

Motivation

- A strongly sheared ExB flow is believed to cause suppress turbulence.
- Is it possible to design a stellarator so that this occurs at some pre-defined location?

															.0		•	•	0	٥	0	0	0	0	0	0	0	•	•	•	0	0	•	0	0	0	0	0	0	0	0	0
																0		0	0	0	æ	ø	0	ø	ø	0	0	0	0	0	0	0	9	9	ø		0	0	ø	0	9	0
																0	0		•	0	0	9	0	0	•	•	0	0	0	•	0	0	0	•	0	0	•	0	•	0	•	0
										0							0	0	•	0	0	0	0	0	•	0	0	0	0	0	0	0	•	0		0	0	0	0	0	0	0
																		0	0	0	0	0	0	0	0	0	0	•	0	•	0	0	0	0	0	0	0	0	•	0	0	0
											0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	•	•	0	0	0	0	0	0	9	0	0	0	•
												0			0	0	0	0	0	0	0	0	0	0	0	•	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
												0	0	0			0	0	•	0	0	a	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0
											0	0		0		0		0	0		0	0	0	0	0	0	•	0	0	0	0	0	•	•	0	0	0	0		•	0	
												0	0			0			0	0		0	0	0	0	0		0			0	0		0	0	0	0	0	0	0	0	
												0	-	0		0	0	0	0	0	0	-	0				0			0	0	0	0	0	0	0	0		0			
													E			C		C			Hy					6		-			0	0									0	
										V.C	2	<u> </u>				5	7	C			4		V	2				V													0	
													-		-	-	-	-		-		-			-		-	-			-	-		-	-			-			-	-
													-	-	-	-	-	-		-	1	2			-		-	-				-	-	-		2	2	-			-	-
												-	-		-	-	-		-			-	-					-	-			-	-	-				-			~	
								č	č					č						č	č	č	č	č					č			č	č		č	ž	č	č				č
							1						-		-		-	-			-			2				-		-		-	-			1		-	8		-	
												•							•		1	-	-	1		•							~			1	-	Č.,	2			
								•			~	°	•	•	•	•	•	•	•	•	-	•	•	-	•	•	•	•	•	•	•	•	•	•	•	-	•	-	•	•	•	•
						0	•	•	0	•	0	0	0	•	0	•	0	•	•	•	•	•	•	•	0	0	•	0	•	•	•	0	•	0	•	~	•	•	0	•	•	•
								•	0	•	0	•	0	•	0	0	•	•	•	0	9	0	0	0	•	0	•	0	0	0	0	0	•	0	9	0	•	0	0	0	0	0
									0	•	0	•	0	•	•	•	0	•	•	•	9	•	9	2	•	•	•	0	•	•	•	0	•	•	•	8	•	•	•	•	•	0
				0	•	0	0	0	•	•	•	0	0	0	0	0	0	•	•	0	0	•	0	•	•	•	•	0	0	•	0	0	•	•	•	0	•	•	•	•	•	0
			0	0	0	0	ø	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			•	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	•	0	0	0
		0	•	0	0	0	0	•	0	0	•	0	0	0	0	0	0	•	0	0	0	•	•	9	•	•	0	0	a	0	•	0	0	0	•	0	•	•	0	•	0	0
			0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	۰	0	0	0	0	0	0	0	•	•	0	0	0	0	0	۰	0	0	0	0	0	0	•	0	0

Radial current in gyrokinetics

• According to standard gyrokinetics, the radial current from small-scale fluctuations vanishes to lowest order.

$$f_{a1} = -\frac{e_a \delta \phi(\mathbf{r}, t)}{T_a} f_{a0} + g_a(\mathbf{R}, H, \mu, t),$$

$$\sum_a \frac{n_a e_a^2}{T_a} \delta \phi = \sum_a e_a \int g_a J_0 \, \mathrm{d}^3 v,$$

$$\delta A_{\parallel} = \frac{\mu_0}{k_{\perp}^2} \sum_a e_a \int v_{\parallel} g_a J_0 \, \mathrm{d}^3 v,$$

$$\delta B_{\parallel} = -\frac{\mu_0}{k_{\perp}} \sum_a e_a \int v_{\perp} g_a J_1 \, \mathrm{d}^3 v,$$

$$\chi = \delta \phi - \mathbf{v} \cdot \delta A$$
Sugama et al. 1996
Parra & Catto, 2008

Radial current from neoclassical transport

• Neoclassical radial particle flux of each species σ

$$\Gamma_{\sigma} = -D_{\sigma}(E_r)n_{\sigma} \left(\frac{d\ln n_{\sigma}}{dr} - \frac{e_{\sigma}E_r}{T_{\sigma}} + \delta_{\sigma}\frac{d\ln T_{\sigma}}{dr}\right).$$

- In most stellarators, this flux is ambipolar, $\sum_{\sigma} e_{\sigma} \Gamma_{\sigma} = 0$, only for one or a few values of E_{r} .
- This condition determines E_r even if most of the transport is turbulent!
- Exceptions:
 - unnecessarily well neoclassically-optimised fields $(D_{\sigma} \sim \rho_* D_{\rm gB})$
 - axisymmetric and (perhaps) quasisymmetric fields
 - small scales: zonal flows

Radial electric field

Neoclassical ambipolarity equation is nonlinear

 $\Gamma_i(E_r) = \Gamma_e(E_r)$

Usually $E_r < 0$ (ion root) since $D_e < D_i$.

• Causes strong inward neoclassical transport for highly charged impurities.

 $E_r > 0$ (electron root) has been observed in low-density plasmas with $T_e > T_{i^-}$

- Beneficial for impurity expulsion
- Hitherto thought to be impossible in reactors since $T_e = T_i$.

FIG. 1. Electron and ion flux against electric field for model problem.

Hastings, Nucl. Fusion 1986

- In most stellarators, the radial electric field broadly follows the predictions from neoclassical theory.
- Electron roots predicted and observed in LHD, CHS, W7-AS and TJ-II at low density when $T_i < T_e$.
 - accompanied by steep T_e profiles (transport barrier) in the core.
 - expected hysteresis observed in W7-AS (Stroth PRL 2001).
- Electron root not expected nor observed
 - in any present-day stellarator at moderate or high densities, where $T_i = T_e$,
 - or in HSX although $T_i \ll T_e$.
- Further verification of theory underway in W7-X.

Neoclassical transport of electrons and ions

The diffusion coefficient for a particle of speed v depends on two dimensionless parameters:

$$\nu^* = \frac{\nu a}{v} \quad \text{and} \quad \mathrm{Ma} = \frac{E_r}{Bv}$$

Small-Ma limit

$$D^{1/\nu} \sim \frac{\epsilon_{\text{eff}}^{3/2} v^2 \rho_*^2}{\nu},$$

Larger Ma:

$$D^{\sqrt{\nu}} \sim \frac{\nu^{1/2} v^2 \rho_*^2}{\omega_E^{3/2}} \sqrt{\ln\left(\frac{\omega_E}{\nu}\right)}$$
$$\omega_E = \frac{E_r}{aB}$$

Galeev et al. 1969

Neoclassical transport of electrons and ions

• In the ion root, the diffusion coefficients are given by

$$D_{e}^{1/\nu} \sim \frac{\epsilon_{\text{eff}}^{3/2} v_{de}^{2}}{\nu_{e}}, \qquad \qquad D_{i}^{\sqrt{\nu}} \sim \epsilon_{i}^{3/2} \frac{\nu_{i}^{1/2} \rho_{*i}^{2} v_{Ti}^{2}}{\omega_{E}^{3/2}} \sqrt{\ln\left(\frac{\omega_{E}}{\nu_{i}}\right)}$$

where ε_i and ε_{eff} are coefficients depending only on the B-field geometry.

- Ion transport (determined by ε_i) is controlled mostly by shallowly trapped particles.
- Electron transport (determined by ε_{eff}) depends on <u>all</u> trapped particles.

Notation:

$$\omega_E = \frac{E_r}{aB}$$
$$\rho_{*i} = \frac{v_{Ti}}{a\Omega_i}$$
$$\nu_{*i} = \frac{\nu_i a}{v_{Ti}}$$

Neoclassical theory of electron root optimisation

• Onset of electron root approximately when

$$D_e^{1/\nu} > D_i^{\sqrt{\nu}} \qquad \Rightarrow \qquad \frac{T_e}{T_i} \ge \left(\frac{m_i}{m_e}\right)^{1/7} \left(\frac{\epsilon_i \nu_{*i}}{\epsilon_{\rm eff} \rho_{*i}}\right)^{3/7}$$

- Electron root thus possible by targetted (de)-optimisation
 - Decrease the ratio $\epsilon_i/\epsilon_{\mathrm{eff}}$.
 - Improve confinement of shallowly trapped particles, degrade it for deeply trapped ones.

															9		0	•	0	٥	0	0	٥	0	0	0	0	•	0	•	0	0	•	0	0	0	٥	0	0	0	0	•
																0		0	0	0	0	0	0	ø	ø	9	0	0	0	0	0	0	9	.0	0	•	0	0	ø	0	9	0
																0	0		•	0	0	9	0	0	•	•	0	0	0	•	0	0	0	•	0	0	•	0	•	0	•	0
										0							0	0	•	0	0	0	0	•	•	0	0	0	0	0	0	0	•	0	•	0	0	0	0	0	0	0
																	0	0	0	0	0	0	0	0	0	0	•	•	•	•	0	0	0	0	0	0	0	0	0	0	0	0
													0	0	.0		0	0	0	0	0		0	0	0	0	0	0	0	•	•	0	0	0	•	0	0	9	0	0	0	•
												0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	•
												0	0	0			0	0	•	0	0	a	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0
											0	0	a	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	
												0	0		0	0			0	0		0	0	0	0	0	•	0			0	0	0	0	0	0	0	0	0	0	0	0
												0		0	0		0	0	•			0	0		0	•	•		0	0	0	0	•	•		0	0		0	•	•	•
									Δ	0			V.			12						V	5		r					0	0	0		0		0	0			0	0	
											U	Ų	4				C	Y	Ç		Ç	$\mathbf{\Lambda}$	C						2												0	
											-		-			-	-			-		-			-		-	-	-		-	-	-	-	-			-				
													-	-	-		-	-		-	1	2	-		-	-	-	-	-			-	-	-	-	2	2	-			-	
													-	-		-	-	-	-			-	-		-			-	-	-	-	-				-		-			~	
									č					č						č	č	č	č	č								č	č		č	ž	č	č				č
							1										-											-		-		č.,	-			1		-	8			
											-	•			•	•		•	•	-	1	2	2	2		•	•			•			2		-	8	-	<u></u>	2		•	•
								0	0	-	*	°	•	•	•	•	0	•	•	•	-	•	•	•	•	•	•	•	•	0	•	0	•	•	•	0	•	•	•	•	•	•
						0	•	•	•	•	•	0	0	•	0	•	0	0	0	0	0	•	•	•	0	0	•	0	0	0	0	0	•	0	•	0	•	0	0	0	0	•
						0		•	9	•	0	•	0	•	0	•	•	•	•	•	9	•	•	0	•	0	•	0	•	0	•	0	•	•	•	9	•	0	•	0	•	0
									0	•	•	•	0	•	0	•	0	•	•	•	9	•	•	•	•	•	•	0	•	0	0	0	•	•	•	8	•	•	•	•	•	0
				0	0	0	0	0	0	•	•	0	0	0	0	0	0	•	0	0	0	•	0	•	•	•	0	0	0	•	0	0	•	•	•	0	•	•	•	•	•	0
			0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	0
			0	0	0	0	9	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	•	0	0	0
		0	۰	0	•	0	•	•	0	0	•	0	0	•	0	0	0	•	0	0	0	•	•	9	0	•	0	0	0	0	0	0	0	0	•	0	0	•	0	0	0	•
			0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	۰	0	0	0	•	0	0	0	•	•	0	0	0	8	0	۰	0	0	0	0	0	0	0	0	0

Optimisation goals

- Quasi-isodynamic magnetic field, implying
 - Good fast-ion confinement
 - Small neoclassical transport
 - Negligible bootstrap current
- Reduced ITG- and TEM-driven turbulence
- MHD stable up to some target β
 - maximum-J property at this β
- Edge islands for divertor operation
- Coils simpler than, or comparable to, those of W7-X

Until very recently, these goals seemed incompatible with each other, but not anymore

SQuID: stable quasi-isodynamic design

Electron root in SQuID

Reactor case: V=1450 m³, R = 20.13 m, a = 1.91 m, B=5.4 T

Transition region:

- Strongly sheared electric field
- Transport barrier?

Electric field

1.0

Density scan

Central density varied from $n_e(0)$ = 1.4 10²⁰ m⁻³ to n_e = 2.4 10²⁰ m⁻³

Electron root in W7X-size device with $T_e = T_i$

- Scaled to W7-X volume and field strength
- Density and temperature profiles such that $\langle\beta\rangle=2\%$

- A central feature of the SQuID electron root with $T_i = T_e$ is the simulataneous presence of three roots in the plasma core.
 - Will the plasma "choose" the electron root?
- Could be tested in the high-mirror configuration of W7-X with $T_i < T_e$.

 $\langle \beta \rangle = 0.4\%$

Transport barrier?

• ExB flow can suppress tubulence when (Waltz 1994, Ivanov et al, 2023)

$$\frac{1}{B}\frac{dE_r}{dr} > \gamma_{\max}$$

• For electrostatic instabilities with $k_{\perp}\rho_i = O(1)$

$$\gamma_{\max} = \frac{\alpha v_{Ti}}{L_{\perp}}, \qquad \alpha \sim 0.02$$

• If the width of the transition region is w and $E_r \sim T_i/eL_\perp$, a transport barrier should arise if

$$w \leq \frac{\rho_i}{\alpha}$$

and increase the core temperature by at least

$$\frac{\Delta T}{T} \sim w \left| \frac{d \ln T}{dr} \right| \sim \frac{w}{L_{\perp}} \le \frac{\rho_i}{\alpha L_{\perp}}.$$

19

Theoretical issues

- The electron-ion-root-transition region cannot be described by standard local neoclassical theory.
 - In the figures above instead modelled by a cruder model in the NTSS transport code.
 - Has also recently been simulated with the global gyrokinetic EUTERPE code without turbulence.
- In order to assess the strength of a transport barrier, global simulations of simultaneous neoclassical and turbulent transport should be carried out.

Kuczynski et al, 2024

• In non-quasisymmetric stellarators, the radial electric field is determined by neoclassical transport, even if most of the energy transport is turbulent.

• It is possible to tailor the magnetic field so that $E_r > 0$ in the core and $E_r < 0$ in the edge, even if $T_e = T_i$.

• Strong ExB shear arises in the transition region, probably causing a transport barrier.