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Prevalence of magnetic flux ropes in plasma dynamics

« Magnetic flux ropes (MFR) are an important
component of many plasma phenomena, both on
their own as an isolated structure and as a part of
an interacting system of flux ropes

* Interactions between flux ropes in models of 3D
reconnection
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Prevalence of magnetic flux ropes in plasma dynamics

« Magnetic flux ropes (MFR) are an important
component of many plasma phenomena, both on
their own as an isolated structure and as a part of
an interacting system of flux ropes

* Interactions between flux ropes in models of 3D
reconnection

 Astrophysical jets modeled as flux ropes
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An isolated MFR is subject to its own interesting dynamics

« Magnetic flux ropes have their own rich, complex
dynamics!

 Subject to kink-type instabllities
« Multiple modes can interact, leading to turbulence

« We study this turbulence using reduced-MHD
simulations of internal kink-tearing unstable flux
ropes

* Interesting example of decaying RMHD turbulence

« What are the characteristics of this turbulence and how
can we explain them?
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(Very brief) review of kink instabilities

« Stability of the flux ropes is determined by the safety factor,
. Zm‘&

L, Bg
 Rational surfaces ->q = — , integer poloidal and longitudinal mode
numbers

 Correspond with locations which satisfy k- B = 0, so stabilization by
field line bending is minimized

« We observe internal kink-tearing modes

. :_rrT =1 on I_y,_ resistive kink :

« All m, tearing
* (Ideal stabilized in RMHD)
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Reduced MHD equations

* The reduced MHD equations describe the dynamics of Alfvénic MHD
turbulence (a la GS95)

« Asymptotic reduction of the MHD equations in the large guide field
limit, contains the dynamics of magnetic and velocity field perturbations

In the perpendicular plane

 Nice to simulate—two coupled equations for scalar stream/flux
functions
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Flux rope simulations using viriato

 Equilibrium:

1.0+
2T . 2T 5 ok
Ajeqg = Apexp |4 —x"+—y /
L, L, -
‘_]3“I‘_J2"I_ o III‘]. ll‘i“l‘é‘ —Bperp
(I)eq =0 -05¢
 Use triply periodic boundary conditions Yol

« Simulations are resolved with 5122 grid
points in the perpendicular direction

Label | L. | Unstable parallel mode numbers | z Resolution

» To get widest possible inertial range,

o o - I [0.25 1 32

use hyperdissipation: m |05 1,2 64
111 1 1-4 12

IV 2 1-9 256

nuVew,  vyVi¢ LV 1 118 512

P F Plasma Science and Fusion Center
s C Massachusetts Institute of Technology A. Vel berg 7



The development of stochastic magnetic field lines

* There is a convenient equivalence
between magnetic field lines and the
trajectories of a Hamiltonian system
(Morrison 2000, White 2014)

 This allows an analytic description of how
perturbations affect the magnetic field
topology:

« One perturbation -> chain of /m magnetic
Islands, exact separatrix

« Multiple pertubations -> chains of
magnetic islands with narrow stochastic
bands at separatrices

« If islands “overlap”, stochasticity fills volume

One mode (simulation 1):

Poincare Plot at 74 = 152.888
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The development of stochastic magnetic field lines

 Create Poincaré maps to study the
onset of stochasticity in our system

« Parameterize the magnetic field lines as
follows, and integrate over the periodic

Z direction:

dr 6_¢_

dy 0¢
= = =—" =B
dz oy

dz O0x 7
Di Giannatale + 2018

BZE?

Two modes (simulation 2):

Poincare Plot at 74 = 169.076

*Note that this plot does not show
the entire poloidal cross section

Ps F ‘ Plasma Science and Fusion Center
Massachusetts Institute of Technology

A. Velberg- 9



The development of stochastic magnetic field lines

 Create Poincaré maps to study the
onset of stochasticity in our system

« Parameterize the magnetic field lines as
follows, and integrate over the periodic
z direction:

dr 6_¢_

dy 0¢
= = =—" =B
dz oy

dz O0x 7
Di Giannatale + 2018

BZE?

Two modes:

Poincare Plot at 74 = 185.909

*Note that this plot does not show
the entire poloidal cross section
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The development of stochastic magnetic field lines

 Create Poincaré maps to study the Two modes:
onset of stochasticity in our system Poincare Plot at 74 — 193.260

0.6

« Parameterize the magnetic field lines as
follows, and integrate over the periodic |
z direction: ot FE

0.4 4

2

‘gﬁl

K

dr 6_¢_

dz B dy_a_w_ > 0.04
dz Oy

—=__=2B8B v/
dz Ox Y 021 ¥

Di Giannatale + 2018 o4

BiB?

*Note that this plot does not show
the entire poloidal cross section
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The development of stochastic magnetic field lines

 Create Poincaré maps to study the Two modes:
onset of stochasticity in our system

« Parameterize the magnetic field lines as
follows, and integrate over the periodic
z direction:

dx oY dy 0Oy
—_— = —— = T —_— = — = B
dz oy N dz Oz Y

Di Giannatale + 2018
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*Note that this plot does not show
the entire poloidal cross section
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The interaction of fastest growing modes leads to turbulence

» Stochasticity of magnetic field lines leads 7. XY at 74 —0.902
to random motions of the plasma, =
generating fluctuations at all scales and " l”’
leading to turbulence. | 5.0
« A key feature is the appearance of an - 25
intense current sheet which forms at > 0.0 . 0.0~
rational surfaces and wraps the modes
« Envelope current sheet forms =l e
* Internally, see additional current sheets form . [
 Importantly, some rational surfaces are I75
preserved in this initial interaction and 275 {0 —05 00 05 10 15
the associate modes are excited at later X
times
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The interaction of fastest growing modes leads to turbulence

» Stochasticity of magnetic field lines leads 7. XZ Plane at 74 — 0.902
to random motions of the plasma, 6
generating fluctuations at all scales and l75
leading to turbulence. ' 5.0

A key feature is the appearance of an & 25
intense current sheet which forms at T _—
rational surfaces and wraps the modes

« Envelope current sheet forms nd
* Internally, see additional current sheets form e I""O
—-7.5

r—2.5

 Importantly, some rational surfaces are
preserved in this initial interaction and 3 2 1 o0 1 2 3
the associate modes are excited at later X
times
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Qualitative overview of dynamics

* Kinetic energy

Simulation |, oscillatory decay after mode saturates

Simulations [I-V, nonlinear interaction between modes
leads to complex nonlinear dynamics

Kinetic energy remains within order of magnitude of
maximum value

7200

400 600

« Several bumps in the kinetic energy — correspond to late t
excitation of modes /T4
« Call period 74 ~200-400 the “kinetic energy flattop” 10°
» Later arriving modes are associated with their own current
sheets, which sustain the dynamics
S
5
1071
200 400 600
t/TA
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Qualitative overview of dynamics

« Magnetic energy

» Exponential magnetic energy dissipation during kinetic
flattop — resistive dissipation at intense current sheets

« Longer flux ropes (increasing from I-V) dissipate larger
fraction of initial energy

« Always large compared to kinetic energy (magnetically

dominated turbulent decay) 0 200 400 600
t/TA
00—
5
*All results from simulation IV unless otherwise e
labeled* ol
0 200 400 600
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Qualitative overview of dynamics

« Magnetic energy

» Exponential magnetic energy dissipation during kinetic
flattop — resistive dissipation at intense current sheets Simulation V/

« Longer flux ropes (increasing from I-V) dissipate larger
fraction of initial energy il
« Always large compared to kinetic energy (magnetically
dominated turbulent decay) ”
100 L   ‘ sasamaas E’K .
_ _ . 0 200 400 600
*All results from simulation IV unless otherwise t/7a

labeled*
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Energy spectra are mediated by strong current sheets

* The current sheets associated with the
resistive-kink instabilities are sites of sharp
magnetic field reversal

« Results in a “Burgers” spectrum, Eg~k?

. 102 :
* At early times, only have current sheets, 5
turbulence not developed, and have heavily = 187 776
1071 ' .
modulated spectrum = 973398
» System is magnetically dominated— —— 303801
. I} —6 Ll el Lol
turbulent fluctuations aren’t able to take 10 00 ol e
over the spectrum kL /KL B (maz)
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Energy spectra are mediated by strong current sheets

* The current sheets associated with the
resistive-kink instabilities are sites of sharp
magnetic field reversal

« Results in a “Burgers” spectrum, Eg~k?

At early times, only have current sheets,
turbulence not developed, and have heavily
modulated spectrum

 System is magnetically dominated System is
magnetically dominated—turbulent
fluctuations aren’t able to take over the
spectrum

1000.00

0.01

1077

10—12

Spectrum of |Tanhk|2

e |Tanhk |2
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Calculating the energy transfer

* Interested in how energy moves from scale to scale in this system

 Energy transfer equations are readily obtained from the MHD induction
and momentum equations

* The “shell-filtered variables”, BX and u are quantities whose Fourier
transform contains only the fields in a shell k < K <k + 1

T (Q, K) = — </d2xi [Bi{ - (ag - VL)B?]>

z

Zhou + 2020, Alexakis + 2005
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Signatures of current sheets in the energy transfer

« Magnetic-to-magnetic energy transfer
 Cascade forms along diagonal

 Energy transfer from large to small scales evident in bars at low QK. This indicates
the transfer due to current sheets

Ty = 187 215 273
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Energy cascade in Burgers turbulence

« Appearance of current sheets in energy transfer is a bit misleading...

 Current sheets may be responsible for the observed spectral indices, but
the dynamics of energy transfer are similar to the typical inertial range
picture

 Similar to results for 1D burgers equation in fluids [Kraichnan, Gotoh and Kraichnan]
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This is not weak turbulence

» Eg~k1% would also be the spectrum of weak
turbulence! Let's show that this is definitely not
what this is.

« We'd like to show:
« Parallel cascade
e Critical balance

e Difficult to obtain parallel spectrum directly from
data = use structure function diagnostics

e SFx 1% - E(k) oc k~(@tD) | = -1

 5pt, 2" order structure function

« Compared to the typical two-point SF, will remove
large scale variations, for example those imposed by
the remnants of the equilibrium. [Cho+ 2019]
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This is not weak turbulence

» Eg~k1% would also be the spectrum of weak

turbulence! Let's show that this is definitely not 4= 273
what this is. ——————
« We'd like to show: o ]
z Sp(lL) e T
» Parallel cascade S Py e
» Critical balance o107 ,/-/
e Difficult to obtain parallel spectrum directly from . s ar
data = use structure function diagnostics L
o a —(a+1) | = j—1 I A
SF x 1% - E(k) xk , 1 k. 10-3 5 T T
 5pt, 2" order structure function :

« Compared to the typical two-point SF, will remove
large scale variations, for example those imposed by - >
the remnants of the equilibrium. [Cho+ 2019] SF(ly) o lj — Ep(k)) < k;
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Critical balance?

e Structure functions allow us to investigate the
scale dependence of turbulent anisotropy Ty = 273

* For MHD turbulence, would obtain l"~li/3 by invoking
critical balance

» Observe steeper than [;~[}

10! ¢ L

 Apparently the typical dimensional analysis = 00
doesn’t apply here, so how do we approach this? ;

« Some interesting features here, which we could o

discuss further... e imerm b 3 m
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Comparison to other decaying RMHD turbulence results

« These results are different from previous studies
of decaying RMHD turbulence:

« Zhou et al 2020 investigated turbulence in a
system of many merging flux ropes
* In “transient” state, observe fast magnetic energy
dissipation and a Burgers spectrum

 After decay of magnetic energy so Eg~Ek, settles into
reconnection controlled turbulent decay, mergers of flux
ropes to larger and larger scales, as well as conventional

MHD turbulence cascade

Zhou +, 2020
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Comparison to other decaying RMHD turbulence results

« These results are different from previous studies 10y
of decaying RMHD turbulence: 0]

mi ' i Simulation V
« Similar to transient state, but even in run V where mulation

100 L

the most magnetic energy is dissipated and the | |

Eg/Ex ratio gets the highest, the magnetic energy S~

still an order of magnitude larger i
 Turbulence is Burgers until end of the kinetic 10°

flattop

* Interestingly, does seem to shallow after this, but only
for a short time before diffusion robs us of our inertial

range
« Higher resolution might help to investigate this further
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 Study the evolution of magnetic flux ropes under their own dynamics
in RMHD

« Modes nonlinearly interact, leading to turbulence

« Current sheets associated with unstable modes allow for exponential
dissipation of magnetic energy

« Current sheets mediate the energy spectrum, but an energy cascade
appears to be the primary mechanism for energy transfer, as with
Burgers turbulence in fluids

« Still would like to figure out critical balance, maybe try at higher
resolution!
« Good news, new GPU code (GX) capable of running these
equations is nearly ready!
« Diagnostics, diagnostics, diagnostics...

P s F ‘ Plasma Science and Fusion Center
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Kink-tearing scalings

 Laplacian resistivity scans for Lz = 0.25 (left) and Lz =0.5 (right).
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Dynamics of a quasi-steady nonlinear state

A few interesting features I'd like to explain—
« How is it that the peaks in kinetic energy arise?

« How is it that the rate of magnetic energy dissipation remains
exponential?

« How is it that longer flux ropes dissipate a larger fraction of
energy
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Rational surfaces survive the initial nonlinear interaction

Peaks in kinetic energy must be associated with

some important dynamic event 1.5 mmm
 Excitation of instability
« Are these the initially excited perturbations? 10
 Calculate safety factor from the magnetic field 0.5 F
data: ;

A 1 > 0.08§ o)

q= 7= :
L, B, —0.5
e Observe survival of the 1/1 and 1/2 rational —1.0

surfaces after tau_A ~ 200, where the initial _1

nonlinear interaction occurs

« Rational surfaces are rearranged, so these are
not simply the initially growing perturbations
but are excited nonlinearly
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Rational surfaces survive the initial nonlinear interaction

 Calculate the kz spectrum of the
perturbed magnetic field

« Indeed, modes experience nonlinear kick
at later times 108

« This allows us to investigate the time
evolution of each mode

« See sequential peaks in the mode
energies, from n=5 -> n=1

Individual Mode Energy v Time

104 L

102 + n=4%

n—==>5y

Egp(k,) (pert.)

n=>2
10° - PR

n—=3

0 100 200 300 400 500
t/(a)
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Rational surfaces survive the initial nonlinear interaction

Individual Mode Energy v Time lLSp—r— ]
G B R T B A H A B i 74 =198.638 1
1.0 9
109 F . ; ) . ]
- 0.5 F ]
S 104L :
2 > 0.0F - o
§102— —— n=1 ——mn=4 - —0.55- '
qu —— n=2 —— n=31)
100_ . i —1.0_— 7
— n=23 :
A T R B U RS S ST R _15 n fl_n n n o Nl_n n n o N 0 -
0 100 200 300 400 500 —1 0 1

t/(1a)
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Rational surfaces survive the initial nonlinear interaction

Individual Mode Energy v Time lLSp—r ]
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Rational surfaces survive the initial nonlinear interaction

Individual Mode Energy v Time lSprr 7 20
: T4 =273.328
1.0 _aailiiaaRe. p
106_ - [ ] 15
= 0.5 F 3
$ 10*t - 5 |
& > 0.0F 1 H10 @
§102- n=1 ——mn=4- —0.53- '
8 —+ n=2 — n=5 - S 0.5
100_ | H:3 | —10
0 100 200 300 400 500 I

t/(1a)
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Energy spectra are mediated by strong current sheets

« The kinetic spectrum is also set by features of
the magnetic field

e Initially close to Ex~k7!. As turbulence
develops, see knee at intermediate scales,
separating out a flat regime and an inertial
range steeper than -1

187.776
« Understand this as a combination of the ~——— 273.328
spectral signature of inflow/outflow profiles —— 303.801
—3 L N | Ll
and the turbulent cascade 107 550 o TS
kL
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Spectral signature of reconnection

« Can obtain analytical expressions for inflow
and outflow profiles of an SP-like
equilibrium (Loureiro+ 2013)

 Outflows inject energy at all scales—flat
spectrum

* Inflows have reversal across cs, so have a
k1% spectrum

 Turbulent cascade steepens the spectrum as
well

Reconnection Inflow and Outflow Profiles

OF

50
— Outflow

—— Inflow

-05+

-10+

1000 .
100}

10+<

0.100 ¢
0.010+

0.001
1

In/outflow Spectral Signatures
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Calculating the energy transfer

* Interested in how energy moves from scale to scale in this system

 Energy transfer equations are readily obtained from the MHD induction
and momentum equations

* The “shell-filtered variables”, BX and u are quantities whose Fourier
transform contains only the fields in a shell k < K <k + 1

Tob(Q, K) = — < / d*x7 [Bﬁf (uy - VL)B‘E: >

Tos@,€) = = ( [ it [uf (s V0] )

Zhou + 2020, Alexakis + 2005
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Signatures of current sheets in the energy transfer

» Kinetic-to-kinetic energy transfer
« Cascade forms along diagonal.

* Less intense but still significant /nverse energy transfer from small to large scales
indicates the energy injected by reconnection outflows

Ta = 187 215 273
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Structure function for Lz4

e Lz=4 gives us the best chance of having 3D turbulence
 See that the break in correlation disappears at later times!

* Also becomes perfectly 11

265
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