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Prevalence of magnetic flux ropes in plasma dynamics

• Magnetic flux ropes (MFR) are an important 
component of many plasma phenomena, both on 
their own as an isolated structure and as a part of 
an interacting system of flux ropes

• Interactions between flux ropes in models of 3D 
reconnection
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Prevalence of magnetic flux ropes in plasma dynamics

• Magnetic flux ropes (MFR) are an important 
component of many plasma phenomena, both on 
their own as an isolated structure and as a part of 
an interacting system of flux ropes

• Interactions between flux ropes in models of 3D 
reconnection

• Astrophysical jets modeled as flux ropes
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An isolated MFR is subject to its own interesting dynamics

• Magnetic flux ropes have their own rich, complex 
dynamics!

• Subject to kink-type instabilities
• Multiple modes can interact, leading to turbulence

• We study this turbulence using reduced-MHD 
simulations of internal kink-tearing unstable flux 
ropes
• Interesting example of decaying RMHD turbulence
• What are the characteristics of this turbulence and how 

can we explain them?
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(Very brief) review of kink instabilities

• Stability of the flux ropes is determined by the safety factor, 

    𝑞 = !"#
$!

𝑩!
𝑩"

• Rational surfaces ->𝑞 = &
'
 , integer poloidal and longitudinal mode 

numbers

• Correspond with locations which satisfy 𝒌 ⋅ 𝑩 = 0, so stabilization by 
field line bending is minimized

• We observe internal kink-tearing modes
• m=1 only, resistive kink 
• All m, tearing
• (Ideal stabilized in RMHD)
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Reduced MHD equations

• The reduced MHD equations describe the dynamics of Alfvénic MHD 
turbulence (a la GS95) 

• Asymptotic reduction of the MHD equations in the large guide field 
limit, contains the dynamics of magnetic and velocity field perturbations 
in the perpendicular plane

• Nice to simulate—two coupled equations for scalar stream/flux 
functions
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Flux rope simulations using Viriato 
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• Equilibrium:
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• Use triply periodic boundary conditions

• Simulations are resolved with 5122 grid 
points in the perpendicular direction

• To get widest possible inertial range, 
use hyperdissipation:

𝜂!∇"#𝜓, 𝜈!∇"#𝜙



The development of stochastic magnetic field lines

• There is a convenient equivalence 
between magnetic field lines and the 
trajectories of a Hamiltonian system 
(Morrison 2000, White 2014)
• This allows an analytic description of how 

perturbations affect the magnetic field 
topology:

• One perturbation -> chain of m magnetic 
islands, exact separatrix

• Multiple pertubations -> chains of 
magnetic islands with narrow stochastic 
bands at separatrices

• If islands “overlap”, stochasticity fills volume
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One mode (simulation I):



The development of stochastic magnetic field lines

• Create Poincaré maps to study the 
onset of stochasticity in our system

• Parameterize the magnetic field lines as 
follows, and integrate over the periodic 
z direction:
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*Note that this plot does not show 
the entire poloidal cross section

Di Giannatale + 2018

Two modes (simulation 2):



The development of stochastic magnetic field lines
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The development of stochastic magnetic field lines

A. Velberg– 11

• Create Poincaré maps to study the 
onset of stochasticity in our system

• Parameterize the magnetic field lines as 
follows, and integrate over the periodic 
z direction:

Di Giannatale + 2018

Two modes:

*Note that this plot does not show 
the entire poloidal cross section



The development of stochastic magnetic field lines
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• Create Poincaré maps to study the 
onset of stochasticity in our system

• Parameterize the magnetic field lines as 
follows, and integrate over the periodic 
z direction:
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The interaction of fastest growing modes leads to turbulence
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• Stochasticity of magnetic field lines leads 
to random motions of the plasma, 
generating fluctuations at all scales and 
leading to turbulence.

• A key feature is the appearance of an 
intense current sheet which forms at 
rational surfaces and wraps the modes
• Envelope current sheet forms
• Internally, see additional current sheets form

• Importantly, some rational surfaces are 
preserved in this initial interaction and 
the associate modes are excited at later 
times 
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Qualitative overview of dynamics

• Kinetic energy
• Simulation I, oscillatory decay after mode saturates
• Simulations II-V, nonlinear interaction between modes 

leads to complex nonlinear dynamics
• Kinetic energy remains within order of magnitude of 

maximum value 
• Several bumps in the kinetic energy – correspond to late 

excitation of modes
• Call period 𝜏$	~200-400 the “kinetic energy flattop”

• Later arriving modes are associated with their own current 
sheets, which sustain the dynamics 
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Qualitative overview of dynamics

• Magnetic energy 
• Exponential magnetic energy dissipation during kinetic 

flattop – resistive dissipation at intense current sheets
• Longer flux ropes (increasing from I-V) dissipate larger 

fraction of initial energy
• Always large compared to kinetic energy (magnetically 

dominated turbulent decay)

*All results from simulation IV unless otherwise 
labeled*
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Qualitative overview of dynamics

• Magnetic energy 
• Exponential magnetic energy dissipation during kinetic 

flattop – resistive dissipation at intense current sheets
• Longer flux ropes (increasing from I-V) dissipate larger 

fraction of initial energy
• Always large compared to kinetic energy (magnetically 

dominated turbulent decay)

*All results from simulation IV unless otherwise 
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Energy spectra are mediated by strong current sheets

• The current sheets associated with the 
resistive-kink instabilities are sites of sharp 
magnetic field reversal
• Results in a “Burgers” spectrum, 𝐸%~𝑘"&'

• At early times, only have current sheets, 
turbulence not developed, and have heavily 
modulated spectrum

• System is magnetically dominated—
turbulent fluctuations aren’t able to take 
over the spectrum
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Energy spectra are mediated by strong current sheets

• The current sheets associated with the 
resistive-kink instabilities are sites of sharp 
magnetic field reversal
• Results in a “Burgers” spectrum, 𝐸%~𝑘"&'	

• At early times, only have current sheets, 
turbulence not developed, and have heavily 
modulated spectrum

• System is magnetically dominated System is 
magnetically dominated—turbulent 
fluctuations aren’t able to take over the 
spectrum
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Calculating the energy transfer

• Interested in how energy moves from scale to scale in this system

• Energy transfer equations are readily obtained from the MHD induction 
and momentum equations

• The “shell-filtered variables”, 𝑩() and 𝒖() are quantities whose Fourier 
transform contains only the fields in a shell 𝑘 < 𝐾 ≤ 𝑘 + 1
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Signatures of current sheets in the energy transfer

• Magnetic-to-magnetic energy transfer
• Cascade forms along diagonal
• Energy transfer from large to small scales evident in bars at low Q,K. This indicates 

the transfer due to current sheets
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Energy cascade in Burgers turbulence

• Appearance of current sheets in energy transfer is a bit misleading…

• Current sheets may be responsible for the observed spectral indices, but 
the dynamics of energy transfer are similar to the typical inertial range 
picture
• Similar to results for 1D burgers equation in fluids [Kraichnan, Gotoh and Kraichnan]
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This is not weak turbulence

• 𝐸,~𝑘(-! would also be the spectrum of weak 
turbulence! Let’s show that this is definitely not 
what this is.

• We’d like to show:
• Parallel cascade
• Critical balance

• Difficult to obtain parallel spectrum directly from 
data à use structure function diagnostics
• 𝑆𝐹 ∝ 𝑙( 	→ 𝐸 𝑘 ∝ 𝑘& ()* , 𝑙 = 𝑘&*

• 5pt, 2nd order structure function
• Compared to the typical two-point SF, will remove 

large scale variations, for example those imposed by 
the remnants of the equilibrium. [Cho+ 2019]
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Critical balance?

• Structure functions allow us to investigate the 
scale dependence of turbulent anisotropy
• For MHD turbulence, would obtain 𝑙∥~𝑙"

'/- by invoking 
critical balance 

• Observe steeper than 𝑙∥~𝑙(/

• Apparently the typical dimensional analysis 
doesn’t apply here, so how do we approach this?

• Some interesting features here, which we could 
discuss further…

A. Velberg– 25

273𝜏! =



Comparison to other decaying RMHD turbulence results

• These results are different from previous studies 
of decaying RMHD turbulence:

• Zhou et al 2020 investigated turbulence in a 
system of many merging flux ropes
• In “transient” state, observe fast magnetic energy 

dissipation and a Burgers spectrum
• After decay of magnetic energy so 𝐸%~𝐸., settles into 

reconnection controlled turbulent decay, mergers of flux 
ropes to larger and larger scales, as well as conventional 
MHD turbulence cascade 
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Comparison to other decaying RMHD turbulence results

• These results are different from previous studies 
of decaying RMHD turbulence:

• Similar to transient state, but even in run V where 
the most magnetic energy is dissipated and the 
𝐸,/𝐸) ratio gets the highest, the magnetic energy 
still an order of magnitude larger

• Turbulence is Burgers until end of the kinetic 
flattop
• Interestingly, does seem to shallow after this, but only 

for a short time before diffusion robs us of our inertial 
range

• Higher resolution might help to investigate this further
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Conclusions
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• Study the evolution of magnetic flux ropes under their own dynamics 
in RMHD

• Modes nonlinearly interact, leading to turbulence
• Current sheets associated with unstable modes allow for exponential 

dissipation of magnetic energy
• Current sheets mediate the energy spectrum, but an energy cascade 

appears to be the primary mechanism for energy transfer, as with 
Burgers turbulence in fluids

• Still would like to figure out critical balance, maybe try at higher 
resolution!
• Good news, new GPU code (GX) capable of running these 

equations is nearly ready! 
• Diagnostics, diagnostics, diagnostics…
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Kink-tearing scalings
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• Laplacian resistivity scans for Lz = 0.25 (left) and Lz =0.5 (right). 
• 512^2 x (32,64)
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Dynamics of a quasi-steady nonlinear state

A few interesting features I’d like to explain—
• How is it that the peaks in kinetic energy arise?
• How is it that the rate of magnetic energy dissipation remains 

exponential?
• How is it that longer flux ropes dissipate a larger fraction of 

energy
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Rational surfaces survive the initial nonlinear interaction
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• Peaks in kinetic energy must be associated with 
some important dynamic event
• Excitation of instability
• Are these the initially excited perturbations?

• Calculate safety factor from the magnetic field 
data:

• Observe survival of the 1/1 and 1/2 rational 
surfaces after tau_A ~ 200, where the initial 
nonlinear interaction occurs

• Rational surfaces are rearranged, so these are 
not simply the initially growing perturbations 
but are excited nonlinearly



Rational surfaces survive the initial nonlinear interaction
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• Calculate the kz spectrum of the 
perturbed magnetic field

• Indeed, modes experience nonlinear kick 
at later times

• This allows us to investigate the time 
evolution of each mode

• See sequential peaks in the mode 
energies, from n=5 -> n=1



Rational surfaces survive the initial nonlinear interaction
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KZ TIMETRACES 
GO HERE
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Rational surfaces survive the initial nonlinear interaction
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Rational surfaces survive the initial nonlinear interaction
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Energy spectra are mediated by strong current sheets

• The kinetic spectrum is also set by features of 
the magnetic field

• Initially close to 𝐸)~𝑘(-/. As turbulence 
develops, see knee at intermediate scales, 
separating out a flat regime and an inertial 
range steeper than -1
• Understand this as a combination of the 

spectral signature of inflow/outflow profiles 
and the turbulent cascade
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Spectral signature of reconnection

• Can obtain analytical expressions for inflow 
and outflow profiles of an SP-like 
equilibrium (Loureiro+ 2013)
• Outflows inject energy at all scales—flat 

spectrum

• Inflows have reversal across cs, so have a 
𝑘(-!	spectrum 

• Turbulent cascade steepens the spectrum as 
well
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Calculating the energy transfer

• Interested in how energy moves from scale to scale in this system

• Energy transfer equations are readily obtained from the MHD induction 
and momentum equations

• The “shell-filtered variables”, 𝑩() and 𝒖() are quantities whose Fourier 
transform contains only the fields in a shell 𝑘 < 𝐾 ≤ 𝑘 + 1
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Signatures of current sheets in the energy transfer

• Kinetic-to-kinetic energy transfer
• Cascade forms along diagonal.
• Less intense but still significant inverse energy transfer from small to large scales 

indicates the energy injected by reconnection outflows
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Structure function  for Lz4

• Lz=4 gives us the best chance of having 3D turbulence

• See that the break in correlation disappears at later times!

• Also becomes perfectly 𝑙(/
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