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The incompressible e-MHD equations in Eulerian form

Ω is a bounded domain of R3. x ∈ Ω.

u = u(t , x) is the velocity field.

b = b(t , x) is the magnetic field.

e = e(t , x) is the electric field.

The incompressible e-MHD equations:

∂t u + u · ∇u + e + u × b = 0, x ∈ Ω, t ∈]0,T [,

−∇× b = u, x ∈ Ω, t ∈]0,T [,

∂t b +∇× e = 0, x ∈ Ω, t ∈]0,T [,

∇ · b = 0, ρ = 1, x ∈ Ω, t ∈]0,T [,

u · ν = 0, b · ν = 0, e × ν = 0, x ∈ ∂Ω, t ∈]0,T [,

(u, b, e)|t=0
= (u0, b0, e0), x ∈ Ω.
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Reformulation of the incompressible e-MHD equations in Eulerian form
a = a(t , x) is the vector potential such that b = ∇× a and ∇ · a = 0.

p = p(t , x) := u − a is the canonical momentum.

ω = ω(t , x) := ∇× u is the standard fluid vorticity.

ω∗ := ∇× p = ω − b is the generalized vorticity.

The incompressible e-MHD equations:

∂tω∗ = ∇× (u × ω∗) ≡ −£uω∗ x ∈ Ω, t ∈]0,T [,

u = −∇× b x ∈ Ω, t ∈]0,T [,

e = −(∂t + u · ∇)u − u × b x ∈ Ω, t ∈]0,T [,

(u, b, e)|t=0
= (u0, b0, e0), x ∈ Ω.

(⋆)


−(1 −∆)b = ω∗ on Ω,

∇ · b = 0 on Ω,

ν · ∇ × b = 0, and b · ν = 0 on ∂Ω,

Elliptic BVP (⋆) in b can be replaced by b = ∇× a and the Elliptic BVP in a :
∆a = u on Ω,

∇ · a = 0 on Ω,

a × ν = 0 on ∂Ω.
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Well-posedness of the incompressible e-MHD

Theorem (Well-posedness of e-MHD equations on a bounded domain)

Let Ω be a bounded and simply-connected domain of R3 with C∞ boundary ∂Ω.
Let s > 3/2 + 1. Let u0 ∈ Hs(Ω) (initial fluid vorticity ω0 = ∇× u0 ∈ Hs−1(Ω)) such that
∇ · u0 = 0 on Ω and u0 · ν = 0 on ∂Ω.
Let the initial fields (a0, b0) be the unique solutions of the following boundary value problems,

∆b0 = ∇× u0 on Ω,

∇ · b0 = 0 on Ω,

ν · ∇ × b0 = 0, and b0 · ν = 0 on ∂Ω,

and


∆a0 = u0 on Ω,

∇ · a0 = 0 on Ω,

a0 × ν = 0 on ∂Ω.

Consequently a0 ∈ Hs+2(Ω) (initial magnetic field b0 = ∇× a0 ∈ Hs+1(Ω)) and the initial
generalized vorticity ω∗0 = ω0 − b0 ∈ Hs−1(Ω). Let e0 ∈ Hs−1(Ω) with e0 × ν = 0.

Then there exist a time T > 0 and a unique solution to the e-MHD equations, such that

u ∈ C (0,T ;Hs(Ω)) ∩ W 1,∞(0,T ;Hs−1(Ω)) ∩ C 1([0,T )× Ω),

a ∈ C (0,T ;Hs+2(Ω)) ∩ W 1,∞(0,T ;Hs+1(Ω)) ∩ C 1(0,T ;C 2,γ(Ω)), 0 < γ < 1,

b ∈ C (0,T ;Hs+1(Ω)) ∩ W 1,∞(0,T ;Hs(Ω)) ∩ C 1(0,T ;C 1,γ(Ω)), 0 < γ < 1,

e ∈ L∞(0,T ;Hs−1(Ω)),

ω∗ ∈ C (0,T ;Hs−1(Ω)).
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Lagrangian fields, and the generalized Cauchy Invariants equation (CIE)

Let α 7→ Xt (α) = X(t , α) be the Lagrangian flow-map tracking at time t the position of a
particle starting at α ∈ Ω.

The Lagrangian flow-map X satisfies the following ordinary differential equation,

∂t X(t , α) = u(t ,X(t , α)), X(0, α) = α ∈ Ω.

A = A(t , α) := a(t ,X(t , α)) is the Lagrangian magnetic vector potential.

B = B(t , α) := b(t ,X(t , α)) is the Lagrangian magnetic field.

E = E(t , α) := e(t ,X(t , α)) is the Lagrangian electric field.

U = U(t , α) := u(t ,X(t , α)) is the Lagrangian velocity field.

P = P(t , α) := p(t ,X(t , α)) is the Lagrangian canonical momentum.

A Lagrangian formulation of Lie-advection of the generalized vorticity ω∗ , i.e.

∂tω∗ + £uω∗ = 0,

is given by

the Cauchy or vorticity-transport equation: ω∗(t ,X(t , α)) = ∇T
αX(t , α)ω∗0(α),

or by

the Cauchy Invariants Equation (CIE):
3∑

i=1

∇αP i (t , α)×∇αX i (t , α) = ω∗0(α).
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Digression on the Cauchy Invariants Equation (CIE)
CIE is a generalization of the Cauchy invariants equation in R3 obtained by Cauchy (1825):∑

i

∇Ẋ i ×∇X i = ω0.

In Cauchy’s paper, where cross product and vector do not exist, CIE is just a step of
calculus to prove the Cauchy formula.

CIE can be proved by a variationnal principle and the rellabeling symmetry
(cf. N.Besse-U.Frisch JFM17, CMP17).

CIE can be generalized to any Lie-advected exact k -form on manifolds of any dimension
(cf. NB-UF JFM17, NB CMP20).

Here, the generalized vorticity 2-form ω
(2)
∗ (t , x) = dp(1)(t , x) satisfies the (CIE):

dP(1)
i (t , α) ∧ dX i (t , α) = ω

(2)
0 (α)

CIE can be generalized to other (magneto-)hydrodynamics models which may be
incompressible or compressible, in fact to any system which is described by Lie transport
(cf. NB-UF JFM17, NB JMAA22).

CIE can be generalized to dissipative systems where Lie-advection is supplemented by the
sum of squares of Lie derivative. CIE still holds but in average or in a statistical sense
(reminiscent to Feynman–Kac formula)
(cf. NB NA23)

The Hodge dual of CIE is the Cauchy formula.
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Main result

Theorem (Lagrangian regularity of the e-MHD flow on a bounded domain [NB JMAA22])

Assume that the hypotheses of well-posedness Theorem hold.

Assume that the boundary ∂Ω is analytic (in space).

Then, there exists a time T = C(Ω, ∥u0∥Hs(Ω), ∥a0∥Hs(Ω)) such that the Lagrangian fields
(X ,A,B,E) satisfy

X , A ∈ A
(
]0,T [;Hs(Ω)

)
, and B,E ∈ A

(
]0,T [;Hs−1(Ω)

)
.

where the functional space,
A
(
]0,T [;Hs(Ω)

)
is the space of functions which are analytic in time with values in Hs(Ω) (Sobolev spaces) in the
physical space.

Corollary

U,P ∈ A
(
]0,T [;Hs(Ω)

)
, since U = Ẋ and P = U − A.

This result can be extended to a large class of ultradifferentiable regularity, which contains
among others the Gevrey regularity class.
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Lagrangian formulation of e-MHD on a bounded domain (1/2)

A Lagrangian formulation in the variables (t , α) ∈ [0,T [×Ω of the incompressible e-MHD
equations on the bounded domain Ω is given by

∇Ẋ k ×∇X k + b0 = ∇Ak ×∇X k + ω0, α ∈ Ω, t ∈ [0,T [,

det
Å
∂X
∂α

ã
= 1, α ∈ Ω, t ∈ [0,T [,

∇ · (G ∇A) = Ẋ , α ∈ Ω, t ∈ [0,T [,

∇ · (AA) = A : ∇A = 0, α ∈ Ω, t ∈ [0,T [,

Bi = (∇X k ×∇X i ) · ∇Ak , ∀i, α ∈ Ω, t ∈ [0,T [,

E = −Ẍ − Ẋ × B, α ∈ Ω, t ∈ [0,T [,

U = Ẋ , P = U − A = Ẋ − A, α ∈ Ω, t ∈ [0,T [,

Ẋ · ν(X) = 0, A × ν(X) = 0, α ∈ ∂Ω, t ∈ [0,T [.

with
G := G(X) = AAT ,

where the inverse Jacobian matrix A is given by

(A)ij := (A)ij (X) =

Å
∂X
∂α

ã−1

ij
=

Å
∂α

∂X

ã
ij
=

1
2
εii1 i2εjj1 j2

∂X j1

∂αi1

∂X j2

∂αi2
.
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Lagrangian formulation of e-MHD on a bounded domain (2/3)
We introduce the following decomposition for the Lagrangian flow-map X and the Lagrangian
magnetic vector potential A :

X(t , α) = α+ ξ(t , α), and A(t , α) = a0(α) + Ψ(t , α),

with ξ(0, α) = 0, and Ψ(0, α) = 0.

In terms of the new unknowns (ξ,Ψ), the Lagrangian formulation of the e-MHD equations on a
bounded domain becomes

∇× ξ̇ = ω0 + ∇×Ψ + ∇(ak
0 +Ψk − ξ̇k )×∇ξk , α ∈ Ω, t ∈ [0,T [,

∇ · ξ +
1
2
(∂iξ

i∂jξ
j − ∂iξ

j∂jξ
i ) +

1
6
εi1 i2 i3εj1 j2 j3∂i1ξ

j1∂i2ξ
j2∂i3ξ

j3 = 0, α ∈ Ω, t ∈ [0,T [,

∆(a0 +Ψ) + ∇ ·
(
g∇(a0 +∇Ψ)

)
= ξ̇, α ∈ Ω, t ∈ [0,T [,

(1 +∇ · ξ)∇ ·Ψ − (∂j ai
0 + ∂jΨ

i )
(
∂jξ

i −
1
2
εii1 i2εjj1 j2∂i1ξ

j1∂i2ξ
j2
)

= 0, α ∈ Ω, t ∈ [0,T [,

Bi = (∇× a0)
i + (∇×Ψ)i +

(
∇(ak

0 +Ψk )×∇ξk )i

+
(
∇ξi ×∇(ak

0 +Ψk )
)k

+ (∇ξk ×∇ξi ) · ∇(ak
0 +Ψk ) , ∀i, α ∈ Ω, t ∈ [0,T [,

E = −ξ̈ − ξ̇ × B, α ∈ Ω, t ∈ [0,T [,

U = ξ̇, P = ξ̇ − a0 −Ψ, α ∈ Ω, t ∈ [0,T [,

ξ̇ · ν(α+ ξ) = 0, a0 × ν(α+ ξ) + Ψ× ν(α+ ξ) = 0, α ∈ ∂Ω, t ∈ [0,T [,

where the matrix g is given by
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Lagrangian formulation of e-MHD on a bounded domain (3/3)

gij = δij∇ · ξ + (1 +∇ · ξ) (δij∇ · ξ − ∂iξ
j − ∂jξ

i ) + ∂kξ
i∂kξ

j

+
1
2
(1 +∇ · ξ) (εil1 l2εjk1k2 + εjl1 l2εik1k2 )∂l1ξ

k1∂l2ξ
k2

−
1
2
εkk1k2 (εil1 l2∂kξ

j + εjl1 l2∂kξ
i )∂l1ξ

k1∂l2ξ
k2

+
1
4
εii1 i2εjj1 j2∂i1ξ

k1∂i2ξ
k2 (∂j1ξ

k1∂j2ξ
k2 − ∂j1ξ

k2∂j2ξ
k1 ).
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Construction of the e-MHD flow as a formal time series: General Picture

We introduce the following formal time-Taylor expansions of ξ and Ψ,

ξ(t , α) =
∑
σ>0

ξσ(α)tσ , and Ψ(t , α) =
∑
σ>0

Ψσ(α)tσ .

Plugging these time-Taylor series in the previous Lagrangian formulation of the e-MHD
we obtain a constructive scheme to determine recursively all the time-Taylor coefficients
{ξσ}σ>0 and {Ψσ}σ>0.

Schematically we obtain the following recursive procedure, for σ > 1,

ξσ = Fξ [a0]
(
{ξσ′}σ′<σ , {Ψσ′}σ′<σ

)
,

Ψσ−1 = FΨ[a0]
(
{ξσ′}σ′≤σ , {Ψσ′}σ′<σ−1

)
,

where the functionals Fξ[a0](·) and FΨ[a0](·) , which depends on a0, can be seen as
some integro-differential or pseudo-differential operators of order zero.

This recursive scheme is initialized with ξ1 = u0 and a0 = L−1ξ1, where L refers to the
linear differential operator associated with a boundary value problem of elliptic type.
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Construction of the e-MHD flow as a formal time series: Recursive Scheme (1/5)

1) Initialization of the recursive algorithm.

The time-Taylor coefficient ξ1 is given by

ξ1 = u0.

The initial magnetic vector potential a0 is solution of the following non-homogeneous elliptic
boundary value problem, 

∆a0 = ξ1, α ∈ Ω,

∇ · a0 = 0, α ∈ ∂Ω,

a0 × ν = 0, α ∈ ∂Ω.

2) Determination of the time-Taylor coefficients ξσ for σ > 1.

The Helmholtz–Hodge decomposition of the time-Taylor coefficient ξσ reads

ξσ = ∇φσ +∇× Φσ , ∇ · Φσ = 0, α ∈ Ω,

where the Helmholtz–Hodge potentials φσ and Φσ are respectively a scalar and a
three-dimensional vector.

The scalar potential φσ satisfies the following non-homogeneous elliptic boundary value
problem, {

∆φσ = ∇ · ξσ , α ∈ Ω,

∂νφσ = ξσ · ν, α ∈ ∂Ω,
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Construction of the e-MHD flow as a formal time series: Recursive Scheme (2/5)
where

∇ · ξσ = −
1
2

∑
σ1+σ2=σ

σ1, σ2>0

(∂iξ
i
σ1

∂jξ
j
σ2

− ∂iξ
j
σ1

∂jξ
i
σ2

)

−
1
6
εi1 i2 i3εj1 j2 j3

∑
σ1+σ2+σ3=σ

σ1, σ2, σ3>0

∂i1ξ
j1
σ1∂i2ξ

j2
σ2∂i3ξ

j3
σ3 ,

ξσ · ν = −
∑

σ1+σ2=σ

σ1, σ2>0

σ1

σ
ξσ1 · νσ2 ,

with

νσ(α) :=
∑

1≤|β|≤σ

∂βν(α)
σ∑

i=1

∑
Pi (σ,β)

i∏
j=1

(ξ1
ℓj
)
k1

j

k1
j !

. . .
(ξ3

ℓj
)
k3

j

k3
j !

.

Using Faà-di-Bruno formula, the set Pi (σ, β) is defined by

Pi (σ, β) :=

ß
(ℓ1, . . . , ℓi ), (k1, . . . , ki ); 0 < ℓ1 < . . . < ℓi ;

|kj | > 0, j ∈ [1, i];
i∑

j=1

kj = β,
i∑

j=1

|kj |ℓj = σ

™
.
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Construction of the e-MHD flow as a formal time series: Recursive Scheme (3/5)

The vector potential Φσ satisfies the following non-homogeneous elliptic boundary value problem:
∆Φσ = −∇× ξσ , α ∈ Ω,

∇ · Φσ = 0, α ∈ ∂Ω,

Φσ × ν = 0, α ∈ ∂Ω,

where

∇× ξσ =
1
σ
∇×Ψσ−1 +

1
σ
∇ak

0 ×∇ξk
σ−1

+
∑

σ1+σ2+1=σ

σ1, σ2>0

1
σ
∇Ψk

σ1
×∇ξk

σ2
−

∑
σ1+σ2=σ

σ1, σ2>0

σ1

σ
∇ξk

σ1
×∇ξk

σ2
.

3) Determination of the time-Taylor coefficients Ψσ for σ > 0.

The time-Taylor coefficient Ψσ satisfies the following non-homogeneous elliptic boundary
value problem: 

∆Ψσ = fσ , α ∈ Ω,

∇ ·Ψσ = hσ , α ∈ ∂Ω,

Ψσ × ν = gσ , α ∈ ∂Ω,
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Construction of the e-MHD flow as a formal time series: Recursive Scheme (4/5)

where

fσ := (σ + 1)ξσ+1 −∇ · (gσ∇a0)−
∑

σ1+σ2=σ

σ1, σ2>0

∇ · (gσ1∇Ψσ2 ),

hσ := ∂j ai
0∂jξ

i
σ +

∑
σ1+σ2=σ

σ1, σ2>0

{
∂jξ

i
σ1

∂jΨ
i
σ2

−∇ · ξσ1 ∇ ·Ψσ2 −
1
2
εii1 i2εjj1 j2∂i1ξ

j1
σ1∂i2ξ

j2
σ2∂j ai

0

}

−
1
2

∑
σ1+σ2+σ3=σ

σ1, σ2, σ3>0

εii1 i2εjj1 j2∂i1ξ
j1
σ1∂i2ξ

j2
σ2∂jΨ

i
σ3

,

gσ := −a0 × νσ −
∑

σ1+σ2=σ

σ1, σ2>0

Ψσ1 × νσ2 ,
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Construction of the e-MHD flow as a formal time series: Recursive Scheme (5/5)

(gσ)ij := 2δij∇ · ξσ − ∂iξ
j
σ − ∂jξ

i
σ +

∑
σ1+σ2=σ

σ1, σ2>0

{
∇ · ξσ1 (δij∇ · ξσ2 − ∂iξ

j
σ2

− ∂jξ
i
σ2

)

+ ∂kξ
i
σ1

∂kξ
j
σ2

+
1
2
(εil1 l2εjk1k2 + εjl1 l2εik1k2 )∂l1ξ

k1
σ1∂l2ξ

k2
σ2

}
+

1
2

∑
σ1+σ2+σ3=σ

σ1, σ2, σ3>0

{
∇ · ξσ3 (εil1 l2εjk1k2 + εjl1 l2εik1k2 )∂l1ξ

k1
σ1∂l2ξ

k2
σ2

− εkk1k2 (εil1 l2∂kξ
j
σ3

+ εjl1 l2∂kξ
i
σ3

)∂l1ξ
k1
σ1∂l2ξ

k2
σ2

}
+

1
4

∑
σ1+σ2+σ3+σ4=σ

σ1, σ2, σ3, σ4>0

εii1 i2εjj1 j2∂i1ξ
k1
σ1∂i2ξ

k2
σ2 (∂j1ξ

k1
σ3∂j2ξ

k2
σ4 − ∂j1ξ

k2
σ3∂j2ξ

k1
σ4 ).

Nicolas BESSE (08/08/2024) Lagrangian regularity of e-MHD 15th Plasma Kinetics Working Meeting 20 / 35



A nonlinear recursive scheme

Fixing σ > 1, we assume that we know all the following time-Taylor coefficients {ξσ′}σ′<σ

and {Ψσ′}σ′<σ−1 . From these known time-Taylor coefficients, the aim is to obtain the next
unknown time-Taylor coefficients ξσ and Ψσ−1 , called the current time-Taylor coefficients at
the rank σ .

Introducing the notation X := ξσ and Y := Ψσ−1 for the current time-Taylor coefficients,
the scheme rewrites as

X = Fξ [a0]
(
{ξσ′}σ′<σ , {Ψσ′}σ′<σ−1, Y

)
,

Y = FΨ[a0]
(
{ξσ′}σ′<σ , X , {Ψσ′}σ′<σ−1

)
,

Then, the boundary value problems are coupled together and thus constitute a closed
nonlinear system in terms of the current time-Taylor coefficients (ξσ ,Ψσ−1) or (X ,Y) .

This situation is very different from the incompressible Euler equations, which corresponds in
the scheme to set a0 = 0 , and {Ψσ = 0}σ>0, i.e. FΨ ≡ 0 and

X = ξσ = Fξ [0]
(
{ξσ′}σ′<σ , {Ψσ′ = 0}σ′<σ

)
= CZ

(
{ξσ′}σ′<σ

)
,

where CZ(·) stands for a Calderón–Zygmund integro-differential operator of order zero.

In this case we clearly observe that for any σ > 1, the current time-Taylor coefficient X = ξσ
is obtained only from coefficients {ξσ′}σ′<σ by solving linear boundary value problems in
terms of the current time-Taylor coefficient X = ξσ .
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Convergence analysis (1/3)
We aim at proving that ξ, Ψ ∈ A(]− T ,T [;Hs(Ω)).

It will be the case if and only if there exists a real positive number ρ such that

∀ψ ∈ {ξ,Ψ}, the sets
ß∥∂σ

t ψ∥Hs

ρσσ!
, σ ∈ N, t ∈]− T ,T [

™
are bounded.

This will be the case if the generatrice function t 7→ ζ(t), defined by

ζ(t) =
∑
σ>0

Ä
∥ξσ∥Hs(Ω) + ∥Ψσ∥Hs(Ω)

ä
ϱ−σ tσ , is uniformly bounded on ]− T ,T [.

Using Hodge decomposition, and elliptic estimates for the Neumann & Dirichlet BVPs we
obtain for σ > 0,

∥Ψσ∥Hs(Ω) ≤ C3

Ä
∥fσ∥Hs−2(Ω) + ∥gσ∥Hs−1/2(∂Ω) + ∥hσ∥Hs−3/2(∂Ω)

ä
,

and

∥ξσ∥Hs(Ω) ≤ ∥∇ · φσ∥Hs(Ω) + ∥∇ × Φσ∥Hs(Ω) ≤ ∥φσ∥Hs+1(Ω) + ∥Φσ∥Hs+1(Ω)

≤ C12

Ä
∥∇ × ξσ∥Hs−1(Ω) + ∥∇ · ξσ∥Hs−1(Ω) + ∥ξσ · ν∥Hs−1/2(∂Ω)

ä
.

Therefore we obtain,

(I) ζ(t) ≤ C123
∑
σ>0

(
∥∇ · ξσ∥Hs−1(Ω) + ∥∇ × ξσ∥Hs−1(Ω) + ∥ξσ · ν∥Hs−1/2(∂Ω)

+ ∥fσ∥Hs−2(Ω) + ∥gσ∥Hs−1/2(∂Ω) + ∥hσ∥Hs−3/2(∂Ω)

)
ϱ−σ tσ .
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Convergence analysis (2/3)

Since ∂Ω is analytic, there exists a positive constant Cν , such that, for
0 ≤ s < ∞ , and |β| ≥ 0, ∥∂βν∥Hs(∂Ω) ≤ CνR−|β|

ν |β|!. Using this estimate we get

Proposition

Let s > 3/2 + 1. Then there exist positive constants Cd , Cr , Cn, Cf , Cg , Ch, such that∑
σ>0

∥∇ · ξσ∥Hs−1(Ω)ϱ
−σ tσ ≤ Cdζ

2(t)(1 + ζ(t)),

∑
σ>0

∥∇ × ξσ∥Hs−1(Ω)ϱ
−σ tσ ≤ ∥u0∥Hsϱ−1t + Cr ζ(t)

(
t + (1 + t)ζ(t)

)
,

∑
σ>0

∥ξσ · ν∥Hs−1/2(∂Ω)ϱ
−σ tσ ≤ Cnζ(t)

(
1 − K−1

ν ζ(t)
)−1

,

∑
σ>0

∥fσ∥Hs−2(Ω)ϱ
−σ tσ ≤ ζ̇(t) + Cf ζ(t)

(
1 + ζ(t) + ζ2(t) + ζ3(t) + ζ4(t)

)
,

∑
σ>0

∥gσ∥Hs−1/2(∂Ω)ϱ
−σ tσ ≤ Cg(1 + ζ(t))

(
1 − K−1

ν ζ(t)
)−1

,

∑
σ>0

∥hσ∥Hs−3/2(∂Ω)ϱ
−σ tσ ≤ Chζ(t)

(
1 + ζ(t) + ζ2(t)

)
,

with K−1
ν = CaC∂/Rν .
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Convergence analysis (3/3)
Combining (I) and estimates of the previous proposition we obtain the differential inequality:

ζ(t) ≤ C123

{
∥u0∥Hsϱ−1t + ζ̇(t) + Cdrfh(1 + t)ζ(t)

(
1 + ζ(t)

)
+ Cdfhζ

3(t) + Cf ζ
4(t) + Cf ζ

5(t) + Cng
(
1 + ζ(t)

)(
1 − K−1

ν ζ(t)
)−1

}
, (1)

where Cdrfh = Cd + Cr + Cf + Ch, Cdfh = Cd + Cf + Ch, and Cng = Cn + Cg . Setting

λ(t) := ∥u0∥Hsϱ−1t ,

Q(t) := λ(t) − C−1
123ζ(t) + Cdrfh(1 + t)ζ(t)

(
1 + ζ(t)

)
+ Cdfhζ

3(t) + Cf ζ
4(t) + Cf ζ

5(t),

Z (t) := Q(t) + Cng
(
1 + ζ(t)

)(
1 − K−1

ν ζ(t)
)−1

,

inequality (1) can be recast as −ζ̇(t) ≤ Z (t), which gives, after time integration, the following
final inequality

ζ(t) +
∫ t

0
Z (τ)dτ ≥ 0. (2)

A sufficient condition for inequality (2) to hold is to have both

Q(t) ≥ 0, and ζ(t) ≤ Kν . (3)

Following standard argument, we can then show that there exists a time T > 0, with

T = T (∥u0∥Hs , ∥a0∥Hs , Ca, C∂ , Cν , Kν , ϱ)

such that for all t ∈]0,T [, the sufficient condition (3) is satisfied.
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Numerical application: 3D-axisymmetric wall-bounded and potentially singular
incompressible Euler flows: PhD T. Hertel.

3D incompressible Euler equations in a wall-bounded infinite cylinder (Euclidean
3D-axisymmetry geometry).

Axisymmetry implies invariance by rotation in θ around the cylinder z-axis: (r , θ, z) → (r , z).

Boundary conditions: periodic in z and rigid impermeable boundary in r .

Initial condition for potentially singular flow: Luo–Hou initial condition,

v r
0 = 0, vz

0 = 0, vθ
0 (r , z) = 100r exp(−30(1 − r2)4) sin(2πz/L), L = 1/6.

Nicolas BESSE (08/08/2024) Lagrangian regularity of e-MHD 15th Plasma Kinetics Working Meeting 26 / 35



The Cauchy–Lagrange algorithm

It belongs to the class of forward semi-Lagrangian methods.

We compute the time-Taylor coefficients of the Lagrangian map a 7→ X(t , a) at any chosen
order by using the above recursion relations (with Helmholtz–Hodge decompositions) and the
initial (or current) vorticity.
This requires to solve some non-homogeneous elliptic Boundary Value Problems (BVPs) in
space.

To solve the non-homogeneous elliptic BVPs problems we use a Chebyshev–Fourier
pseudo-spectral decomposition (polynomials) in space, which leads to spectral accuracy in
space.

We udpate of the Lagrangian vorticity (along the flow X ) at the next time-step by using the
previously computed Lagrangian map a 7→ X(t , a) and the Cauchy formula.
This leads to the knowledge of the new vorticity (at the next time step) on a distribution of
scattered spatial points.

We resample the Lagrangian vorticity on the Eulerian (Chebyshev–Fourier) grid by using a
high-order interpolation scheme (B-Splines) on a non-uniform grid (cascade interpolation
scheme). The loop is closed.

All details are in the paper Hertel-Besse-Frisch JCP22.
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Conservation laws (helicity, Kelvin circulation, kinetic energy) and ∥ω(t)∥∞
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(
v r , vθ, vz)(t , r = 1) and

(
ωr , ωθ, ωz)(t , r = 1) for t ∈ [0, 3.51 × 10−3]
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(
v r , vθ, vz)(t , r , z) :
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(
ωr , ωθ, ωz)(t , r , z) :
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Why it works ? Answer: same kind of structure as the incompressible Euler equations
As far as it concerns time regularity, there is a remarkable difference between the Eulerian
and Lagrangian solutions to the incompressible Euler equations in the spatial non-too-smooth
regime.

For instance, in Eulerian coordinates, we know that there exists, locally in time, a unique
regular solution u ∈ L∞

t ([0,T ];C1,α
x (Ω)) for initial data u0 ∈ C1,α

x (Ω) with 0 < α < 1 (C1,α
x

are standard Hölder spaces). But the initial-data-to-solution map of Euler equations is not
continuous in Hölder spaces as a map from C1,α to L∞

t C1,α
x (cf. Misiolek–Yoneda 2018). In

other words the solution does not depend continuously on initial data in such Hölder spaces.

By contrast in Lagrangian coordinates, where one is focusing on Lagrangian particles
trajectories, an initial velocity field with limited smoothness (typically in Sobolev or Hölder
classes) launches geodesic curves whose temporal smoothness (ultradifferentiable) widely
exceeds the limited spatial smoothness.

Non-constructive proofs in Rn: J.-Y. Chemin 1992 (C∞-regularity, paradifferential
calculus), P. Serfati 1992, 1995 (analytic regularity, EDOs in Banach spaces), Gamblin 1994,
Constantin-Vicol-Wu 2015 (SQG in R2), Hernandez 2017 (Serfati’s method renewed +
counterexamples).

Constructive proof in periodic domains of R3: Zheligovsky-Frisch 2014 (Fourier series).

Non-constructive proofs on bounded domains of Rn: T. Kato 2000 (C∞-regularity),
Glass-Sueur-Takahashi 2012 (analytic regularity in Ω ⊂ R3).

Constructive proof on bounded domains of R3: Besse-Frisch 2017.

Constructive proof on manifolds of any dimension (w/o boundary): Besse 2020
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Other Hamiltonian systems, and in particular other MHD models ?

O1 The first obstruction, named O1, is the presence of several coupled fluids.

This concerns two-fluid models and a fortiori multi-fluid models, or models which arise as a
derivation from a two-fluid or a multi-fluid theory.

Indeed, in a two-fluid transport model the two Lagrangian flow-maps (associated with the
velocity field of each fluid) are coupled together through some equations for the
electromagnetic fields, which in return determine the velocity fields. Because of this coupling,
one Lagrangian flow-map experiences directly the roughness (with respect to Lagrangian
variables) of the other Lagrangian flow-map.

Everything happens as if one Lagrangian flow-map comes across the other one and thus
sees its relative roughness.

O2 The second obstruction, named O2, is the finite speed of propagation property which is not
compatible with the Lagrangian analyticity property.

A system, in which waves propagate at a finite speed, can not sustain the Lagrangian
analyticity property because, for this, some information must propagate at infinite speed.

For examples, in the incompressible Euler equations (resp. pressureless compressible
one-fluid Euler–Poisson system) this is the pressure (resp. electric scalar potential) which
propagates at infinite speed, while for the e-MHD this is the magnetic field or the magnetic
vector potential.

By contrast it has been shown that the 2D barotropic (isentropic) compressible Euler
equations, where the pressure propagates at a finite speed do not satisfy the Lagrangian
analyticity property for its corresponding Lagrangian flow-map X .
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THANK YOU FOR YOUR ATTENTION
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