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Curvature-driven instabilities

® Instabilities whose feedback loop depends on B nonuniformity.

® — they do not exist in simple slab models.

The quintessential example is the (toroidal) ion-temperature-gradient
(ITG) mode.

One can show that ITG is

® unstable if LgL7, > 0 (bad curvature),

® a stable wave if LpL7, < 0 (good curvature).

Ly'=-0W|B|/0z, L;!=-0InT./0x. (1)

Questions:
® Are all curvature-driven instabilities unstable only in bad curvature?

® If not, what distinguishes a good-curvature instability form a
bad-curvature one?
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Linear gyrokinetics

9 (hs ~ 4(X)r,

ot TOS

B f03> + (vui)o + Vds) *Vhs +(V) g, - Vs =0, (2)

v-0A

c .

X=¢-

Linear drive (advection of equilibrium):

c (;  9X)g. 1 1 (v 3
(K, Voo =~ <b0 S ).vx [Lns s (7_5)} foe.

®3)

(4)
where the gradients are
L,, = —-0lnngs/0z, Ly, =—-0InT,/0x. (5)
Magnetic drifts:
Vs = % X (Uﬁéo - Vb + %viVlog Bo) . (6)

In what follows z, y, and z are the radial, poloidal, and parallel
coordinate, respectively.
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Linear gyrokinetics

d (hs ~ 4(X0r,

= - fOs)+(U\|80+‘/<is)'Vhs-l-(‘/)()RS'VfOs:Oa (7)
Os

ot

Field equations:

O LS 0
— Tos - - s S
47
VioA =—— qu/dgv vy (hs), 9)
47 1
V3B =——V.V.5: s/d“ hs)... 10
10By By VLVL ;m v (vivih), (10)
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Minimal model for curvature-driven instabilities

o he %(X)RS
ot \'"? Tos

foS) + (’U”BO + ‘/ds) - Vhs +<‘/X>Rs *Vfos =0. (11)
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Minimal model for curvature-driven instabilities

9 (hs = %m) + (v1bo + Vas)  Vhe + (W) g, - Vfor = 0. (11)
0s

® In general, Vs = Vgys(2). Instead, assume Vg, is constant
along z. Sometimes called the ‘local kinetic approximation’ (Terry
et al., 1982; Romanelli, 1989; Zocco et al., 2018); this is essentially a
Z-pinch geometry.

® Assume zero magnetic shear.
Much of what follows is equally valid in proper toroidal geometry.

However, the above assumptions will allow us to get some nice analytical
results for the instabilities.

5 /29



GK conservation laws

® GK conserves (nonlinearly) the free energy

2 2
W:Z/dgr /d?’v Lg}éfs +/d37' LgBl ,
Os ™

whose time evolution is

dw 1 31 1
w_y (T - m) T+ 3 7

s

(12)

(13)

where I's and @, are the particle and heat (energy) fluxes, respectively.
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GK conservation laws

® GK conserves (nonlinearly) the free energy

Tosf2 5. [0BJ?
= d3r [ QB0 22s ©er
w ZS:/ r/ v2f05 +/dr 8 (12)
whose time evolution is
dw 1 3 1 1
T Dl () LR D S

where I's and @, are the particle and heat (energy) fluxes, respectively.

® W >0 — the right-hand side of (13) must be positive for an
instability.
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GK conservation laws

® GK conserves (nonlinearly) the free energy

. 3 s Tos0f? / 3 |<SB|2
W = ES /dr/dv > os + [ d’r S (12)
whose time evolution is
dw 1 31 1
E = ES (Tng - §Tﬂ> TosIs + ES TTSQS, (13)

where I's and @, are the particle and heat (energy) fluxes, respectively.

® W >0 — the right-hand side of (13) must be positive for an
instability.

® This says nothing about the magnetic-field curvature. ..
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GK conservation laws

® One can construct other nonlinear invariants using

T ('U) _ /dSR TDS (h _ qs(X)Rs fO )2 (14)
S S 2f05 S TOS S .
that satisfies
dl, 5 )
== [ &R, [4:00 R, v1B0 - Vhe + 6. () g, Vas - Vo = ho W - VIn fo |

(15)
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2
o fon B ey

that satisfies

drls : .
i /ddRs [qs(x>R8 vbo + Vhs +qs(X) g, Vas - Vhs — hsV VlnfOS] .

(15)

® Sometimes called ‘general two-dimensional invariants’ (Schekochihin
et al., 2009; Plunk et al., 2010).
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GK conservation laws

® One can construct other nonlinear invariants using

2
Ii(v) = /d?’Rs QTfDO (hs - %ﬂ)s) ) (14)

that satisfies

drls -
T /d3Rs [qs()OR8 vybo - Vhs + qs(x)Rs Vis + Vhs — hs V4 - VlnfOS] .

(15)

® Sometimes called ‘general two-dimensional invariants’ (Schekochihin
et al., 2009; Plunk et al., 2010).

® In general, not very revealing. .. However, consider
YEZ/d3vIS—W. (16)
S

There are (at least) two reasons why Y is interesting. ..
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GK conservation laws

® Y depends only on the EM fields, not the distribution functions:

2 2
_ qsTos o Is 2 ﬂ Los 2
. T R DRSS ISR
|8k | B, goor |’
+ 14 ; (871' + ; nOSTOSF15 BO QTOS ) (17)
where
Tos = Io(as)ef%, I'is = [Io(as) -1 (as)] e s, (18)
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GK conservation laws

® Y depends only on the EM fields, not the distribution functions:

2
qsnos Is k3 Los
Y =- - 2TOOS <1 —Tos + . ) |¢k +VZ ( L 25: 87r0d§> |5Auk}2

[3By|” B, goor |’
+ V; < oy + ZnOSTOsFIS BO 2TOS ) (17)
where
Tos = Io(as)efo‘s, ' = [Io(as) B (as)] e %, (18)

® The evolution equation for Y does not have the usual ‘injection’ terms:

dY N
7 = Z/d3RS /d31; qS(X)RS 'UHbO - Vhs
R L TR gl (19)
R - IIs LB - Lsy

where Q| and Q.1 are the radial fluxes of v and v, energy.



Probably the most important slide

® Consider unstable modes that satisfy two assumptions:
® The W drive is dominated by the heat flux rather than the particle flux.

¢ Sufficiently low k| so that they are essentially (or truly) 2D.
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® The W drive is dominated by the heat flux rather than the particle flux.

¢ Sufficiently low k| so that they are essentially (or truly) 2D.
® These modes satisfy both

W 1
— = Z T 9o (20)

<= RZ%)HS—L ZQLN (21)

q,snOS r s FOS 2
Y="2 97, (1_F°S 1 )"f" I +VZ( Zsmg) |04 1
5B
(’ 8”’“' +ZnoSToSF15 )} (22)

Bk, gsdi
By 2T0s

9 /29



Probably the most important slide

® Consider unstable modes that satisfy two assumptions:
® The W drive is dominated by the heat flux rather than the particle flux.

¢ Sufficiently low k| so that they are essentially (or truly) 2D.
® These modes satisfy both

W 1
— = Z T 9o (20)

<= RZ%)HS—L ZQLN (21)

q,snOS r s FOS 2
Y="2 97, (1_F°S 1 )"f" I +VZ( Zsmg) |04 1
5B
(’ 8”’“' +ZnoSToSF15 )} (22)

® Expect electrostatic modes to be unstable when LgLr, > 0, i.e., bad
curvature.

Bk, gsdi
By 2T0s

9 /29



Probably the most important slide

® Consider unstable modes that satisfy two assumptions:
® The W drive is dominated by the heat flux rather than the particle flux.

¢ Sufficiently low k| so that they are essentially (or truly) 2D.
® These modes satisfy both

w 1
——=> TTSQS, (20)
dy 1 1
—;:—EZ;%AS—EEE;QM, (21)

q,snOS r s I s 2
Y="2 97, (1_F°S 1 )"f"‘ +VZ< ZSwoczg>|5Ak|
5B
O;”+me@s )} (22)

® Expect electrostatic modes to be unstable when LgLr, > 0, i.e., bad
curvature.

Bk, gsdi
By 2T0s

® If anything is unstable in good curvature, then it is likely
electromagnetic! 9 /29
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Low-beta electromagnetic fluctuations at the d. scale

Consider fluctuations with

Me

LB~ kPl <L d2 ~ 1< K p?

i

and
w ~ kH'Uthe ~ Wxe Y WTe ™~ Wde,
where
pevtheky pevtheky pevtheky
Wxe = —(57 5 Wle= —F7—, Wde = (77 -
2L,. 2Lr. 2L
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Low-beta electromagnetic fluctuations at the d. scale

® Defining
_ 4%

TOe ’ o peBO ’
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Low-beta electromagnetic fluctuations at the d. scale

® Defining
0 4=
TOe peBO
GK reduces to electron drift kinetics (DK):
) Ohe | pevine [ 2Y]
h e T e
g [+ o= S A w57 (

+peUthe 1 + 1 v? § g . 2’0”
2 Ln., Lp, \v3, 2 dy v Uthe

i v? '\ Ohe
+ v3 0
the Y

A> foe = 0. (27)

(26)
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Low-beta electromagnetic fluctuations at the d. scale

® Defining
€¢ (SA”
= , A= , 26
TOe peBO ( )
GK reduces to electron drift kinetics (DK):
0 Ohe  PeVthe QUﬁ v? '\ Ohe
h e T e
g [+ o= S A w57 ( ) o

PeUthe 1 1 v? 3 0 2’0”
— _ = — e=0. (2
- 2 [L T In Lr, <vths >] dy v UtheA foe = 0. (27)

® The field equations are

—A4+r = — /dgv he, (28)
Noe
BV A= 1 /d% A (29)
MNoe Vthe Uthe

where u is the perturbed parallel flow, 7 = eTo:/¢:To. is the
temperature ratio, de = pe/+/Be is the electron skin depth.
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2D low-beta fluctuations

® The low-beta, linear electron DK equation has a known analytical
dispersion relation (Ivanov & Adkins, 2023).
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2D low-beta fluctuations

® The low-beta, linear electron DK equation has a known analytical
dispersion relation (Ivanov & Adkins, 2023).

® For now, consider only the 2D case. In this case, electrostatic and
electromagnetic fluctuations decouple!
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2D electrostatic fluctuations

® Even (in v)) part of the DK equation

ot 2L B

2 2
Vthe Vthe

pevne [ 1 1 (v 3\] ¢, _
* 2 |:L"e * LTe (vghs 2 ay o 707

together with quasineutrality

_(1_’_7_71)()0: %/d?’v hgeven).

d cvme (207 w2\ aRlvew
— [hgeve") + ‘PfOe] + Pelithe (I + UL T

(30)

(31)
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2D electrostatic fluctuations

® Even (in v)) part of the DK equation

) pevie [ 20 w2\ RS
D heve) o] + Leee (20 vl ) R T
ot [ N +@foe] + 2Lp \ v3. + vZ, Ay

PeVine | 1 1 [ v*  3)]0¢
— |4+ — — = || = foe =0, 30
* 2 |:L"e * LTe (Ughs 2 ay ’ ( )

together with quasineutrality

—(1+7 e = i/d?’v hleven)., (31)

Noe

® Contains the usual slab ETG and curvature-driven ETG instabilities.

13 / 29



2D electrostatic fluctuations

® Even (in v)) part of the DK equation

) pevie [ 20 w2\ RS
v h(even) e]
ot [ ¢ +pfoc| + 2Lp \ v3. * vZ, Oy

PeVine | 1 1 [ v*  3)]0¢
— |4+ — — = || = foe =0, 30
* 2 |:L"e * LTe (Ughs 2 8y ’ ( )

together with quasineutrality

—(1+7 e = i/d?’v hleven)., (31)

Noe

® Contains the usual slab ETG and curvature-driven ETG instabilities.

® Has a curvature-driven instability only if the curvature is bad.
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2D electromagnetic fluctuations

® The odd part is

0 [h(odd) 2y .Af } peUthe <2U| +vi) dhLY
1

8t Uthe Utzhe ay

PeVthe | 1 v2 3\ | 2v, 0A
- + - = ——Joe =0,
2 Ly, L, ths 2 Vthe OY

closed by Ampére’s law

d2viaA=

1 v
/ d*v - p{dD,
Noe Uthe

(32)
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2D electromagnetic fluctuations

® The odd part is

PeUthe <QU|2 vt ) ORIy

2 2
Uthe Vthe ay

v2 3\]| 2y 0A
-3 ——Joe =0,
2 Vthe 8y

ths

9 |, 0aa) _ 2y
at [h Vth Af

e [ 1, 1
2 L,, Lt

closed by Ampére’s law

d2viaA=

1 v
/ d*v - p{dD,
Noe Uthe

¢ Contains only fluctuations that are odd in v moments of h..

(32)

(33)
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2D electromagnetic fluctuations

® The odd part is

0 [h(odd) 2U” ..Af

ot Vth 2 Oy

2
Uthe Vthe

< v? 3)] 2v A
-3 —Joe =0,
ths 2 Uthe 8y

1 v
/ d*v - p{dD,
Noe Uthe

PeUthe <2U|2 vt ) ORLY

e [ 1, 1
2 L,, Lt

closed by Ampére’s law

d2viaA=

¢ Contains only fluctuations that are odd in v moments of h..

® E.g., has no density or temperature fluctuations.

(32)

(33)
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2D electromagnetic fluctuations

® The odd part is

0 [h(odd) 2U” ..Af

PeUthe 20f 2\ oLty
ot Vth

2 2
Uthe Vthe ay

v? 3\]| 2y 0A
- —— foe =0, 32
( ths 2):| Uthe 8y 0 ( )

Ly,

e [ 1, 1
2 Lt

closed by Ampére’s law

1 v

d?viA= —/d% —podd) (33)
Noe Vthe

¢ Contains only fluctuations that are odd in v moments of h..

® E.g., has no density or temperature fluctuations.

® Contains a novel instability, the magnetic-drift mode, that is
unstable only if the curvature is good.
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Conservation laws

The conserved quantities are
3 s, Toch: 3
W = /d /d +’noeToe/d (d |VJ_.A|
2f08

-1
Y:nOeTOE/dB’I‘ ( —|—d |VJ_.A| — T(P)

and they satisfy
AW Qe+ Qe

dt LTe
dY  2Qe + Q.
dt Lp '

where

2
QHe :pevtheTOe/dS’r /dSU ’l;” (_laihe 8-’4 UH

Vihe 2 Oy 0y Vene
3 10¢ 0A v

e — Pe eTe d3 d3 va_ _77}7‘6
QLe = peVtn o/ r/ vvghe 5y + = 39 o

147
2

)
)

(38)
(39)
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The magnetic-drift mode

()

Im w/wye (b) Re w/wge
s
E’\IQ‘(
4
2
00 5 10 0 5 10
—Lp/Ly, —Lp/Lr,
—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5
w/Wde
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The magnetic-drift mode

® The MDM dispersion relation is

— 1 w 2
0=—kKd?+Y"%elar9/ Y 7 w e/
st Wde + 2Wde 2Wde + 2 2wWde
wwr w w 1 w 2
— ° |1 Z ~7Z . 40
w?ie + 2Wde ( 2wde> + 2 < 2Wde :| ( )
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® Unstable only in good curvature at k3 d2 ~ —Lg /L, .
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The magnetic-drift mode

® The MDM dispersion relation is

— 1 w 2
0=—kKd?+Y"%elar9/ Y 7 w e/
st Wde + 2Wde 2Wde + 2 2wWde
wwr w w 1 w 2
— ° |1 Z ~7Z . 40
w?ie + 2Wde ( dee> + 2 < 2Wde :| ( )

Unstable only in good curvature at k3 d? ~ —Lp/Lr,.

A back-of-the-envelope estimate for its growth rate and frequency is

W~y fo—the (41)

\/*LBLTQ.

Can have Re w of either sign.

Neither resonant nor fluid.

Seems to be related to a magnetic drift wave propagating against the
magnetic drifts.
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The magnetic drift wave

® If we set L5" = 0, the (odd) electron DK equation is stable.

0 [, (0aq) 2v PeVine | 1 1 v? 3\] 2v 6A
Z A pedd — 2 ap,, | — _2 92 foe = 0.
ot Uthe Afo 2 Ly, + Ly, \v%3, 2| vene Oy fo

(42)
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The magnetic drift wave

® If we set L5" = 0, the (odd) electron DK equation is stable.

g hgodd) o ﬂAfOe:| o PeUthe |:L + 1 < ’[}2 B §):| 2”“ %f()e =0.

ot Vthe 2 Ly, LiTe vZ4. 2/ vine Oy
(42)
® The solution is the magnetic drift wave
Wxe + WTe
=2 =-° 43
TR (43)
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® If we set L5" = 0, the (odd) electron DK equation is stable.

g hgodd) o ﬂAfOe:| o PeUthe |:L + 1 < ’[}2 B §):| 2”“ %f()e =0.

at Vthe 2 Lne TTS ’Ut2hs 2 Vthe 8y
(42)
® The solution is the magnetic drift wave
_ Wxe + WTe (43)

1+ ka2

® If we add small wg. < wre, we find a perturbed magnetic drift wave

and another wave with )
Wde

~ =<, 44

W o (44)
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The magnetic drift wave

® If we set L5" = 0, the (odd) electron DK equation is stable.

g hgodd) o ﬂAfOe:| o PeUthe |:L + 1 ( ’[}2 B §):| 2”“ %f()e =0.

ot Vthe 2 Ly, LiTe vZ4. 2/ vine Oy
(42)
® The solution is the magnetic drift wave
Wxe + WTe
=2 =-° 43
TR (43)

® If we add small wg. < wre, we find a perturbed magnetic drift wave

and another wave with )

W~ de (44)

WTe

® The MDM instability exists only if the wave also exists.

® This wave exists if and only if there are curvature drifts.
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Pole trajectory for k,d. =1 20

4
20
Magnetic drift mode
2 / g 10
a8
MDW [
MDW
0 : 0
/‘ Damped MDW
_9 W & Wl fwae / -10
—20
4
—10 5 0 5 10 5 20 —30
Re(w/wae)
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The magnetic-drift mode in 3D

(a) Im w/wye (b) Re w/wqe

2
e

s
N&‘(
4
2
00 5 10 0 5 10
—Lp/Lr, —Lp/Ly,
1.5 1.0 —0.5 0.0 0.5 1.0 1.5
w/wWde

Figure 1: MDM growth rate and curvature at k:HLB/ Be =2 20 / 29



Why have we not seen this before?
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Why have we not seen this before?

® Maybe suppressed by geometry?

Maybe subdominant?
® Maybe weird parameter regime?

® Maybe we have seen it — related to other known instabilities?
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Conclusions

® The conserved quantity

v — a2nos -1 Iy P ‘2+VZ ﬁJr Tos |64 |2
R 0s F o ) 10w — \ 87 " < 8rd? Ik
3By |” Bk | qstr |’
+v§k: ( o +Z nosTosT1s |5 = + 57 (45)

seems important for understanding curvature-driven instabilities.
® Such instabilities can be driven both in good and bad curvature.
® Electrostatic instabilities can be shown to live in bad curvature.

® We have at least one example of a good-curvature electromagnetic
instability.
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Here be more slides. . .
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Fluxes

re :/d% /d% (Vi - V) dfs :/d% /d% (Vi - Va)(hs),,  (46)

6Bz

FSH = nOS/d3r uHSB—O, (47)
Ve = /d3r /d% (6Vwphs), - Va, (48)
= /d3 /d3v msvf (Vi - V)(hs), , (49)
QY. = /ddr /d% —msv? (VE~Vx)(hS>T, (50)
“s /d3 /d3'v msUH ’UH< )y (51)
le = /d3r /d3v 7msvi§ijH<hs)r, (52)
Qyr */d3 /d% msvf (SVgghs), - Va, (53)
QYP —/d3 /d% L no? (5Vaphs), - Va, (54)

where
(55)
24 / 29
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Hermite-Laguerre fluid approach
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Hermite-Laguerre fluid approach

® Instead of solving the Landau initial-value problem, we can directly
look for the normal modes of the system.
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Hermite-Laguerre fluid approach

® Instead of solving the Landau initial-value problem, we can directly
look for the normal modes of the system.

® One way is to consider a truncated expansion

z Li( 'UL /Uthe)Hm (UH /Vthe)
2mm!

gim = 6fe . (56)
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Hermite-Laguerre fluid approach

® Instead of solving the Landau initial-value problem, we can directly
look for the normal modes of the system.

® One way is to consider a truncated expansion

le (v} /vine)Him (0] /vthe)
2mm!

gim = (Sfe . (56)

® Maybe we can capture the instability with just a handful of modes?

E.g.,
e = vine (57)
5q)e = noeTocVene V30,3, (58)
5qJ_e = nOeT(]e’Uthegoi’g~ (59)

V2
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Hermite-Laguerre fluid approach

R(OARE) L;/ﬁ.xﬁv m
= = o =
o =) [} f==}

— o =]

0.8

EEEEEEEEEEEEEER
< o™ (==} 0 o e [a\] (=}
X S

nw
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The dispersion relation

LopLaa+2L%, =0,

where

_ 3
L¢¢> =—1-7 t_ [C_C* +<T (8a +ab + §>:| Ia,b|a:b:17

3
Laa=—kid: -2 {c — ot Cr (aa + 0y + 5)] Aalupl,_y_y s

3
Lay =-— [C —Cs + (1 (3a + 0 + 5)} Jablampo1

and also

2

1 +00 +o0 e—au —bp
Iy = du d ,
e e [ e

2

1 +o0 +oo ue ¢ —bu
Jap = du d .
’ w/,oo /o P+ +p




The dispersion relation

1
Tablo—pey = 7fz+z, (68)
a1, = ! 2 VA Z_ VA VA ! 1Z VA
alably—pey = — 2 +Cf(+* )+ C+Z + (-7 — i@ 2l
(69)
1 Z47_
3 ¢
3 11 ¢ 1
(0. 400+ 3) aafa,b\a:b:ﬁ%[%gn—d—Z( b2 = g 2o+
G B A At L
A A 4¢3 i3 G A
(72)
3 1 1 1 1
<8a+ab+§> Jablyepen :E[E_E(Z+_Z_)_f(<+z +¢-Z4)
Y7, — 74— - L zz} (73)
o 2 2 )t
where L
1 8 1
o= 715;‘4 (74)

and Z+ = Z(C4+). 28 / 29



Electrostatic 2D dispersion

2
— W — Wse w
0=—1—7"" z(,/ )
T + 2wde ( 2wde
2

WTe w w w w
- 24/ Z\ 4/ —-11]Z 75

2wde |: 2wde ( 2wde> * (wde > ( 2wde> :| ’ ( )
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