Turbulent transport avoids core particle depletion in stellarators

H. Thienpondt¹, J. M. García-Regaña¹, I. Calvo¹, J. A. Alonso¹,
J. L. Velasco¹, A. González-Jerez¹, M. Barnes², K. Brunner³, O. Ford³,
G. Fuchert³, J. Knauer³, E. Pasch³, L. Vanó³ and the W7-X team⁴

¹Laboratorio Nacional de Fusión, CIEMAT, Spain
²Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK
³Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
⁴See Klinger *et al* 2019 for the W7-X Team

14th Plasma Kinetics Working Meeting, July 27th, 2023

- Introduction
 - The stellarator: candidate concept for fusion reactors
 - Importance of neoclassical and turbulent transport
 - Modeling turbulent transport with stella

Ontivation for the study of the effect of turbulence on stellarator particle transport

Neoclassical particle transport

Turbulent particle transport

- Turbulence can drive inwards convection
- \bullet Dependence on $a/L_n, a/L_{T_i}, a/L_{T_e}$ and T_e/T_i
- Dependence on the magnetic geometry
- \bullet Correlation of sgn($\Gamma_s^{\rm turb})$ with the phase-shift between $\delta n_{\bf k}$ and $\varphi_{\bf k}$
- Analysis of ECRH discharge in W7-X

6 Conclusions and prospects

Introduction

- The stellarator: candidate concept for fusion reactors
- Importance of neoclassical and turbulent transport
- Modeling turbulent transport with stella

Motivation for the study of the effect of turbulence on stellarator particle transport

3 Neoclassical particle transport

Turbulent particle transport

- Turbulence can drive inwards convection
- Dependence on $a/L_n, a/L_{T_i}, a/L_{T_e}$ and T_e/T_i
- Dependence on the magnetic geometry
- Correlation of sgn(Γ_s^{turb}) with the phase-shift between $\delta n_{\bf k}$ and $\varphi_{\bf k}$
- Analysis of ECRH discharge in W7-X
- Conclusions and prospects

The stellarator: candidate concept for fusion reactors

Tokamak

- Good confinement thanks to axisymmetry
- Part of ${f B}$ generated by a large current in the plasma
 - \Rightarrow Current-driven instabilities
 - \Rightarrow Difficult steady-state operation

Stellarator

- Entire B generated by external coils
 - \Rightarrow No current-driven instabilities
 - \Rightarrow Intrinsically steady-state operation
- Advantages come at a cost: 3D geometry
- Avoid intolerably large neoclassical transport
 - \Rightarrow Tailoring of ${\bf B}$ needed to achieve good confinement
 - \Rightarrow Stellarator optimization

Importance of neoclassical and turbulent transport (low collisionality)

	Physical origin	Relevance in tokamaks	Relevance in stellarators		
Classical transport	Collisions	Typically negligible	Typically negligible		
Neoclassical transport	Inhomogeneity of B + Collisions	Small	Large in non- optimized stellarators		
Turbulent transport	Collective fluctuations	Dominant	Relevant in neoclassically optimized stellarators		

Importance of neoclassical and turbulent transport in Wendelstein 7-X

Neoclassical optimization

- W7-X is the first large stellarator designed for optimized neoclassical transport
- Neoclassical optimization experimentally demonstrated [Beidler, 2021]

Relevance of turbulent transport in W7-X

- Most discharges: neocl. transport cannot account for the total heat losses [Bozhenkov, 2020]
- Gap between the input power (black) and neoclassical losses (green) of a factor 10
- Gap is expected to be due to turbulence

Neoclassical and turbulent models are required to understand transport

- Neoclassical simulations are a mature field and have been routinely used for decades
- Turbulent simulations in stellarator plasmas are much less mature. However, recent developments in theory, release of new gyrokinetic codes and increased supercomputing capabilities now allow to address the problem of turbulent transport in stellarators
- Turbulent particle transport in tokamaks is much better understood [Angioni, 2009], e.g., thermo-diffusion [Coppi, 1978], curvature pinch [Weiland, 1989], ...

Gyrokinetic code stella

- Operator-split, implicit-explicit time advance scheme to maximize the allowable time step size [Barnes, 2019]
- In this work: electrostatic, flux-tube, ion-scales, kinetic ions and electrons

Coordinate system used in stella

- Coordinate along magnetic field lines ζ
- Flux surface label r
- Field line label α

Hanne Thienpondt

Kinetic (electrostatic) description

- Distribution function $f_s(\vec{r},\vec{v},t)$ and electrostatic fluctuation φ
- Vlasov equation coupled to the quasi-neutrality condition

$\begin{array}{c} \Omega_s \\ \hline \rho_s \\ \hline \rho_s \end{array} \\ \overset{\circ}{\overrightarrow{r}} \\ \overset{\circ}{\overrightarrow{r}}$

Electrostatic δf gyrokinetic description

[Catto, 1978; Parra 2011]

- Assume the plasma is strongly magnetized ($ho_s \ll a$)
- Turbulent fluctuations occur at Larmor radius scales ($k_\perp
 ho_s \sim 1)$
- Fluctuation frequency is much smaller than the cyclotron frequency $(\omega \ll \Omega_s)$
- Turbulence is elongated along field lines, short perpendicular spatial scales ($k_\parallel \ll k_\perp)$

Gyrokinetic ordering:

$$\frac{\delta f_s}{f_s} \sim \frac{q_s \varphi}{T_s} \sim \frac{k_\parallel}{k_\perp} \sim \frac{\omega}{\Omega_s} \sim \frac{\rho_s}{a} \ll 1$$

- Average out the fast gyro-motion, to eliminate the gyro-angle \Rightarrow kinetics of charged rings

Flux tube approach

- Turbulent fluctuations are elongated along the field lines $(k_{\parallel}/k_{\perp} \ll 1)$
- Local radial coordinate x, local field line label y, coordinate along the field line ζ

Excitation of microinstabilities

- Strength depends on the temperature ratio (T_e/T_i) and the normalized gradients

$$\begin{split} \frac{a}{L_{n_s}} &= -\frac{a}{n_s} \frac{\partial n_s}{\partial r} \bigg|_{r_0} \\ \frac{a}{L_{T_s}} &= -\frac{a}{T_s} \frac{\partial T_s}{\partial r} \bigg|_{r_0} \end{split}$$

Most important microinstabilities

- Ion temperature gradient driven modes (ITG)
- Electron temperature gradient driven modes (ETG)
- Trapped electron modes driven by the density or electron temperature gradient (TEM)

Flux tube approach

- Turbulent fluctuations are elongated along the field lines $(k_{\parallel}/k_{\perp}\ll 1)$
- Local radial coordinate x, local field line label y, coordinate along the field line ζ

Excitation of microinstabilities

- Strength depends on the temperature ratio (T_e/T_i) and the normalized gradients

$$\frac{a}{L_{n_s}} = -\frac{a}{n_s} \frac{\partial n_s}{\partial r} \bigg|_{r_0}$$
$$\frac{a}{L_{T_s}} = -\frac{a}{T_s} \frac{\partial T_s}{\partial r} \bigg|_{r_0}$$

Most important microinstabilities

- Ion temperature gradient driven modes (ITG)
- Electron temperature gradient driven modes (ETG)
- Trapped electron modes driven by the density or electron temperature gradient (TEM)

transport

Overview

- Introduction
 - The stellarator: candidate concept for fusion reactors
 - Importance of neoclassical and turbulent transport
 - Modeling turbulent transport with stella

Ø Motivation for the study of the effect of turbulence on stellarator particle transport

3 Neoclassical particle transport

Turbulent particle transport

- Turbulence can drive inwards convection
- Dependence on $a/L_n, a/L_{T_i}, a/L_{T_e}$ and T_e/T_i
- Dependence on the magnetic geometry
- Correlation of sgn(Γ_s^{turb}) with the phase-shift between $\delta n_{\bf k}$ and $\varphi_{\bf k}$
- Analysis of ECRH discharge in W7-X
- Conclusions and prospects

transport

Motivation: Turbulent transport avoids core particle depletion

Thermonuclear fusion

- Understand, predict and control transport
- Particle transport: $\Gamma_s = \Gamma_s^{\text{neo}} + \Gamma_s^{\text{turb}} + \Gamma_s^{\text{clas}}$

Neoclassical transport in W7-X

- Designed for reduced neoclassical transport
- Neoclassical transport is still important at the core due to the high temperatures
- Core depletion, hollow density profiles in the absence of particle sources [Maaßberg, 1999]

Discharges in W7-X

- Measured density profiles are not as hollow as neoclassical transport and particle source estimates predict
- Therefore, a significant inward contribution to the particle flux may be missing in the core

Objective

- Does turbulence drive inward particle fluxes?

Outline of the talk

- Neoclassical particle transport and the prediction of hollow density profiles
- Turbulent particle transport and the prediction of an inward particle flux: robust general mechanism
- Compare experimental, neoclassical and turbulent fluxes for #20180920.017

Discharge #20180920.017 with ECRH

Overview

- Introduction
 - The stellarator: candidate concept for fusion reactors
 - Importance of neoclassical and turbulent transport
 - Modeling turbulent transport with stella

Motivation for the study of the effect of turbulence on stellarator particle transport

Neoclassical particle transport

- Turbulent particle transport
 - Turbulence can drive inwards convection
 - \bullet Dependence on $a/L_n, a/L_{T_i}, a/L_{T_e}$ and T_e/T_i
 - Dependence on the magnetic geometry
 - Correlation of sgn(Γ_s^{turb}) with the phase-shift between $\delta n_{\bf k}$ and $\varphi_{\bf k}$
- 5 Analysis of ECRH discharge in W7-X
- Conclusions and prospects

Neoclassical transport predicts very hollow density profiles in all large reactors

Neoclassical transport theory at the core

At low collisionality we have e.g. [Beidler, 2011]

$$\frac{\Gamma_s^{\rm neo}}{n_s} = L_{11}^s \left(\frac{1}{n_s} \frac{{\rm d}n_s}{{\rm d}r} - \frac{Z_s e E_r}{T_s} + \delta_{12}^s \frac{1}{T_s} \frac{{\rm d}T_s}{{\rm d}r} \right)$$

Assume steady-state, no sources, ambi-polarity

$$\Gamma_i^{\text{neo}} = \Gamma_e^{\text{neo}} = 0$$

- Electrons in the $1/\nu$ and ions in the $\sqrt{\nu}$ asymptotic neoclassical regime [Beidler, 2018]

1	$d n_i$	_	1	$d n_e$	_		7/2	$d T_e$		5/4	dT_i
$\overline{n_i}$	dr	_	$\overline{n_e}$	dr	_	_	$T_e + T_i$	dr	_	$\overline{T_e + T_i}$	dr

Fusion relevant neoclassically-dominated plasmas

- Peaked temperature profile: $dT_s/dr < 0$
- Predicts very hollow density profiles: $dn_s/dr > 0$
- Even with estimates for non-zero particle source

Experimental ECRH plasmas in W7-X

 Flat or weakly peaked density profiles are generally measured [Wolf, 2017]

 $\begin{array}{l} \mbox{Standard W7-X configuration at } r/a = 0.25, \\ n_e = n_i = 6.4 \times 10^{19} \mbox{ m}^{-3}, \ T_e = 2.4 \mbox{ keV}, \\ T_i = 1.2 \mbox{ keV}, \ a/L_{T_i} = 0.63 \end{array}$

Neoclassical theory is not sufficient

- Missing a significant inward contribution to Γ_s

Overview

- Introduction
 - The stellarator: candidate concept for fusion reactors
 - Importance of neoclassical and turbulent transport
 - Modeling turbulent transport with stella

2) Motivation for the study of the effect of turbulence on stellarator particle transport

3 Neoclassical particle transport

Turbulent particle transport

- Turbulence can drive inwards convection
- \bullet Dependence on $a/L_n, a/L_{T_i}, a/L_{T_e}$ and T_e/T_i
- Dependence on the magnetic geometry
- Correlation of sgn($\Gamma_s^{\rm turb}$) with the phase-shift between $\delta n_{\bf k}$ and $\varphi_{\bf k}$

5 Analysis of ECRH discharge in W7-X

Conclusions and prospects

Inward convection and peaked equilibrium density driven by turbulence

Turbulent particle flux

Standard W7-X at r/a = 0.25, stella, flux-tube, kinetic ions and electrons. *

General expression for the particle flux

- Diffusion (D > 0)
- Convection (V) *

$$\frac{\Gamma_s^{\rm turb}}{n_s} = -D \, \frac{1}{n_s} \frac{dn_s}{dr} + V$$

Diffusion (D) driven by turbulence

- Sufficiently peaked density profiles: $\Gamma_s^{\rm turb}>0$
- Sufficiently hollow density profiles: $\Gamma_s^{\rm turb} < 0$

Convection (V) for flat density profile

- Turbulence driven by one temperature gradient: V > 0
- Turbulence driven by both temperature gradients: V < 0

In equilibrium if $\Gamma_s^{\text{turb}} + \Gamma_s^{\text{neo}} = 0$ (assuming S = 0)

- Neoclassical theory predicts very hollow density profiles due to the large outward neoclassical convection
- Turbulent inward diffusion reduces hollowness, but can not cause flat or peaked density profiles
- Turbulent inward convection that equals (overcomes) neoclassical convection can cause flat (peaked) n_s

Inward convection and peaked equilibrium density driven by turbulence

Turbulent particle flux

Standard W7-X at r/a = 0.25, stella, flux-tube, kinetic ions and electrons. *

General expression for the particle flux

- Diffusion (D > 0)
- Convection (V) *

$$\frac{dr}{ds} = -D \frac{1}{n_s} \frac{dn_s}{dr} + V$$

Diffusion (D) driven by turbulence

- Sufficiently peaked density profiles: $\Gamma_s^{\rm turb}>0$
- Sufficiently hollow density profiles: $\Gamma_s^{\rm turb} < 0$

Convection (V) for flat density profile

- Turbulence driven by one temperature gradient: V > 0

 Γ_s^{tu}

 n_{s}

- Turbulence driven by both temperature gradients: V < 0

In equilibrium if $\Gamma_s^{\text{turb}} + \Gamma_s^{\text{neo}} = 0$ (assuming S = 0)

- Neoclassical theory predicts very hollow density profiles due to the large outward neoclassical convection
- Turbulent inward diffusion reduces hollowness, but can not cause flat or peaked density profiles
- Turbulent inward convection that equals (overcomes) neoclassical convection can cause flat (peaked) n_s

Robustness of the sign of the convection: Dependence on a/L_{T_i} , a/L_{T_e} , T_e/T_i

Flat density profile (blue)

- Inward fluxes when $a/L_{T_i} = 3$ and $a/L_{T_e} > 1.0$
- Inward fluxes when $a/L_{T_e} = 3$ and $a/L_{T_i} > 0.2$
- Increasing a/L_{T_i} , a/L_{T_e} or T_e/T_i increases $|\Gamma_s^{turb}|$

Peaked density profile (red)

- Outward particle flux due to $-D n'_s$
- Small effect of $a/L_{T_i},\,a/L_{T_e}$ or T_e/T_i on the particle flux *

Turbulent particle flux with <code>stella</code> with $a/L_{T_i}=3;\,a/L_{T_e}=3$ and $T_e/T_i=1$

Hanne Thienpondt

Robustness of the sign of the convection: Dependence on magnetic geometry

Robustness of the sign of the convection: Dependence on magnetic geometry

Hanne Thienpondt

The sign of the convection is independent of the magnetic geometry (r/a=0.7)

Hanne Thienpondt

Turbulent transport avoids core particle depletion

Correlation of sgn($\Gamma_s^{\rm turb})$ with the phase-shift between $\delta n_{\bf k}$ and $\varphi_{\bf k}$

Particle flux spectrum and phase-shift $\arg(\delta n_{\mathbf{k}}/\varphi_{\mathbf{k}})$ for $a/L_n=0$

 $- a/L_{T_e} = 0$: dominant outward peak to the particle flux, the tail (small scales) is negative $- a/L_{T_e} = 3$: small outward peak at large scales, followed by a big inward peak

Phase-shift between $\delta n_{\mathbf{k}}$ and $\varphi_{\mathbf{k}}$

$$- \arg(\delta n_{\mathbf{k}}/\varphi_{\mathbf{k}}) > 0 \ \Leftrightarrow \ \Gamma^{\mathsf{turb}}_{s} > 0$$

$$- \arg(\delta n_{\mathbf{k}}/\varphi_{\mathbf{k}}) < 0 \iff \Gamma^{\mathsf{turb}}_{s} < 0$$

- Inward fluxes: $\delta n_{\mathbf{k}}$ lags behind $\varphi_{\mathbf{k}}$

Particle flux spectrum for $a/L_n \neq 0$

- For sufficiently peaked profiles, all scales drive outward particle fluxes due to diffusion
- For sufficiently hollow profiles, all scales drive inward particle fluxes due to diffusion

Correlation of sgn($\Gamma_s^{\rm turb})$ with the phase-shift between $\delta n_{\bf k}$ and $\varphi_{\bf k}$

Particle flux spectrum and phase-shift $\arg(\delta n_{\mathbf{k}}/\varphi_{\mathbf{k}})$ for $a/L_n=0$

 $- a/L_{T_e} = 0$: dominant outward peak to the particle flux, the tail (small scales) is negative $- a/L_{T_e} = 3$: small outward peak at large scales, followed by a big inward peak

Phase-shift between $\delta n_{\mathbf{k}}$ and $\varphi_{\mathbf{k}}$

$$- \arg(\delta n_{\mathbf{k}}/\varphi_{\mathbf{k}}) > 0 \ \Leftrightarrow \ \Gamma^{\mathsf{turb}}_{s} > 0$$

-
$$\arg(\delta n_{\mathbf{k}}/\varphi_{\mathbf{k}}) < 0 \iff \Gamma^{\mathsf{turb}}_s < 0$$

- Inward fluxes: $\delta n_{\mathbf{k}}$ lags behind $\varphi_{\mathbf{k}}$

Particle flux spectrum for $a/L_n \neq 0$

- For sufficiently peaked profiles, all scales drive outward particle fluxes due to diffusion
- For sufficiently hollow profiles, all scales drive inward particle fluxes due to diffusion

Correlation of sgn($\Gamma_s^{\rm turb})$ with the phase-shift between $\delta n_{\bf k}$ and $\varphi_{\bf k}$

Particle flux spectrum and phase-shift $\arg(\delta n_{\mathbf{k}}/\varphi_{\mathbf{k}})$ for $a/L_n=0$

 $- a/L_{T_e} = 0$: dominant outward peak to the particle flux, the tail (small scales) is negative $- a/L_{T_e} = 3$: small outward peak at large scales, followed by a big inward peak

Phase-shift between $\delta n_{\mathbf{k}}$ and $\varphi_{\mathbf{k}}$

$$- \arg(\delta n_{\mathbf{k}}/\varphi_{\mathbf{k}}) > 0 \ \Leftrightarrow \ \Gamma^{\mathsf{turb}}_{s} > 0$$

$$- \arg(\delta n_{\mathbf{k}}/\varphi_{\mathbf{k}}) < 0 \iff \Gamma^{\mathsf{turb}}_{s} < 0$$

– Inward fluxes: $\delta n_{\mathbf{k}}$ lags behind $\varphi_{\mathbf{k}}$

Particle flux spectrum for $a/L_n \neq 0$

- For sufficiently peaked profiles, all scales drive outward particle fluxes due to diffusion
- For sufficiently hollow profiles, all scales drive inward particle fluxes due to diffusion

Overview

- Introduction
 - The stellarator: candidate concept for fusion reactors
 - Importance of neoclassical and turbulent transport
 - Modeling turbulent transport with stella
- Distribution for the study of the effect of turbulence on stellarator particle transport
- 3 Neoclassical particle transport

Turbulent particle transport

- Turbulence can drive inwards convection
- Dependence on $a/L_n, a/L_{T_i}, a/L_{T_e}$ and T_e/T_i
- Dependence on the magnetic geometry
- Correlation of sgn(Γ_s^{turb}) with the phase-shift between $\delta n_{\bf k}$ and $\varphi_{\bf k}$

Analysis of ECRH discharge in W7-X

Conclusions and prospects

Analysis of ECRH discharge (#20180920.017) from OP1 in W7X

Experimental particle flux

- Neutral ionization source: recycling neutrals [Kremeyer'22]
- Short-mean-free-path 1D neutral transport model

$$\frac{d}{dr}rD_{CX}\left(\frac{dn_0}{dr} + \frac{1}{T_0}\frac{dT_0}{dr}n_0\right) = 2r\nu_{ion}n_0$$

- τ_p is varied from 0.1s to 1.0s to account for uncertainties in the confinement time [Beurskens 2021]
- Γ_s^{exp} is determined from neutral particle source $n_0(r)$
- $\Gamma_s^{\rm neo}$ (DKES) does not match $\Gamma_s^{\rm exp}$ at the core (nor edge)

Compare $\Gamma_s^{exp} - \Gamma_s^{neo}$ with Γ_s^{turb} (stella)

- $-~{\rm sign}(\Gamma_s^{\rm turb})$ agrees with ${\rm sign}(\Gamma_s^{\rm exp}{-}\Gamma_s^{\rm neo})$ for $\tau_p\approx 1\,{\rm s}$
- Possible sources of quantitative disagreements: plasma profiles, model (flux-tube, ion-scales, collisionless), ... *

Turbulence driven by both temperature gradients

 Can explain the missing inward flux in the core and the missing outward flux at the edge*

Analysis of ECRH discharge (#20180920.017) from OP1 in W7X

Experimental particle flux

- Neutral ionization source: recycling neutrals [Kremeyer'22]
- Short-mean-free-path 1D neutral transport model

$$\frac{d}{dr}rD_{CX}\left(\frac{dn_0}{dr} + \frac{1}{T_0}\frac{dT_0}{dr}n_0\right) = 2r\nu_{ion}n_0$$

- τ_p is varied from 0.1s to 1.0s to account for uncertainties in the confinement time [Beurskens 2021]
- Γ_s^{exp} is determined from neutral particle source $n_0(r)$
- $\Gamma_s^{\sf neo}$ (DKES) does not match $\Gamma_s^{\sf exp}$ at the core (nor edge)

Compare $\Gamma_s^{\exp} - \Gamma_s^{neo}$ with Γ_s^{turb} (stella)

- $-~{\rm sign}(\Gamma_s^{\rm turb})$ agrees with ${\rm sign}(\Gamma_s^{\rm exp}{-}\Gamma_s^{\rm neo})$ for $\tau_p\approx 1\,{\rm s}$
- Possible sources of quantitative disagreements: plasma profiles, model (flux-tube, ion-scales, collisionless), ... *

Turbulence driven by both temperature gradients

 Can explain the missing inward flux in the core and the missing outward flux at the edge *

$\Gamma_{s} [10^{19} \text{m}^{-2} \text{s}^{-1}]$ 10^{1} 10^{0} 10^{-1} 10^{-2} Γ_{s}^{exp} Γ_{s}^{neo} 10^{-3} 0.0 0.5 r/a 10^{1}

Conclusions and prospects

Neocl. theory is probably not sufficient to explain particle transport in the core of stellarators

- The neoclassical particle flux leads to strongly hollow density profiles
- Flat and weakly peaked density profiles are generally measured in W7-X
- Therefore, an inward contribution to the particle flux is missing in the core

Turbulence can drive inward fluxes at the core (in W7-X, NCSX, TJ-II, LHD, AUG and CBC)

- With stella we have identified the turbulence driven by both temperature gradients as the mechanism that leads to inward convection and could sustain peaked density profiles
- The magnitude of the inward convection increases with increasing a/L_{T_i} , a/L_{T_e} and T_e/T_i
- Neglecting dT_e/dr in the problem systematically yields outward turbulent particle fluxes *

Analysis of ECRH discharge (#20180920.017) from OP1 in W7-X

- With the available estimates of $\tau_p,\,\Gamma_s^{\text{neo}}$ alone is not able to explain the particle fluxes
- stella simulations can explain qualitatively the experimental particle flux both at the edge, where turbulence provides an extra outward flux, and the core where it drives an inward flux

Future and prospects

- Experiments are planned for W7-X and TJ-II to validate the predicted parametric dependence
- Determine (D_{Z1}, D_{Z2}, C_Z) from $\Gamma_Z = -n_Z [D_{Z1}(d \ln n_z/dr) + D_{Z2}(d \ln T_z/dr) + C_z]$?

Thank you for your attention!

[H. Thienpondt, JM. García-Regaña, I. Calvo, JA. Alonso, JL. Velasco, A. González-Jerez, M. Barnes, K. Brunner, O. Ford, G. Fuchert, et al. Prevention of core particle depletion in stellarators by turbulence. *Physical Review Research*, 5(2):L022053, 2023]

References I

- T Klinger, T Andreeva, Sergey Bozhenkov, C Brandt, R Burhenn, Birger Buttenschön, G Fuchert, B Geiger, O Grulke, HP Laqua, et al. Overview of first wendelstein 7-x high-performance operation. *Nuclear Fusion*, 59(11):112004, 2019.
- C. D. Beidler, H. M. Smith, A. Alonso, et al. Publisher correction: Demonstration of reduced neoclassical energy transport in wendelstein 7-x. *Nature*, 598(7882):E5–E5, October 2021. doi: 10.1038/s41586-021-04023-y. URL https://doi.org/10.1038/s41586-021-04023-y.
- SA Bozhenkov, Y Kazakov, OP Ford, MNA Beurskens, J Alcusón, JA Alonso, J Baldzuhn, Ch Brandt, KJ Brunner, H Damm, et al. High-performance plasmas after pellet injections in wendelstein 7-x. *Nuclear Fusion*, 60(6):066011, 2020.
- Clemente Angioni, Emiliano Fable, M Greenwald, Mikhail Maslov, AG Peeters, H Takenaga, and Henri Weisen. Particle transport in tokamak plasmas, theory and experiment. *Plasma Physics and Controlled Fusion*, 51(12):124017, 2009.
- B Coppi and C Spight. Ion-mixing mode and model for density rise in confined plasmas. *Physical Review Letters*, 41(8):551, 1978.
- J Weiland, AB Jarmen, and H Nordman. Diffusive particle and heat pinch effects in toroidal plasmas. *Nuclear Fusion*, 29(10):1810, 1989.
- M. Barnes, F.I. Parra, and M. Landreman. stella: An operator-split, implicit-explicit δf -gyrokinetic code for general magnetic field configurations. *Journal of Computational Physics*, 391:365–380, August 2019. doi: 10.1016/j.jcp.2019.01.025. URL https://doi.org/10.1016/j.jcp.2019.01.025.

Peter J Catto. Linearized gyro-kinetics. Plasma Physics, 20(7):719, 1978.

- Felix I Parra and Iván Calvo. Phase-space lagrangian derivation of electrostatic gyrokinetics in general geometry. *Plasma Physics and Controlled Fusion*, 53(4):045001, 2011.
- H Maaßberg, C D Beidler, and E E Simmet. Density control problems in large stellarators with neoclassical transport. *Plasma Physics and Controlled Fusion*, 41(9):1135–1153, August 1999. doi: 10.1088/0741-3335/41/9/306. URL https://doi.org/10.1088/0741-3335/41/9/306.
- C D Beidler, Y Feng, J Geiger, F Köchl, H Maßberg, N B Marushchenko, C Nührenberg, H M Smith, and Y Turkin. (expected difficulties with) density-profile control in w7-x high-performance plasmas. *Plasma Physics and Controlled Fusion*, 60(10):105008, August 2018. doi: 10.1088/1361-6587/aad970. URL https://doi.org/10.1088/1361-6587/aad970.
- R.C. Wolf, A. Ali, A. Alonso, J. Baldzuhn, et al. Major results from the first plasma campaign of the wendelstein 7-x stellarator. *Nuclear Fusion*, 57(10):102020, July 2017. doi: 10.1088/1741-4326/aa770d. URL https://doi.org/10.1088/1741-4326/aa770d.
- Thierry Kremeyer, R. König, S. Brezinsek, et al. Analysis of hydrogen fueling, recycling, and confinement at wendelstein 7-x via a single-reservoir particle balance. *Nuclear Fusion*, 62(3): 036023, mar 2022. doi: 10.1088/1741-4326/ac4acb. URL https://doi.org/10.1088/1741-4326/ac4acb.

M.N.A. Beurskens, S.A. Bozhenkov, O. Ford, P. Xanthopoulos, A. Zocco, Y. Turkin, A. Alonso, C. Beidler, I. Calvo, D. Carralero, T. Estrada, G. Fuchert, O. Grulke, M. Hirsch, K. Ida, M. Jakubowski, C. Killer, M. Krychowiak, S. Kwak, S. Lazerson, A. Langenberg, R. Lunsford, N. Pablant, E. Pasch, A. Pavone, F. Reimold, Th. Romba, A. von Stechow, H.M. Smith, T. Windisch, M. Yoshinuma, D. Zhang, R.C. Wolf, and the W7-X Team. Ion temperature clamping in wendelstein 7-x electron cyclotron heated plasmas. *Nuclear Fusion*, 61(11):116072, oct 2021. doi: 10.1088/1741-4326/ac1653. URL https://doi.org/10.1088/1741-4326/ac1653.