Beyond Quasilinear Theory: What Happens When Quasilinear Theory Fails in a Stellarator

(Catto 2024 + earlier effort by Catto & Tolman in 2021 JPP paper)

Peter Catto Plasma Science and Fusion Center, MIT (supported by DoE)

Quasilinear theory has many meanings

Quasilinear (QL) theory here

- *Requires resonant particles & confined well particles
- *QL theory requires a velocity dependent resonance
- *Need collisions in steady state to define delta function
 - (not interested in bump on tail, modern QL theory :-)
- *Collisions simplest and relevant for magnetic fusion
- *Can be velocity space (RF) or drift kinetic
- *Drift kinetic for "optimized" stellarator transport

Stellarator transport

- *Quasilinear = resonant plateau = superbanana plateau
- *Collisions resolve a singularity: resonant plateau (RP)
- *RP involves narrow collisional layers resonance
- *RP behavior occurs when ν cancels out: "plateau"
- *Drift reversal resonance occurs for trapped alphas
- *Local f flattening suggests breakdown of QL theory

Trapped alphas in a nearly quasiymmetric stellarator

Bounce averaged drift kinetic equation

$$\overline{\omega}_{\alpha} \frac{\partial \tilde{f}}{\partial \varphi} - \overline{V} sin\varphi \ \frac{\partial (\overline{f} + \tilde{f})}{\partial r} = \overline{v} \epsilon \frac{\partial^2 \tilde{f}}{\partial \lambda^2}$$

with \overline{f} = unperturbed (slowing down tail solution)

- \tilde{f} = perturbed distribution ($\bar{f} \gg \tilde{f}$)
- $\overline{\omega}_{\alpha}$ = bounce average trapped drift in a flux surface
- \overline{V} = bounce average radial drift due to QS departure δ
- φ = QS breaking angular variation
- $\lambda = 2\mu B_0/v^2$ = pitch angle variable (adiabatic invariant) $\bar{v} = v_{\lambda}^3/v^3 \tau_s$ pitch angle collision freq. of alphas by ions

Trapped alpha resonance

- * $\overline{\omega}_{\alpha}$ reverses direction at some pitch angle \Rightarrow resonance
- * Drift reversal leads to collisional transport
- * SBP = RP just like QL neglects the nonlinear term
- * Islands may form at resonances
- * Islands introduce a small radial scale = island width
- * Island width ~ collisional boundary layer width when $\partial \tilde{f} / \partial r \sim \partial \bar{f} / \partial r$
- * QL = RP = SBP treatment fails
- * What happens when collisions still matter?

Form of resonance

- * At large aspect ratio $\overline{\omega}_{\alpha}$ reverses at $2E(\kappa_0) = K(\kappa_0)$ $\kappa^2 = [1 - (1 - \epsilon)\lambda]/2\epsilon\lambda$
- * Trapped boundary depends on inverse aspect ratio ϵ $1/(1 + \epsilon) < \lambda < 1/(1 - \epsilon)$
- * Expanding by writing $\overline{\omega}_{\alpha} = -2(\kappa^2 \kappa_0^2)\overline{\omega}_{\alpha}'$ then $\overline{\omega}_{\alpha} = \{\lambda - [1 - (2\kappa_0^2 - 1)\epsilon]\}\overline{\omega}_{\alpha}'/\epsilon$
- * Resonance depends on λ and ϵ with $\kappa_0^2 = 0.83$ and $\overline{\omega}'_{\alpha} \sim \overline{\omega}_{\alpha} \sim q v^2 / \Omega_0 R_0^2 \epsilon$ * Trapped fraction $\sim \sqrt{\epsilon}$, $\overline{V} \sim \overline{\omega}_{\alpha} R_0 \delta$ & $\epsilon \gg \delta = \text{non-QS}$

* Full nonlinear eq.

$$[\lambda - (1 + \epsilon - 2\kappa_0^2 \epsilon)] \frac{\overline{\omega}_{\alpha}'}{\epsilon} \frac{\partial \tilde{f}}{\partial \varphi} - \frac{\overline{V}}{R_0} \sin\varphi \ \frac{\partial (\bar{f} + \tilde{f})}{\partial \epsilon} = \overline{v} \epsilon \frac{\partial^2 \tilde{f}}{\partial \lambda^2}$$

* RP or QL limit just an inhomogeneous Airy eq.

$$[\lambda - \lambda_0(\epsilon)] \frac{\overline{\omega}'_{\alpha}}{\epsilon} \frac{\partial \tilde{f}}{\partial \varphi} - \frac{\overline{V}}{R_0} \sin\varphi \frac{\partial \overline{f}}{\partial \epsilon} = \overline{v}\epsilon \frac{\partial^2 \tilde{f}}{\partial \lambda^2}$$

- * Drift ~ collisions \Rightarrow RP boundary width $\Delta\lambda \sim (\epsilon^2 \bar{\nu}/\bar{\omega}_{\alpha})^{1/3}$ $\bar{\nu}_{eff} \sim \bar{\nu}\epsilon/(\Delta\lambda)^2 \sim \bar{\nu}\epsilon(\bar{\omega}_{\alpha}/\epsilon^2 \bar{\nu})^{2/3}$
- * RP diffusivity independent of collisions: $v_0 = \text{birth speed}$ $D_{rp} \sim (\Delta \lambda / \epsilon^{1/2}) (\bar{V} / \bar{v}_{eff})^2 \bar{v}_{eff} \sim \epsilon^{1/2} \bar{V}^2 / \bar{\omega}_{\alpha} \sim q v_0^2 \delta^2 / \Omega_0 \epsilon^{1/2}$

<u>RP = QL limit failure</u>

* Island width: nonlinear term ~ drift, $\overline{V}/R_0\Delta\epsilon\sim\overline{\omega}'_{\alpha}\Delta\epsilon/\epsilon$ $\Delta \epsilon \sim (\bar{V} \epsilon / \bar{\omega}_{\alpha} R_0)^{1/2} \sim (\epsilon \delta)^{1/2} \ll \epsilon^{1/2}$ * QL = RP neglects islands: $\Delta \lambda \gg \Delta \epsilon$ * Collisional boundary layer larger than island width if $(\epsilon^2 \bar{\nu} / \bar{\omega}_{\alpha})^{1/3} \gg (\epsilon \delta)^{1/2}$ * QL assumes $\partial \tilde{f} / \partial \epsilon \sim \tilde{f} / \Delta \epsilon \ll \partial \bar{f} / \partial \epsilon \sim \bar{f} / \epsilon$ or $\tilde{f}/\bar{f} \ll \Delta \epsilon / \epsilon \sim (\delta/\epsilon)^{1/2} \ll \Delta \lambda / \epsilon \sim (\bar{\nu}/\bar{\omega}_{\alpha}\epsilon)^{1/3}$ * \tilde{f}/\bar{f} small is not enough! * What happens if $\Delta \lambda \sim \Delta \epsilon$ or $\Delta \lambda \ll \Delta \epsilon$?

Nonlinear effects & collisional phase mixing * Hamilton,Tolman,Arzamasskiy, Duarte (AJ 2023) solve $\partial g/\partial \tau + j\partial g/\partial \varphi - sin\varphi \partial g/\partial j = \Delta \partial^2 g/\partial j^2$ to find steady state for *j* vs φ (shown for $\Delta = 0.001$)

Collisionless vs collisional contrasted

FIG. 3. Motion of resonant particles in a wave.

Kadomstev 1968 Sov. Phys. Usp. vs Hamilton et al. 2023 AJ

Nonlinear effects for $\Delta \ll 1$

- * Can't solve $\Delta \sim 1$, but can solve $\Delta \ll 1$
- * Normalizing the trapped nonlinear drift kinetic equation

 $(x - \Lambda)\frac{\partial \tilde{f}}{\partial \varphi} - \sin\varphi \ (\bar{f}' + \frac{\partial \tilde{f}}{\partial x}) = \Delta \frac{\partial^2 \tilde{f}}{\partial \Lambda^2}$ with $x \propto \epsilon$, $\Lambda \propto (1 - \lambda)$ and $\bar{f}' = \partial \bar{f} / \partial x = constant$ * To obtain form nearly same eq. as Hamilton *et al.* let

$$\tilde{f} = g - (x - \Lambda)\bar{f}'$$
$$(x - \Lambda)\frac{\partial g}{\partial \varphi} - \sin\varphi \frac{\partial g}{\partial x} = \Delta \frac{\partial^2 g}{\partial \Lambda^2}$$

Reduced Hamiltonian

- * Making believe I'm a real physicist, introduce $h = (x - \Lambda)^2/2 - cos\varphi$
- * Also, let $\sigma = \pm 1$

$$j(x,\Lambda) = x - \Lambda = \sigma \sqrt{2(h + \cos\varphi)} = j(h,\varphi)$$

* Hamiltonian properties give Hamilton et al. form

$$j\frac{\partial g}{\partial \varphi} - \sin\varphi \ \frac{\partial g}{\partial j} = \Delta \frac{\partial^2 g}{\partial j^2}$$

- * Unlike Hamilton et al., only interested in steady state
- * Collisional boundary layer about separatrix at h = 1

Change Variables

- * Changing variables from x, Λ to h, φ $\frac{\partial g}{\partial \varphi}\Big|_{h} = \Delta \frac{\partial}{\partial h}\Big|_{0} \left(j \frac{\partial g}{\partial h}\Big|_{0}\right)$
- * For $\Delta \ll 1$, lowest order motion is collisionless with $g = g_1(h) + g_2(h, \varphi, \Lambda) + ...$
- * No need to solve next order, but needed for solubility

$$\frac{\partial g_2}{\partial \varphi}\Big|_h = \Delta \frac{\partial}{\partial h}\Big|_{\varphi} \left(j\frac{\partial g_1}{\partial h}\Big|_{\varphi}\right)$$

Solubility

- * Terminology: bound or librating for island motion and unbound or circulating outside island (alphas trapped)
- * In Hamilton *et al.* no x dependence in *j*
- * Here, every flux surface has island centered at $\Lambda = x$
- * Islands are fully kinetic, need $\Lambda \& x$
- * Integrate over a full bound period or full circulation

$$\frac{\partial}{\partial h} \Big|_{\varphi} \left[(\oint_{h} d\varphi j) \frac{\partial g_{1}}{\partial h} \Big|_{\varphi} \right] = 0$$

* Bound $g_{1} = 0$, unbound $g_{1} = \pi \sigma \bar{f}' \int_{k}^{l} \frac{dt}{t^{2}E(t)} \& k = \sqrt{\frac{2}{h+1}}$

Full Solution

- * Using $\sigma = \pm 1$ for circulating, and $\sigma = 0$ for bound $\tilde{f} = g_1 - j\bar{f'} = \bar{f'}[\sigma\pi \int_k^l \frac{dt}{t^2 E(t)} - j]$
- * Using \tilde{f} can form the alpha energy flux

$$Q = \frac{M_{\alpha}}{2} \langle \int d^3 v f v^2 \vec{v}_d \cdot \nabla r \rangle$$

* Find $\delta^{1/2}/\tau_s$ dependence for energy diffusivity $D_{\nu} \sim \delta^{1/2} (\epsilon \delta R_0^2) (v_{\lambda}^3 / v_c v_0^2 \tau_s \delta) \sim \delta^{1/2} \epsilon R_0^2 v_{\lambda}^3 / v_0^2 v_c \tau_s$ with $v_{\lambda} \sim v_c$ critical speed & τ_s slowing down time

Estimating kinetic island energy diffusivity

- * Step size is the island width: $R_0(\epsilon\delta)^{1/2}$
- * Effective fraction being transport: $(\epsilon \delta)^{1/2}/\epsilon^{1/2} = \delta^{1/2}$
- * Effective collision frequency: $\bar{\nu}\epsilon/[(\epsilon\delta)^{1/2}]^2 = \bar{\nu}/\delta$

* $\bar{v} = v_{\lambda}^3 / v_0^3 \tau_s$ modified by v_0 / v_c due to speed $\int dv$

$$D_{\nu} \sim \delta^{1/2} (\epsilon \delta R_0^2) (v_{\lambda}^3 / v_c v_0^2 \tau_s \delta)$$

QL vs kinetic island

* Kinetic island ~ RP = QL at $\Delta \sim 1$ $\frac{D_{\nu}}{D_{rp}} \sim (\frac{\epsilon}{\delta})^{3/2} \frac{\Omega_0 R_o^2 v_{\lambda}^3}{q v_0^4 v_c \tau_s} \sim \Delta \ll 1$

which is roughly

$$(\epsilon\delta)^{1/2} \gg (\epsilon^2 \bar{\nu}/\overline{\omega}_{\alpha})^{1/3}$$

* QL = RP of restricted validity: Expect similar procedure modifies transport of passing alphas, resonant bulk ions, TAE & NTM modes in stellarators and tokamaks; RF heating & current drive for tokamaks & stellarators