Beyond Quasilinear Theory: What Happens When Quasilinear Theory Fails in a Stellarator

(Catto 2024 + earlier effort by Catto & Tolman in 2021 JPP paper)

Peter Catto *Plasma Science and Fusion Center, MIT* (supported by DoE)

Quasilinear theory has many meanings

Quasilinear (QL) theory here

- *Requires resonant particles & confined well particles
- *QL theory requires a velocity dependent resonance
- *Need collisions in steady state to define delta function
	- (not interested in bump on tail, modern QL theory :-)
- *Collisions simplest and relevant for magnetic fusion
- *Can be velocity space (RF) or drift kinetic
- *Drift kinetic for "optimized" stellarator transport

Stellarator transport

- *Quasilinear = resonant plateau = superbanana plateau
- *Collisions resolve a singularity: resonant plateau (RP)
- *RP involves narrow collisional layers resonance
- *RP behavior occurs when v cancels out: "plateau"
- *Drift reversal resonance occurs for trapped alphas
- *Local f flattening suggests breakdown of QL theory

Trapped alphas in a nearly quasiymmetric stellarator

Bounce averaged drift kinetic equation

$$
\overline{\omega}_{\alpha} \frac{\partial \tilde{f}}{\partial \varphi} - \overline{V} \sin \varphi \frac{\partial (\overline{f} + \tilde{f})}{\partial r} = \overline{v} \epsilon \frac{\partial^2 \tilde{f}}{\partial \lambda^2}
$$

with \bar{f} = unperturbed (slowing down tail solution)

- \tilde{f} = perturbed distribution ($\bar{f} \gg \tilde{f}$)
- $\overline{\omega}_{\alpha}$ = bounce average trapped drift in a flux surface
- \overline{V} = bounce average radial drift due to QS departure δ
- φ = QS breaking angular variation
- $\lambda = 2 \mu B_0 / v^2$ = pitch angle variable (adiabatic invariant) $\bar{\nu} = v_\lambda^3/v^3\tau_s$ pitch angle collision freq. of alphas by ions

Trapped alpha resonance

- $\star \overline{\omega}_{\alpha}$ reverses direction at some pitch angle \Rightarrow resonance
- * Drift reversal leads to collisional transport
- * SBP = RP just like QL neglects the nonlinear term
- * Islands may form at resonances
- * Islands introduce a small radial scale = island width
- $*$ Island width \sim collisional boundary layer width when $\frac{\partial \tilde{f}}{\partial r \sim \partial \bar{f}}$ / ∂r
- * QL = RP = SBP treatment fails
- * What happens when collisions still matter?

Form of resonance

- * At large aspect ratio $\overline{\omega}_{\alpha}$ reverses at $2E(\kappa_0) = K(\kappa_0)$ $\kappa^2 = [1 - (1 - \epsilon)\lambda]/2\epsilon\lambda$
- $*$ Trapped boundary depends on inverse aspect ratio ϵ $1/(1+\epsilon) < \lambda < 1/(1-\epsilon)$
- * Expanding by writing $\overline{\omega}_{\alpha} = -2(\kappa^2 \kappa_0^2) \overline{\omega}_{\alpha}'$ then $\overline{\omega}_{\alpha} = \big\{\lambda - \big[1 - \big(2\kappa_0^2 - 1\big)\epsilon\big]\big\}\overline{\omega}_{\alpha}' / \epsilon$
- * Resonance depends on λ and ϵ with $\kappa_0^2 = 0.83$ and $\overline{\omega}'_\alpha$ $\sim \overline{\omega}_{\alpha} \sim qv^2/\Omega_0 R_0^2 \epsilon$
- * Trapped fraction $\sim \sqrt{\epsilon}$, $\bar{V} \sim \bar{\omega}_{\alpha} R_0 \delta$ & $\epsilon \gg \delta$ = non-QS

* Full nonlinear eq.

$$
\left[\lambda - (1 + \epsilon - 2\kappa_0^2 \epsilon)\right] \frac{\overline{\omega}_{\alpha}^{\prime}}{\epsilon} \frac{\partial \tilde{f}}{\partial \varphi} - \frac{\overline{V}}{R_0} sin\varphi \frac{\partial (\overline{f} + \tilde{f})}{\partial \epsilon} = \overline{v} \epsilon \frac{\partial^2 \tilde{f}}{\partial \lambda^2}
$$

* RP or QL limit just an inhomogeneous Airy eq.

$$
[\lambda - \lambda_0(\epsilon)] \frac{\overline{\omega}_{\alpha}^{\prime}}{\epsilon} \frac{\partial \tilde{f}}{\partial \varphi} - \frac{\overline{V}}{R_0} \sin \varphi \frac{\partial \overline{f}}{\partial \epsilon} = \overline{v} \epsilon \frac{\partial^2 \tilde{f}}{\partial \lambda^2}
$$

- * Drift ~ collisions \Rightarrow RP boundary width $\Delta \lambda \sim (\epsilon^2 \bar{v}/\bar{\omega}_\alpha)^{1/3}$ \bar{v}_{eff} ~ \bar{v} $\epsilon / (\Delta \lambda)^2$ ~ \bar{v} ϵ ($\bar{\omega}_{\alpha}/\epsilon^2 \bar{v})^{2/3}$
- * RP diffusivity independent of collisions: v_0 = birth speed $D_{rp} \sim (\Delta \lambda / \epsilon^{1/2}) (\bar{V}/\bar{v}_{eff})^2 \bar{v}_{eff} \sim \epsilon^{1/2} \bar{V}^2/\bar{\omega}_{\alpha} \sim q v_0^2 \delta^2 / \Omega_0 \epsilon^{1/2}$

RP = QL limit failure

* Island width: nonlinear term ~ drift, $\bar{V}/R_0\Delta\epsilon\!\sim\!\overline{\omega}_{\alpha}'\Delta\epsilon/\epsilon$ $\Delta \epsilon \sim (\bar{V} \epsilon / \bar{\omega}_o R_0)^{1/2} \sim (\epsilon \delta)^{1/2} \ll \epsilon^{1/2}$ * QL = RP neglects islands: $\Delta \lambda \gg \Delta \epsilon$ * Collisional boundary layer larger than island width if $(\epsilon^2 \bar{\nu}/\bar{\omega}_\alpha)^{1/3} \gg (\epsilon \delta)^{1/2}$ * QL assumes $\partial \tilde{f}/\partial \epsilon \sim \tilde{f}/\Delta \epsilon \ll \partial \bar{f}/\partial \epsilon \sim \bar{f}/\epsilon$ or $\tilde{f}/\bar{f} \ll \Delta \epsilon / \epsilon \sim (\delta / \epsilon)^{1/2} \ll \Delta \lambda / \epsilon \sim (\bar{v}/\bar{\omega}_{\alpha} \epsilon)^{1/3}$ * \ddot{f}/f small is not enough! * What happens if $\Delta \lambda \sim \Delta \epsilon$ or $\Delta \lambda \ll \Delta \epsilon$?

Nonlinear effects & collisional phase mixing * Hamilton,Tolman,Arzamasskiy, Duarte (AJ 2023) solve $\partial g/\partial \tau + j \partial g/\partial \varphi - \sin \varphi \partial g/\partial j = \Delta \partial^2 g/\partial j^2$ to find steady state for *j* vs φ (shown for $\Delta = 0.001$)

Collisionless vs collisional contrasted

FIG. 3. Motion of resonant particles in a wave.

Kadomstev 1968 Sov. Phys. Usp. vs Hamilton *et al.* **2023 AJ**

Nonlinear effects for $\Delta \ll 1$

* Can't solve Δ ~1, but can solve $\Delta \ll 1$

 $(x - \Lambda)$

* Normalizing the trapped nonlinear drift kinetic equation $\partial \tilde{f}$ $\partial \tilde{f}$ $\partial^2 \tilde{f}$

 $\frac{\partial f}{\partial \varphi}$ – $sin\varphi$ (\bar{f}' + $\frac{\partial}{\partial x}$) = Δ $\partial \Lambda^2$ with $x \propto \epsilon$, $\Lambda \propto (1 - \lambda)$ and $\bar{f}' = \partial \bar{f}/\partial x = constant$ * To obtain form nearly same eq. as Hamilton *et al.* let

$$
\tilde{f} = g - (x - \Lambda)\bar{f}'
$$

$$
(x - \Lambda)\frac{\partial g}{\partial \varphi} - \sin\varphi \frac{\partial g}{\partial x} = \Lambda \frac{\partial^2 g}{\partial \Lambda^2}
$$

Reduced Hamiltonian

- * Making believe I'm a real physicist, introduce $h = (x - \Lambda)^2/2 - cos\varphi$
- * Also, let $\sigma = \pm 1$

$$
j(x,\Lambda)=x-\Lambda=\sigma\sqrt{2(h+cos\varphi)}=j(h,\varphi)
$$

* Hamiltonian properties give Hamilton *et al.* form

$$
j\frac{\partial g}{\partial \varphi} - \sin\varphi \frac{\partial g}{\partial j} = \Delta \frac{\partial^2 g}{\partial j^2}
$$

- * Unlike Hamilton *et al*., only interested in steady state
- $*$ Collisional boundary layer about separatrix at $h = 1$

Change Variables

)

- * Changing variables from x , Λ to h, φ ∂g $=$ Δ ∂ l $(j$ ∂g l
- $\frac{\partial}{\partial \varphi}$ \boldsymbol{h} ∂h $\overline{\varphi}$ ∂h $\overline{\varphi}$ * For $\Delta \ll 1$, lowest order motion is collisionless with $q = q_1(h) + q_2(h, \varphi, \Lambda) + ...$
- * No need to solve next order, but needed for solubility

$$
\left.\frac{\partial g_2}{\partial \varphi}\right|_h = \Delta \frac{\partial}{\partial h}\bigg|_{\varphi} (j \frac{\partial g_1}{\partial h}\bigg|_{\varphi})
$$

Solubility

- * Terminology: bound or librating for island motion and unbound or circulating outside island (alphas trapped)
- * In Hamilton *et al.* no x dependence in
- * Here, every flux surface has island centered at $\Lambda = x$
- $*$ Islands are fully kinetic, need Λ & x
- * Integrate over a full bound period or full circulation

$$
\frac{\partial}{\partial h}\Big|_{\varphi} [(\oint_h d\varphi j) \frac{\partial g_1}{\partial h}\Big|_{\varphi})] = 0
$$

Bound $g_1 = 0$, unbound $g_1 = \pi \sigma \bar{f}' \int_k^l \frac{dt}{t^2 E(t)} \otimes k = \sqrt{\frac{2}{h+1}}$

Full Solution

- * Using $\sigma = \pm 1$ for circulating, and $\sigma = 0$ for bound $\tilde{f} = g_1 - j \bar{f}' = \bar{f}' \left[\sigma \pi \int_0^1 \frac{dt}{t^2 F} \right]$ $t^2E(t)$ *1* \boldsymbol{k} $-j$]
- * Using \tilde{f} can form the alpha energy flux

$$
Q = \frac{M_{\alpha}}{2} \langle \int d^3v f v^2 \vec{v}_d \cdot \nabla r \rangle
$$

* Find $\delta^{1/2}/\tau_{\rm s}$ dependence for energy diffusivity $D_{\nu} \sim \delta^{1/2} (\epsilon \delta R_0^2) (\nu_{\lambda}^3 / \nu_c \nu_0^2 \tau_s \delta) \sim \delta^{1/2} \epsilon R_0^2 \nu_{\lambda}^3 / \nu_0^2 \nu_c \tau_s$ with $v_1 v_2$ critical speed & τ_s slowing down time

Estimating kinetic island energy diffusivity

- * Step size is the island width: $R_0(\epsilon \delta)^{1/2}$
- * Effective fraction being transport: $(\epsilon \delta)^{1/2}/\epsilon^{1/2} = \delta^{1/2}$
- * Effective collision frequency: $\bar{v} \epsilon / [(\epsilon \delta)^{1/2}]^2 = \bar{v}/\delta$

 $\sigma^* \, \bar{\nu} = \nu_\lambda^3 / \nu_\theta^3 \tau_s$ modified by v_0 / v_c due to speed $\int dv$

$$
D_{\nu} \sim \delta^{1/2} (\epsilon \delta R_0^2) (\nu_{\lambda}^3 / \nu_c \nu_0^2 \tau_s \delta)
$$

QL vs kinetic island

* Kinetic island \sim RP = QL at Δ \sim 1 D_{ν} D_{rp} \sim (ϵ δ $3^{3/2} \frac{\Omega_0 R_o^2 v_\lambda^3}{4}$ $q v_0^4 v_c \tau_s$ $\sim\!\!\varDelta\ll 1$

which is roughly

$$
(\epsilon \delta)^{1/2} \gg (\epsilon^2 \bar{\nu}/\bar{\omega}_{\alpha})^{1/3}
$$

* QL = RP of restricted validity: Expect similar procedure modifies transport of passing alphas, resonant bulk ions, TAE & NTM modes in stellarators and tokamaks; RF heating & current drive for tokamaks & stellarators