

cea irfm

A historical overview of the impact of fast ions and EM effects on turbulence

Jeronimo Garcia

Note

<u>cea</u>

- Fast ions can interact with turbulence/transport in many different ways
 - Dilution
 - Magnetic geometry change
 - Linear resonance
 - Non-linear effects
- Stronger impact of alpha particles on turbulence likely have non-linear origin
- Talk heavily based on JET experimental and modelling results

The origins: L and H-mode plasmas

L mode: Ion heat flux (q_i) vs logarithmic ion

H mode: high beta plasma

J. Garcia and G. Giruzzi PRL **104**, 205003 (2010) J. Garcia *et al* 2013 *Nucl. Fusion* **53** 043023

New findings challenging mean ExB shearing as route to low turbulence/transport

<u>cea</u>

^[1] P. Mantica et al., Phys. Rev. Lett. **102**, 175002 (2009); [2] P. Mantica et al., Phys. Rev. Lett. **107**, 135004 (2011)

L mode: Experimental ion heat flux reached when including fast ions in EM simulations

 Inclusion of fast ions yields strongly reduced fluxes and low stiffness, but only in nonlinear electromagnetic simulations!

• The nonlinear electromagnetic stabilization is greater than the linear stabilization!

- Agreement between EXP and NL simulations drop to within $\approx \times \ 2$

J. Citrin et al. PRL 111, 155001 (2013)

Stabilization by electromagnetic effects: Suprathermal pressure gradients adds to the total β '. Can significantly stabilize turbulence.

H-mode scenario: mild linear impact of fast ions and electromagnetic effects

- Significant EM-stabilization of ITG modes. Enhanced by fast ions.
- With nominal fast ion pressure, fast ion modes at $k_y < 0.2$, not detected in experiment
- Fast ion mode stabilized by ~ 30% reduction of fast ion gradient. Likely coupled with KBM branch, thus referred to BAE/KBM.

H-mode scenario : strong non-linear impact of fast ions and electromagnetic effects

J. Garcia et al 2015 Nucl. Fusion 55 053007

- EM-effects + fast ions are key factor for obtaining experimental heat fluxes
- 10-20% increase of R/L_{Ti} for the same heat flux with fast ions
- Fast ions change the threshold
- Fluxes calculated with reduced fast ion pressure gradient.

With fast ion mode in NL simulation, fluxes far above power balance levels

Phase 1: With 30% reduced fast ion pressure (no BAE/KBM mode) Phase 2: increase to nominal fast ion pressure and restart simulation

 System with fast ion mode has fluxes clearly above power balance values. Limit cycles? Robustly maintained below limit?

J.Garcia | 15th Plasma Kinetics Working Meeting |5-9 August, 2024 | 7

014032

The impact of Zonal flows

J Citrin et al 2015 Plasma Phys. Control. Fusion 57 014032

- Strong impact of zonal flows in EM gyrokinetic simulations with FI
- Significantly stronger than in ES simulations with FI
- Extended studies were necessary

TAE and zonal flows behind transport reduction

A. Di Siena et al 2019 Nucl. Fusion 59 124001

cea

- Transport reduction by fast ions analyzed in JET L-mode plasmas
- Linearly "marginally" stable TAE modes nonlinearly excited by ITG to TAE spatio-temporal scales.
- Fast ion modes furthermore start to increasingly affect the ZF levels, as predicted [Chang & Zonca PRL 12]
- Increase in ZF levels strongly suppresses heat/particle fluxes and reduce the TAE drive
- Drawback: no TAE modes ever detected in such experiments

- Comparisons between local and global simulations performed with JET cases with GENE code
- AITG/KBM modes destabilized in the code
- Differences between local and global simulations are amplified when increasing AITG/KBM intensity

Role of alphas in ITER: transport suppression

- DT plasmas in ITER can be different to D
- MeV alpha particle impact on ITG turbulence can be significant
- How to validate such results?
- ITER relevant plasmas need:
 - Electron heating
 - MeV ions
 - Ti~Te
 - Low rotation
 - Alfvén modes destabilization?

Previous experimental condition quite far from ITER

- Stabilizing fast ion effect → BUT way less energetic particles than DT fusion born alpha particles modelled [Citrin PRL(2013), Garcia NF(2015), Bonanomi NF(2018), Di Siena NF(2019)]
- How to asses the impact of alpha particles on turbulence/transport in ITER and DEMO conditions?
- 2 steps programme at JET: Highly energetic MeV studies in D and DT campaign in 2021

Case Study	Species	T _i /T _e	$n_{ m FI}/n_e$ [%]	$T_{\rm FI}/T_e$	eta_e [%]
JET #73224 – [Citrin PRL(2013),Di Siena NF(2019)]	D – ³ He	1	6 – 7	9.8 – 6.9	0.33
JET #90672 – [Bonanomi NF(2018)]	³ He	0.8	9	12	0.4
JET #75225 - [Citrin PPCF(2015),Garcia NF(2015)]	D	1.6	12	7.3	1.8
ITER Hybrid Scenario – [Garcia PoP(2018)]	⁴ He	1	0.9	41.3	1.25

JET plasmas close to ITER conditions

Case Study	Species	T _i /T _e	n _{FI} /n _e [%]	$T_{\rm FI}/T_e$	eta_e [%]
ITER Hybrid Scenario – [Garcia PoP(2018)]	⁴ He	1	0.9	41.3	1.25
JET #94701 – <mark>3 ions scheme</mark>	D	1	3	33.6	0.68

ICRH 3 ions scheme [Y. Kazakov et al., Nature Phys **13**, 973–978 (2017)] in D-³He provide MeV ions and mostly electron heating

Alfven waves destabilized in JET with ICRF

[[]M. Nocente NF(20)][Y. Kazakov PoP(21)][M. Dreval NF(22)]

- New experiments performed at JET in D-(D_{nbi})-³He plasmas
- Heating mechanisms: NBI and ICRF
- Alfven waves in the range of 100-600kHz
- Fluctuations not detected in only NBI phase

Strong decrease of density fluctuations in the presence of MeV ions

- Plasma density fluctuations spectrum→ turbulence intensity
- Compared to NBI, fluctuations reduction in the presence of MeV ions
- Unexpectedly, Alfven waves and reduced turbulence coexist

Suppression of Thermal Electrostatic Fluxes in the Presence of Fldriven Modes

[S. Mazzi Nat. Phys.(22)]

 $\geq R/L_{p_{FD}} = 10.7:$

Linear marginal stability → Nonlinear destabilization of FI-modes reminiscent of modemode coupling [Di Siena NF(2019)]

 $\geq R/L_{p_{FD}} = 16.2:$

Suppression of turbulence with fully destabilized TAE, good agreement with power balance from TRANSP

Mitigation of EM Transport by Zonal Fields

- Strong FI driver \rightarrow Large-amplitude fluctuations of perturbed fields ($\Phi \& A_{||}$) at low- k_y [Gorelenkov NF(2010)]
 - ES fluxes suppressed \rightarrow Electromagnetic (EM) transport dominates

- A_{||} zonal structures appear when FImodes unstable
- Electron magnetic flux expected to explode [Citrin NF(2015)] → Mitigation by Zonal fields

Mitigation of EM Transport by Zonal Fields

- Strong FI driver \rightarrow Large-amplitude fluctuations of perturbed fields ($\Phi \& A_{||}$) at low- k_{γ} [Gorelenkov NF(2010)]
 - ES fluxes suppressed \rightarrow Electromagnetic (EM) transport dominates

 Can this local simulation provide the correct physics answer? → J. Ruiz this workshop

- A_{||} zonal structures appear when FImodes unstable
- Electron magnetic flux expected to <u>explode</u> [Citrin NF(2015)] → Mitigation by Zonal fields

J.Garcia | 15th Plasma Kinetics Working Meeting |5-9 August, 2024 | 18

•

Exploration of core burning plasmas characteristics

- DT plasmas explored in core ITER relevant conditions:
 - High heating fraction to electrons (~60%) (1% H minority)
 - Low input torque
 - Destabilized fast ion modes

Exploration of core burning plasmas characteristics

- DT plasmas explored in core ITER relevant conditions:
 - High heating fraction to electrons (~60%) (1% H minority)
 - Low input torque
 - Destabilized fast ion modes
- High confinement obtained: H₉₈(y,2)≥1
 - Low core transport: Q_{e,i}~0.5GB
 - 15% better confinement in DT than D

J.Garcia | 15th Plasma Kinetics Working Meeting |5-9 August, 2024 | 20

cea

High core electron heating with ICRF

[J.Garcia IAEA23] [J. Garcia, Y. Kazakov arXiv:2309.11964] - High electron heating and low torque: $T_e/T_i \sim 1.4$, $M_{ach} = 0.12$

Fast ion perturbations simulated

[J.Garcia IAEA23] [J. Garcia, Y. Kazakov arXiv:2309.11964]

cea

- High electron heating and low torque: $T_e/T_i \sim 1.4$, $M_{ach} = 0.12$
- Core fast ions perturbations reproduced considering ICRF accelerated ions

Zonal activity induced by perturbations

[J. Garcia, Y. Kazakov arXiv:2309.11964]

- High electron heating and low torque: T_e/T_i~1.4, M_{ach}=0.12
- Core fast ions perturbations reproduced considering ICRF accelerated ions
- Fishbone and TAE generate zonal structures
- Zonal activity leads to reduced ion thermal transport
- No evidence of T_i clamping at 90% of electron heating

Role of EP modes on improved confinement

[J.Garcia IAEA23]

<u>cea</u>

[J. Garcia, Y. Kazakov arXiv:2309.11964]

- CGYRO simulations show importance of highly energetic ions to reduce turbulence
- Key role of energetic ion modes rather than energetic ions themselves (as found in D-³He [S. Mazzi Nat.Phys. 21])
- Global simulations with CGYRO do not seem to change the main results (work ongoing)

Why this topic is important?

[J.Garcia IAEA23] [J. Garcia, Y. Kazakov arXiv:2309.11964]

- Evidence of improved core confinement in the presence of Fishbone and Alfven activity
- Better confinement at higher Te/Ti and electron heating than with ion heating

Alpha particle losses

- Strong alpha particle losses in the presence of fishbone predicted by FAR3D→ Confirmed in experiment
- No ICRH FI losses detected
- Real impact of FI modes on plasma is much more complex than just confinement J.Garcia | 15th Plasma Kinetics Working Meeting |5-9 August, 2024 | 26

Conclusions

cea

- Extensive experimental and numerical results showing improved confinement in the presence of fast ions
- In particular when FI destabilize FI modes
- □ Interplay between FI, Fi modes and Zonal flows and Zonal fields numerically identified with several codes → Solid result
- \Box Experimental evidence recently obtained \rightarrow J. Ruiz this workshop
- □ Direct evidence of the impact of alpha particles rather than ICRH FI is necessary → A. di Siena this workshop
- □ Further numerical, theoretical and experimental work is necessary to understand this topic→ Shutdown of JET is a drawback (but a lot of data available!)

<u>cea</u>

<u>cea</u>

The origins: L-mode plasmas

[1] P. Mantica et al., Phys. Rev. Lett. **102**, 175002 (2009); [2] P. Mantica et al., Phys. Rev. Lett. **107**, 135004 (2011)

cea

Main observation: Significant reduction of ion temperature profile stiffness, <u>defined as</u> <u>the local normalized q_i gradient with respect</u> <u>to R/L_{ti} when NBI and ICRH combined</u>

- JET data-set in L-mode was a challenge for theoretical understanding of ion temperature gradient (ITG) turbulence, primarily responsible for ion heat transport [1,2]
- ExB shearing thought to be primarily responsible for transport reduction

The origins: magnetism behaviour in H-mode

Main observation

• Stationary high confinement scenarios show different type of magnetism characteristics

<u>cea</u>

• Reversal from paramagnetic to diamagnetic \rightarrow Role of poloidal current profile and β_{p}

The origins: magnetism behaviour in H-mode

Main observation

- High pressure gradient necessary to attain diamagnetism at ρ =0.2-0.4
- Hybrid scenarios with peaked core ion temperature profile have a significant fast ions content which highly increases core pressure gradient and β_{p}
- Indication of strong EM effects: $\beta_p (r/L_{\perp})^2$

095001