perturbed magnetic drift wave
and another wave with

ω ∼ ω2
de

ωTe
. (44)

• The MDM instability exists only if the wave also exists.

• This wave exists if and only if there are curvature drifts.

18 / 29



The magnetic drift wave

• If we set L−1
B = 0, the (odd) electron DK equation is stable.

∂

∂t

[
h(odd)
e −

2v∥
vthe

Af0e

]
− ρevthe

2

[
1

Lne

+
1

LTe

(
v2

v2ths
− 3

2

)]
2v∥
vthe

∂A
∂y

f0e = 0.

(42)

• The solution is the magnetic drift wave

ω =
ω∗e + ωTe

1 + k2
⊥d

2
e

. (43)

• If we add small ωde ≪ ωTe, we find a perturbed magnetic drift wave
and another wave with

ω ∼ ω2
de

ωTe
. (44)

• The MDM instability exists only if the wave also exists.

• This wave exists if and only if there are curvature drifts.

18 / 29



The magnetic drift wave

• If we set L−1
B = 0, the (odd) electron DK equation is stable.

∂

∂t

[
h(odd)
e −

2v∥
vthe

Af0e

]
− ρevthe

2

[
1

Lne

+
1

LTe

(
v2

v2ths
− 3

2

)]
2v∥
vthe

∂A
∂y

f0e = 0.

(42)

• The solution is the magnetic drift wave

ω =
ω∗e + ωTe

1 + k2
⊥d

2
e

. (43)

• If we add small ωde ≪ ωTe, we find a perturbed magnetic drift wave
and another wave with

ω ∼ ω2
de

ωTe
. (44)

• The MDM instability exists only if the wave also exists.

• This wave exists if and only if there are curvature drifts.

18 / 29



The magnetic drift wave

• If we set L−1
B = 0, the (odd) electron DK equation is stable.

∂

∂t

[
h(odd)
e −

2v∥
vthe

Af0e

]
− ρevthe

2

[
1

Lne

+
1

LTe

(
v2

v2ths
− 3

2

)]
2v∥
vthe

∂A
∂y

f0e = 0.

(42)

• The solution is the magnetic drift wave

ω =
ω∗e + ωTe

1 + k2
⊥d

2
e

. (43)

• If we add small ωde ≪ ωTe, we find a perturbed magnetic drift wave
and another wave with

ω ∼ ω2
de

ωTe
. (44)

• The MDM instability exists only if the wave also exists.

• This wave exists if and only if there are curvature drifts.
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The magnetic-drift mode in 3D

0 5 10
−LB/LTe

0

2

4k
2 ⊥
d

2 e
(a) Im ω/ωde

0 5 10
−LB/LTe

(b) Re ω/ωde

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
ω/ωde

Figure 1: MDM growth rate and curvature at k∥LB/
√
βe = 2.
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Why have we not seen this before?

• Maybe suppressed by geometry?

• Maybe subdominant?

• Maybe weird parameter regime?

• Maybe we have seen it — related to other known instabilities?
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Conclusions

• The conserved quantity

Y =−
∑
k,s

q2sn0s

2T0s

(
1− Γ0s +

Γ1s

2

)
|ϕk|2 + V

∑
k

(
k2
⊥
8π

+
∑
s

Γ0s

8πd2s

)∣∣δA∥k
∣∣2

+ V
∑
k

[(∣∣δB∥k
∣∣2

8π
+
∑
s

n0sT0sΓ1s

∣∣∣∣δB∥k

B0
+

qsϕk

2T0s

∣∣∣∣2
)]

(45)

seems important for understanding curvature-driven instabilities.

• Such instabilities can be driven both in good and bad curvature.

• Electrostatic instabilities can be shown to live in bad curvature.

• We have at least one example of a good-curvature electromagnetic
instability.
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Here be more slides. . .
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Fluxes

ΓE
s ≡

∫
d3r

∫
d3v (VE · ∇x) δfs =

∫
d3r

∫
d3v (VE · ∇x)⟨hs⟩r , (46)

Γ
∥
s ≡ n0s

∫
d3r u∥s

δBx

B0
, (47)

Γ∇B
s ≡

∫
d3r

∫
d3v ⟨δV∇Bhs⟩r · ∇x, (48)

QE
∥s ≡

∫
d3r

∫
d3v msv

2
∥ (VE · ∇x)⟨hs⟩r , (49)

QE
⊥s ≡

∫
d3r

∫
d3v

1

2
msv

2
⊥ (VE · ∇x)⟨hs⟩r , (50)

Q
∥
∥s ≡

∫
d3r

∫
d3v msv

2
∥
δBx

B0
v∥⟨hs⟩r , (51)

Q
∥
⊥s ≡

∫
d3r

∫
d3v

1

2
msv

2
⊥
δBx

B0
v∥⟨hs⟩r , (52)

Q∇B
∥s ≡

∫
d3r

∫
d3v msv

2
∥⟨δV∇Bhs⟩r · ∇x, (53)

Q∇B
⊥s ≡

∫
d3r

∫
d3v

1

2
msv

2
⊥⟨δV∇Bhs⟩r · ∇x, (54)

where

δV∇B =
1

Ωs
(b̂0 × v)

v · ∇⊥δB∥

B0
. (55)

24 / 29



Hermite-Laguerre fluid approach

• Instead of solving the Landau initial-value problem, we can directly
look for the normal modes of the system.

• One way is to consider a truncated expansion

gl,m =
1

n0e

∫
d3v (−1)l

Ll(v
2
⊥/v

2
the)Hm(v∥/vthe)√
2mm!

δfe. (56)

• Maybe we can capture the instability with just a handful of modes?
E.g.,

u∥e = vthe
g0,1√
2
, (57)

δq∥e = n0eT0evthe
√
3g0,3, (58)

δq⊥e = n0eT0evthe
g0,3√
2
. (59)
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Hermite-Laguerre fluid approach
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The dispersion relation

LϕϕLAA + 2L2
Aϕ = 0, (60)

where

Lϕϕ = −1− τ−1 −
[
ζ − ζ∗ + ζT

(
∂a + ∂b +

3

2

)]
Ia,b|a=b=1 , (61)

LAA = −k2
⊥d

2
e − 2

[
ζ − ζ∗ + ζT

(
∂a + ∂b +

3

2

)]
∂aIa,b|a=b=1 , (62)

LAϕ = −
[
ζ − ζ∗ + ζT

(
∂a + ∂b +

3

2

)]
Ja,b|a=b=1 , (63)

(64)

and also

Ia,b =
1√
π

∫ +∞

−∞
du

∫ +∞

0

dµ
e−au2−bµ

u− ζ + ζd(2u2 + µ)
, (65)

Ja,b =
1√
π

∫ +∞

−∞
du

∫ +∞

0

dµ
ue−au2−bµ

u− ζ + ζd(2u2 + µ)
. (66)

(67)
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The dispersion relation

Ia,b|a=b=1
= −

1

2ζd
Z+Z− (68)

∂aIa,b|a=b=1
= −

1

2ζd

[
2 +

1

ζd
(Z+ − Z−) + ζ+Z− + ζ−Z+ −

(
1

4ζ2
d

−
1

2
Z+Z−

)]
(69)

Ja,b|a=b=1
= −

1

2ζd

(
Z+ − Z− −

Z+Z−

2ζd

)
(70)

(
∂a + ∂b +

3

2

)
Ia,b|a=b=1

=
1

2ζd

[
ζ+Z− + ζ−Z+ +

(
ζ

ζd
+

1

4ζ2
d

− 1

)
Z+Z−

]
(71)

(
∂a + ∂b +

3

2

)
∂aIa,b|a=b=1

=
1

2ζd

[
1

2ζ2
d

+
ζ

ζd
−

1

2ζd
(Z+ − Z−) −

1

4ζ2
d
(ζ+Z− + ζ−Z+)

+
1

ζd

(
ζ
2
+Z+ − ζ

2
−Z−

)
+

ζ

2ζd
(ζ+Z+ + ζ−Z−) +

1

4ζ2
d

(
3

2
−

1

4ζ2
d

−
ζ

ζd
+ 2ζζd

)
Z+Z−

]
(72)(

∂a + ∂b +
3

2

)
Ja,b|a=b=1

=
1

2ζd

[
1

2ζd
−

1

2
(Z+ − Z−) −

1

2ζd
(ζ+Z− + ζ−Z+)

+ ζ
2
+Z+ − ζ

2
−Z− +

1

2ζd

(
1 −

1

4ζ2
d

−
ζ

ζd

)
Z+Z−

]
, (73)

where

ζ± ≡
√
1 + 8ζdζ ± 1

4ζd
(74)

and Z± = Z(ζ±). 28 / 29



Electrostatic 2D dispersion

0 =− 1− τ−1 +
ω − ω∗e

2ωde
Z

(√
ω

2ωde

)2

− ωTe

2ωde

[
2

√
ω

2ωde
Z

(√
ω

2ωde

)
+

(
ω

ωde
− 1

)
Z

(√
ω

2ωde

)2
]
, (75)
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