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Designing stellarators with a transport barrier

Per Helander
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Motivation

« A strongly sheared ExB flow is believed to cause suppress turbulence.

 |Is it possible to design a stellarator so that this occurs at some pre-defined location?



Radial electric field



Radial current in gyrokinetics

« According to standard gyrokinetics, the radial current from small-scale fluctuations vanishes to lowest order.
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Radial current from neoclassical transport

* Neoclassical radial particle flux of each species ¢

dlnn, e.E, dln Tg)
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» In most stellarators, this flux is ambipolar, Z es-1'c =0, only for one or a few values of E,.

a

« This condition determines E, even if most of the transport is turbulent!

« Exceptions:
- unnecessarily well neoclassically-optimised fields (D ~ p.«DgB)
« axisymmetric and (perhaps) quasisymmetric fields

 small scales: zonal flows



Radial electric field

Neoclassical ambipolarity equation is nonlinear Te. T

Usually E, < O (ion root) since D, < D,.

« Causes strong inward neoclassical transport for highly charged impurities.

E, > 0 (electron root) has been observed in low-density plasmas with T, > T

*  Beneficial for impurity expulsion FIG. 1. Electron and ion flux against electric field for model problem.

« Hitherto thought to be impossible in reactors since T, = T..

Hastings, Nucl. Fusion 1986



Experimental results

In most stellarators, the radial electric field broadly follows the predictions from neoclassical theory.

Electron roots predicted and observed in LHD, CHS, W7-AS and TJ-II at low density when T, < T,.
« accompanied by steep T, profiles (transport barrier) in the core.

» expected hysteresis observed in W7-AS (Stroth PRL 2001).
Electron root not expected nor observed
* in any present-day stellarator at moderate or high densities, where T, = T,

¢ orin HSX although T, << T..

Further verification of theory underway in W7-X.




Neoclassical transport of electrons and ions

The diffusion coefficient for a particle of speed v depends on two dimensionless parameters:
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Neoclassical transport of electrons and ions

In the ion root, the diffusion coefficients are given by
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where g and g are coefficients depending only on the B-field geometry.

lon transport (determined by ;) is controlled mostly by shallowly trapped particles.

Electron transport (determined by &) depends on all trapped particles.
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Neoclassical theory of electron root optimisation

» Onset of electron root approximately when
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» Electron root thus possible by targetted (de)-optimisation
Decrease the ratio €; /€eft.

Improve confinement of shallowly trapped particles, degrade it for deeply trapped ones.
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A concrete example



Optimisation goals

Quasi-isodynamic magnetic field, implying
« Good fast-ion confinement
« Small neoclassical transport
* Negligible bootstrap current
* Reduced ITG- and TEM-driven turbulence
 MHD stable up to some target 3
* maximum-J property at this 3
« Edge islands for divertor operation

» Coils simpler than, or comparable to, those of W7-X

Until very recently, these goals seemed incompatible with each other, but not anymore



SQuID: stable quasi-isodynamic design

Zlm] pf

27

9

Eooas"

21 24 27

Rlm]

0.08
0.06
0.04

0.02

A=10,N=4
Considerable interest from

stellarator startups

Goodman et al ,2024



Electron root in SQuID

Reactor case: V=1450 m3, R =20.13m,a=1.91m,B=54T
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Density scan

Central density varied from n,(0)= 1.4:102° m-3to n, = 2.4:102° m3
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Electron root in W7X-size device with T, =T,

« Scaled to W7-X volume and field strength

- Density and temperature profiles such that (3) = 2%
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Testing predictions in W7-X

« Acentral feature of the SQuID electron root with T, = T, is the simulataneous presence of three roots in the plasma core.

« Will the plasma "choose” the electron root?

« Could be tested in the high-mirror configuration of W7-X with T; < T..
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Transport barrier?

« ExB flow can suppress tubulence when (Waltz 1994, Ivanov et al, 2023)
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- For electrostatic instabilities with &, p; = O(1)
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« If the width of the transition region isw and F, ~ T;/eL , , atransport barrier should arise if
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Theoretical Issues

 The electron-ion-root-transition region cannot be described
by standard local neoclassical theory.

* In the figures above instead modelled by a cruder model in the
NTSS transport code.

« Has also recently been simulated with the global gyrokinetic
EUTERPE code without turbulence.

* In order to assess the strength of a transport barrier, global
simulations of simultaneous neoclassical and turbulent
transport should be carried out.
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Summary

* In non-quasisymmetric stellarators, the radial electric field is determined by neoclassical transport,

even if most of the energy transport is turbulent.

* Itis possible to tailor the magnetic field so that E, > 0 in the core and E, < 0 in the edge, even if T,=T,.

« Strong ExB shear arises in the transition region, probably causing a transport barrier.



