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Introduction

Two notions, strong and weak turbulence , in particular how they appear
in the hierarchy of equations which range from particles dynamic to
macroscopic problems via kinetic equations and above that to the issue of
closure.
Fluid turbulence concerns the case of family , weak limit .. of unstable
solutions such that in some region for the Reynolds stress tensor one has
for weak limit (say with ν → 0).

R = uν ⊗ uν ̸= uν ⊗ uν
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Introduction

Uriel Frisch noticed the following observation made by Leonardo da Vinci

played a relevant role in our investigation. Some of them are reported
and briefly commented on in this section.

The sheet RCIN 912660 is composed of two parts. In the
upper part, there are drawings of flow past a free-surface piercing
plate as reported in the picture on the left in Fig. 4. In this drawing,
Leonardo reproduced the complex motion of the free surface in a
detailed way, highlighting some flow features, such as the genera-
tion of vortical structures linked to breaking wave phenomena. As
many scholars have remarked, the surface motion resembles curly
hair as in his drawing representing the “Head of Leda” (sheet
RCIN 912518, see right-hand part of Fig. 4). Leonardo observed
the motion of the water surface and identified two components:
one which follows the main current, while the other forms the lines
of the eddies.

This decomposition can be linked to the modern meaning of the
term “turbulent flow” coined much later in 1883 thanks to the experi-
ments of Osborne Reynolds.20,36 In Reynolds’ work, the transition
from laminar to turbulent flow is identified thanks to the dimension-
less number that bears his name and represents the ratio between iner-
tial and viscous forces. Once a turbulent flow regime is established, the
velocity field can be decomposed into two parts: one represents a time
averaged component and the other contains the high frequency

chaotic fluctuations. The latter are related to the action of turbulent
eddies. It is worth noting that in his paper,36 Osborne Reynolds repre-
sented the turbulent flows observed in his experimental apparatus by
means of drawings, using Leonardo’s approach (see Fig. 5). In this arti-
cle, Reynolds made the following comment on this sketch: “On view-
ing the tube by the light of an electric spark, the mass of colour
resolved itself into a mass of more or less distinct curls, showing
eddies.”

The bottom part of the sheet RCIN 912660 contains the drawing
that is the subject of the present work (picture on the left in Fig. 6): the
fall of a stream of water from a sluice into a pool in which the multiple
layered vortices are seen extending far below the surface, and where
entrapment of air and the subsequent upward movement of air bub-
bles is also evident. From this drawing and the notes reported along-
side, it is clear that Leonardo focused his attention on the air–water
interactions, as he wrote,

“the beautiful movements which result from one element [air]
penetrating another [water].”

This drawing exemplifies da Vinci’s ability to fix on paper all the
features of a complex unsteady flow motion that he observed.

FIG. 3. Left: Leonardo’s original note on the Codice Atlantico, CA 201 V (74 v.aþ 74 v.b) c. 1505-6 (inverted horizontally because of Leonardo’s direction of writing from right
to left), first column where the word “turbulence” (highlighted in red) is used in a fluid dynamics context. Right: Translation of the note on the left by Macagno (University of
Iowa).23

FIG. 4. Left: Leonardo’s drawing of the flow past a pierced inclined plate. Upper part of the sheet RCIN 912660. Right: The Head of Leda (c.1505-08) (sheet RCIN 912518).
Royal Collection Trust Copyright Her Majesty Queen Elizabeth II 2021.
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Introduction

What is important for the present discussion is the existence of turbulent
region and in modern time, mostly for aeronautic engineering ( Prandlt,
Von Karman, Taylor, Kolmogorov , Taylor..) In such region
space-time-locally the fluid can be considered as isolated (periodic)
homogenous isotropic and stationary.
One introduce closures there are many (for instance ϵ k models) in
agreement with phenomenological criteria as Kolmogorov K 41, for the
energy spectrum,

E (|k |) ≃ ν
〈
(∇∧ uν)

2
〉 2

3 |k|−
5
3
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Introduction

Weak turbulence as been developed for Plasma Physic starting from
Macroscopic MhD equation with solution compared as waves R. E. Peierls.
Zur kinetischen Theorie der Warmeleitung in Kristallen. Annalen Physik 3
(1929) and now the object of engineering Physic . For instance one
deduces from the MHD equation for QUASI 1D close to equilibrium
plasma the Zakharov equations

i∂tE − c1∇∧ (∇∧ E ) + c2 ∇(∇ · E ) = dnE

ϵ2∂ttn − c∆(n − |E |2) = 0

Eventually for E close to a solenoidal vector field and ϵ small enough one
obtains the basic non linear Schrodinger equation.

i∂tE −∆E + |E |2E = 0

with solutions statistically described by a non linear (similar to the
Kolmogorov) process.
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Introduction

For kinetic equations finding out the role of parameters that contribute to
the appearance of turbulence, irreversibility and anomalous decay of energy
or entropy is more evident. These observations are used for adaptation of
the turbulent stress tensor. An Hamiltonian (reversible) kinetic equation.

∂t f + v · ∇x f + Q(f ) = 0

can be change into en energy or entropy dissipating equation

∂t f + v · ∇x f + Q̃(f ) = 0 .

with Q̃ modified by the insertion of ”weak turbulent effects.
In plasma physic the Penrose dispersion function discriminates between
stable and unstable phenomena. Giving at least two examples for parabolic
limit.
The Quasilinear Equation and the Landau and Balescu Lenhard equations.
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The Vlasov equation for electrons

∂tF + v · ∇xFϵ + E [F ] · ∇vF = 0

F (t, x , v) ≥ 0
d

dt

∫ ∫
F (t, x , v)dvdx = 0 f = F −

∫ ∫
F (t, x , v)dvdx〈

f
〉
= 0 E [F ] = E [f ] = ∇x(∆)−1

∫
f (t, x , v)dv

1

2

d

dt

∫ ∫
|v |2F (t, x , v)dxdv +

∫
|E (x , t)|2dx = 0

(1)
with “convenient boundary conditions”.
However at the scale of the phenomena in particular for weak turbulence,
it is natural to consider the problem in Ω ⊂ Rd

x × Rd
v with Ω being Rd or

the torus (R/Z )d with k denoting the Fourier variable.
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Duhamel Formula

Parabolic-diffusive regimes will be given by

∂tFϵ +
1

ϵ2
v · ∇xFϵ +

1

ϵ
E [Fϵ] · ∇vFϵ = 0

⇒ ∂t
〈
Fϵ
〉
+∇v

〈1
ϵ
E [fϵ] · fϵ

〉
= 0

Sϵ
t F0 = F0(x − t

ϵ2
v , v)

F ϵ(t) = Sϵ
t F

ϵ
0 −

1

ϵ

∫ t

0
Sϵ
t−σE

ϵ(σ) · ∇vF
ϵ(σ)dσ ,

〈E ϵF ϵ

ϵ

〉
=

∫ t
ϵ2

0
dσ
〈
E ϵ(t, x + σv)⊗ E ϵ(t − ϵ2σ, x)∇vF

ϵ(t − σϵ2, x , v)
〉
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Duhamel Formula

Formally this gives:

∂t
〈
F
〉
−∇v ( lim

ϵ→0

〈
E ϵ(t, x + σv)⊗ E ϵ(t, x)

〉
∇v

〈
F (t)

〉
= 0 .

For a family of random electric fields E ϵ the issue is the proof of the
formula

∂t lim
ϵ→0

E[
〈
F ϵ(t − σϵ2, x , v)

〉
] =

∇v limϵ→0E[
〈
E ϵ(t, x + σv)⊗ E ϵ(t, x)

〉
∇v

〈
F (t)

〉
] =

∇v

(
lim
ϵ→0

E[
〈
E ϵ(t, x + σv)⊗ E ϵ(t, x)

〉
]∇vE[ lim

ϵ→0

〈
∇vF

ϵ(t − σϵ2, x , v)
〉
]
)
.

With convenient hypothesis on the vector field E using a second order
Duhamel formula this gives a diffusion. However de correlation for E is
equivalent to de correlation for f hence classical result remain valid with
convenient hypothesis on f . Now the issue is the propagation of chaos for
f which would be the standard issue in plasma turbulence.
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Projective Dynamic and Penrose dielectric function

Projective dynamic is a standard way to approximate the solution of an
non linéaire evolution equation of the form: ∂tF + H(F , x , t) = 0 by
different avatars of the equation:

∂t(∂tF ) + A(t)(∂tF ) = 0 A(t) = ∂F (H(F (t), t))

F (t) = F (0) +

∫ t

0
∂s(∂F (H(F (s), s))ds

With t slow variable and s fast variable:

esA(t) =
1

2iπ

∫
Γ
esλ(λI+ A(t))−1dλ .
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Projective Dynamic and Penrose dielectric function

For the Vlasov equation:

− A = v · ∇xF +∇v (E (f )∇vF (t, v))

− A = v · ∇xF −∇v (E (f )∇vH(|v |2)) +∇vF (t, v)

In such cases A is a compact perturbation of the advection operator and
for the last line if H is a monotone strictly decreasing function a
perturbation of an anti adjoint operator for the norm

∥F∥H =

∫
dx
( ∫

dv
|F |2

−H ′(|v |2)
+ |E (f )|2)
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The Penrose dielectric function

Convenient to consider also a more general potential that the Coulomb
∥x∥−1 V (x) or V̂ (k) in Fourier variable. For the Vlasov with repulsive
potential one has: E (k) = −ik/|k|2 .
For the resolvent equation, with Laplace and Fourier one has

With A(t)f = v · ∇x f − (∇x V̂ ⋆x f )∇vG (t, v)

(λI+ A(t))f = g ⇔ ((λ+ ik · v)− ikV̂ (k)∇vG (t))ρk = Sk

fk − i
k · V̂ (k)∇vG (t)ρk

λ+ ik · v
=

Sk
λ+ ik · v

with ρk(f ) =

∫
fk(v)dv(

1− i V̂ (k)

∫
k · ∇vG (t, v)

λ+ ik · v
dv
)
ρk(f ) =

∫
Sk

λ+ ik · v
dv .
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The Penrose dielectric function

The function

Dk(k · v , λ,∇vF ) = 1− V̂k

∫
Rd

ik · ∇vF (v)

λ+ ik · v
dv

is called the Penrose dielectric-dispersion function. It is analytic in the half
plane ℜ(λ) > 0 and can be extended also as an analytic function in the
half space ℜ(λ) > −a under some analytic regularity hypothesis on the
profile F (v) . By duality with a C 0,α Holder function v 7→ ϕ(k , v) the
expression: ∫

dk

∫
Sk(v)

λ+ ik · v
ϕ(k , v)dv

is also well defined over the complex plane. Dirac singularities appears on
the imaginary axis and can also be computed with the Plemjel formula.
Eventually observe the relation

Dk(v , λ,∇vF ) = 0 ⇔ D−k(, v , λ,∇vF )
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The Penrose dielectric function

λk = 0 in the region of ℜλ > 0 correspond to eigenvalue of finite
multiplicity for the resolvent of the operator (λI+ A(t)) and in the
present case, eigenvalue for the operator exps(λk(t)) . With such
observation an approximation of the behaviour of the solution
carrying the name of quasilinear approximation is proposed below.

On the other hand in the region, ℜλ < −a < 0 for regular and small
enough initial data (say in analytic or 3Besov space) this the stable
regime. Mouhot Villani version of the Landau Damping the electric
field E (t) decays exponentially for t → 0

The behaviour of the solution in presence of zero of the Penrose
function on the imaginary axis is not considered in the present talk.
(Results can be obtained with the introduction of special solutions
corresponding to ℜ(λm) ≃ 0 involving so called. Langmuir wave.)

Finally in the case of the stable regime no eigenmodes for ℜλ > 0 a
finite time analysis (with limited regularity hypothesis) is the object of
the Landau and Balescu Lenhard approximation. To be compared
with Mouhot Villani
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Quasilinear approximation

A said above this scenario correspond to the existence of zeroes , λm of
the Penrose dielectric function with positive real part λm(t) > 0 i. e.
unstable modes. Then for the solution of the Vlasov assume that in the
parabolic scaling the solution can be written as:

F (t, v) = Gϵ(t, v) + fϵ(t, x , v) with
〈
fϵ
〉
= 0

∂tGϵ +∇v

〈
Eϵ(fϵ)fϵ)

〉
ϵ

= 0

∫ T∗

0
|∂tGϵ(t, v)|dt ≤ O(ϵ) ,

ϵ2∂t fϵ + v∇x fϵ + ϵ∇v (E (fϵ)Gϵ) = ϵ
(
∇v

〈
E (fϵ)fϵ)

〉
−∇v (E (fϵ), fϵ)

)
Next assume that the f is a small perturbation but with fast time
oscillations:

fϵ(x , v , t) = ϵgϵ(x , v , t,
t

ϵ2
)

with gϵ bounded in convenient spaces.
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Quasilinear approximation

Then in the fast variable , for s 7→ g(x , s) one has:

∂sgϵ + v∇xgϵ +∇v (E (gϵ)Gϵ(t)) = ϵ2(∇v

〈
E (gϵ)gϵ(t))

〉
−∇v (E (gϵ)gϵ)

)
∂tGϵ +∇v

〈
Eϵ(fϵ)fϵ)

〉
ϵ

= 0 fϵ(x , v , t) = gϵ(x , v , t,
t

ϵ2
)

The above decomposition is the essential hypothesis. It gives replacing f
by gϵ

∂tGϵ + ϵ∇v

〈
Eϵ(gϵ)gϵ)

〉
= 0

This implies the slow variation of the function G (t, v) compatible with the
hypothesis:

for 0 < t < T ∗ ≤ ∞
∫ T∗

0
|∂tG (t, v)|ds ≤ ϵ
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Quasilinear approximation

And eventually one assume that the spectra of −A(t) for the linearised
equation:

∂sg + A(t)g = 0 ⇔ ∂sg + v · ∇xg +∇v (E (g)G (t)) = 0

for 0 < t < T ∗ contained in the half space ℜλ > 0 is the union of a non
empty set of simple eigenvalues with eigenfunctions (λm(t), fm(t)) .
Therefore the main part (of order 1) of the solution is given by

g(s, t, v) =
∑

ℜλm>0

esλm(t)fm(t)(v)
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Quasilinear approximation

Using eigenmodes and conjugates,with the formula

Ek(s) =
ik

|k |2

∫
gk(s, v)dv

one obtain for Gϵ(t, v) the following asymptotic formula:

For 0 < t < T ∗ ∂tGϵ + ϵ∇v

(
D(t, v)∇vGϵ

)
= O(ϵ2)

DG (t, v) =
∑
ℜλ>0

ϵ2∇v ·

(
k ⊗ k : E (0, k(λ))⊗ E (0, k(λ))e2

∫ t
0 ℜλ(s)ds

(k(λ) · v −ℑλ)2 + (ℜλ)2

)
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Quasilinear approximation

Then assume that for 0 < t ≤ T ∗ ≤ ∞

σ(−A(t)) ∩ {ℜλ > 0} = −v · ∇x .+∇v (E (.)G (t, v)) ∩ {ℜλ > 0} ≠ ∅

is composed of simple eigenvalues. Then consider G̃ the solution of

∂tG̃ϵ + ϵ∇v

(
DG (t, v)∇v G̃ϵ

)
= 0 .

with the same initial data. (0,T ∗) G̃ produce an approximation of order
ϵ2 of Gϵ which can be use as a correction of the kinetic equation:

∂tGϵ(t, x)− v · ∇xGϵ −∇v (DG (t, v)∇vGϵ) = 0(ϵ2)
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Quasilinear approximation

The conservation laws (mass , energy..) for the original Vlasov equation
implies that all the eigenvalue do converge to the imaginary axis. Hence
for the smallest one one has

lim
t→T∗

e2
∫ t
0 ℜλ(s)ds

(k(λ) · v −ℑλ)2 + (ℜλ)2
= c(δ(k · v −ℑλ(T ∗))+ δ(k · v +ℑλ(T ∗))

Hence a diffusion with Dirac profiles.
The above analysis plays an essential role in 1d due to existence of
unstable eigenvalue (in particular with plateaux)-, Penrose diagram) .

In 3d this is not the case...A profile G (|v |2) then is always Penrose stable.
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The Balescu Lenhard and Landau equations

∂tF (t, v1) = ∇v1 ·
∫

BF (v1, v1 − v2)
[
(∇v1 −∇v2)F (v1)F (v2)

]
dv2,

with diffusion matrix BF (v1,w) , w = v1 − v2 .

BF (v1,w) =
1

|DF
2,k(ik · v1)|2

cV
|w |

(
I− w ⊗ w

|w |2
)

with

DF
2,k(ik · v1) = lim

ℜλ→0+
(1 + V̂k

∫
Rd

ik · ∇v2F (v2)

λ− ik · v2
dv2)

under the stability hypothesis opposite to the QL hypothesis:

ℜλ ≥ 0 ⇒ |(1 + V̂k

∫
Rd

ik · ∇v2F (v2)

λ− ik · v2
dv2.)| > 0
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The Balescu Lenhard and Landau equations

∂tF (t, v) = ∇v ·
∫

BF (v , v − v∗)
[
(∇v −∇v∗)F (v)F (v∗)

]
dv∗,

∂t

∫
R3
v

F log Fdv

+
1

2

∫ ∫
FF∗(

∇vF

F
− ∇vF∗

F∗
)(BF (v , v − v∗)(

∇vF

F
− ∇vF∗

F∗
)dvdv∗ = 0

It conserves mass momentum and energy and as an entropy.
It is the counter part of unstable QL approximation. In some cases valid
for large time (Duerinck and Winter 2021, Guo). .
Here also the main obstruction is the

lim
t→T∗

|(1 + V̂k

∫
Rd

ik · ∇v2F (v2)

λ− ik · v2
dv2)| = 0

The so called Landau equation corresponds to the “simplification”:

|(1 + V̂k

∫
Rd

ik · ∇v2F (v2)

λ− ik · v2
dv2)| = 1
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Liouville Hierarchy and Balescu Lenhard Equation

∂tFN =
{
HN ,FN

}
N

HN =
1

2

N∑
i=1

|vi |2 +
1

N

∑
1≤i<j≤N

V (xi − xj).

{
f , g
}
k
=

k∑
i=1

(∇xi f · ∇vig −∇vi f · ∇xig)

(2)

With zk = (xk , vk)

FN:k(t,Zk) =

∫
R2(N−k)d

FN(t,Zk , zk+1, · · · zN) dzk+1, · · · dzN ,

∂tFN:1 + v1 · ∇x1FN:1 =
N − 1

N

∫
R2d

∇xV (x1 − x2) · ∇v1FN:2(t, z1, z2) dz2.
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Liouville Hierarchy and Balescu Lenhard Equation

With the cumulant hypothesis for FN:3 up to o(N−2)∫
T3

g(s, x , v1, v2)dx = 0 g(s, x , v2, v1) = g(s,−x , v1, v2) ,

FN:2 = F (t, v1)F (t, v2) + g(x1 − x2, v1, v2) + o(N−1) ,

FN:3 = F (t, v1)g(x , v2, v3) + F (t, v2)g(x , v3, v1) + F (t, v3)g(x , v3, v3)

+ F (t, v1)F (t, v2)F (t, v3) + o(N−2)

With .̃ be omitted below: g changed into the fast variable

g(t, x , v1, v2) = g̃(s, t, x , v1, v2) = N−1g(Nt, t, x , v1, v2) .

ρ1[g ](s, x , v2) =

∫
Rd

g(s, x , η, v2) dη ρ2[g ](s, x , v1) =

∫
Rd

g(s, x , v1, η) dη,

E1[g ] := −∇xV ⋆x ρ1[g ], E2[g ] := −∇xV ⋆x ρ2[g ].
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Liouville Hierarchy and Balescu Lenhard Equation

Denote by ⟨·⟩x the average in x Up to a term of order o(N−1)

∂tF = lim
N→∞

∇v1 · ⟨∇xV ρ2[g(Nt, t)]⟩x(t, v1) (3)

modulo a term of order N−2:

∂sg(s, t) + LFg(s, t) =
{
V (x1 − x2), g(s, t)

}
2

= ∇xV (x) · (∇v1 −∇v2)F (v1, t)F (v2, t),

LFg = (v1 − v2) · ∇xg + E1[g ] · ∇v1F (t, v1)− E2[g ] · ∇v2F (t, v2) (4)
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Derivation of the Landau equation and the collision kernel

The exchange term

E1[g ](s, t) · ∇v1F (t, v1)− E2[g ](s, t) · ∇v2F (t, v2)

is ignored. Also ignored the initial value in the Duhamel formula (phase
mixing or dispersion).

∂sg + (v1 − v2) · ∇xg = ∇xV (x) · (∇v1 −∇v2)F (v1, t)F (v2, t),

With Fourier :

gk(s, t, v1, v2) =

∫ s

−s
ikV̂ke

−iks·(v1−v2) ds · (∇v1 −∇v2)F (v1, t)F (v2, t).

gk(tN, t, v1, v2) =

∫ Nt

−Nt
ikV̂ke

−iks·(v1−v2) ds · (∇v1 −∇v2)F (v1, t)F (v2, t).

Use lim
1

2

∫ Nt

−Nt
e iks·w ds → δ(k · w).
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Derivation of the Landau equation and the collision kernel

ρ2[gk ](s, v1) =

∫
Rd

gk(s, v1, η) dη,

∂tF = lim
N→∞

∇v1 · ⟨∇xV ρ2[g(Nt, t)]⟩x(t, v1)

∂tF = ∇v1

( ∫ ∞

−∞
k ⊗ k|V̂k |2e−iks·(v1−v2)ds

· (∇v1 −∇v2)F (v1, t)F (v2, t)dv2dk
)

= ∇v1

∫
BL(v1 − v2)(∇v1 −∇v2)F (v1, t)F (v2, t)dv2 .

BL(w) =
cV
|w |

(
I− w ⊗ w

|w |2
)
.
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About the exchange term

The derivation (from the above formulas) of the Landau is direct but is
independent of the Penrose stability condition.

|DF
2,k(ik · v1)| = | lim

ℜλ→0+
(1 + V̂k

∫
Rd

ik · ∇v2F (v2)

λ− ik · v2
dv2)| > 0

In particular the term

E1[g ] · ∇v1F (t, v1)− E2[g ] · ∇v2F (t, v2)

is of the same (with respect to N) order as

∇xV (x) · (∇v1 −∇v2)F (v1, t)F (v2, t)

hence this term cannot be ignored for Vlasov or similar dynamic.
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About the exchange term

The analysis is similar, more elaborated: Start from the integrated form:

gk(s, t, v1, v2)+∫ s

−s
e−ikσ·(v1−v2)[E1[g ] · ∇v1F (t, v1)− E2[g ] · ∇v2F (t, v2)](s − σ)dσ

=

∫ s

−s
ikV̂ke

−iks·(v1−v2) ds · (∇v1 −∇v2)F (v1, t)F (v2, t).

to take in account the factor

|DF
2,k(ik · v1)|2

in the left hand side.
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About the exchange term

Wanted to show what can be described by “deterministic ” analysis versus
where randomness seems compulsory.
In particular in the hierarchy of equations from particles to macroscopic
the weak turbulence appeared already for macroscopic equation of plasma
phyis (MHD). The counterpart is the derivation of Landau or Balescu
Lenhard from propagation of chaos and cumulant formula.
The introduction of the Penrose dielectric function to discriminate
between stable and unstable regime seems to play a crucial role. I did not
consider the transition between stable and unstable...
Much more things to do.
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