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Reflection-driven turbulence
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Figure: Image courtesy of B. Chandran

m The Sun launches Alfvén waves, which transport energy outwards

m The waves become turbulent due to wave reflections

m This causes energy to “cascade”, heating the plasma

m This increases the thermal pressure, which then accelerates the
solar wind.
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Expanding Box Model

We consider the turbulence dynamics in a frame co-moving with a
spherically expanding flow.
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Simplest model imaginable:

m Fluctuations are transverse,
non compressible

m Radial background magnetic
field

[ | kJ_p,' < 1
m U is radial, constant and > V,
m All fields are 3D periodic

Figure: Grappin et al. 1993
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Expanding Box Model

‘zeroth-order’ questions:

m How fast various types of energy decay?
m How the outer scale evolves?
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RMHD Expanding Box Model
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RMHD equations with two modifications :

m additional linear terms coupling counter-propagating Alfvénic
erturbations: —EF
P - 2a

= modified expression for the gradients accounting for the
increasing lateral stretching of the plasma with distance:
Vi — VL/a
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Characteristic times scales
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values delimit different regimes through which the turbulence

XA and xexp vary during the expansion and their relative
evolves during its radial transport. }
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Basic evolution

a

Figure: Left panel: Radial evolution of wave action energies E+ (red lines) and
E~ (blue lines) for three simulations with different amplitude initial conditions.
Right panel: Parametric representation of o, and o during the evolution. The
colors (on a logarithmic scale) indicate the normalized radial distance a. Solid
lines represent contours of constant oyg.
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Figure: Wave-action energy spectra £+ (k. ) during the imbalanced phase of
the simulation. The different colors show different time/radii, as indicated by the
color bar. In each panel, the inset shows the best-fit power-law spectral slope.
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Turbulent decay phenomenology
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m Because E* > E" when E* > E~, 2" is decaying , while 2~ is
forced by reflection and damped by turbulence.

m The z~ fluctuations remain “anomalously coherent” with the Z* |
because their forcing via reflection is highly coherent (o — 2") thus
“dragging” Z~ along with the Z* in time.

m The turbulent decay time T+ of Z* is strong for both field:
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Turbulent decay phenomenology
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Turbulent decay phenomenology
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The anomalous coherence will break down once z~ enters the weak
regime (in which case Zz~ can propagate away from the source). The
phenomenology thus requires

. (T_)_1 2+/}‘+
Xa VA/€|| a1/2VAO/£H ~

The phenomenology can only be valid for sufficiently large-amplitude Zz*
with xexp > 1 irrespective of the fluctuation’s parallel scale, and we
expect the transition to the balanced regime to occur when E+ decays
sufficiently so that yexp ~ 1.
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Basic evolution
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Anomalous coherence

Space-time Fourier spectrum:
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The growth of L.
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m Et(k)) migrate towards large scales during the expansion. As this
occurs, £+ develops a wide £+ o k[ ' range.

m The evolution of E'*(kL) is quite different, rapidly moving to large
scales at very early times.
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Anomalous conservation of anastrophy

In the nonlinear regime, the weaker field is born coherent and is
short-lived. It doesn’t propagate against but with the stronger field. The
dynamic is effectively 2D like which suggest that anastrophy (A2) is
anomalously conserved.

(A2) ~a 'ET[® ~const. = L, xa

The turbulent decay must progress with L, increasing rapidly in time.
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Anomalous conservation of anastrophy

We compute the parametric representation,

i) = dln l+(a),

dlna

_8In 2r+n1s(a)
dlna

X(a) =
where 2}, = V2E+ and L is computed as
i, = / dk, EF (k1) /K.

X(a) and Y(a) are the instantaneous scaling exponents of 1 /Zis and
L. If anastrophy is conserved then

Y(a) = X(a) + %
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Anomalous conservation of anastrophy
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The split cascade

1024

© 10!

100
10° 10! 10°

kL, /2n kyLy /2w

3

o2m [ d°r [z ]< . e
L, )] v

where the low-pass filter is defined by
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Balanced, magnetically dominated phase
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Linear Dynamics

EE=_zEti(AFwb)Z]
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m For A > 1/2, w® is real and z* oscillates with frequency w*.
m For A < 1/2, w™ is imaginary and modes grow exponentially,
3+ o glotlina _ glot| _ gv/1-442/2.

The growing expansion-dominated mode, with co = iv/1/4 — A2 is
magnetically dominated with 2~ ~ —2" and |b, | > |i, |

H‘ |\)|_|.
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Linear Dynamics
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Figure: Solutions of the linearised equations, starting from the initial condition
Z=(0) = 0 and 2*(0) = /2 with different values of A as labelled. Solid lines
show |Z*(a)|; dotted lines show |z~ (a)|.
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Emergence of Alfvén vortices
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Figure: Left: Snapshot of the magnetic field modulus in a plane perpendicular
to By at a = 250. Middle: Close-up corresponding to the marked region on the
left, illustrating Alfvén vortices colliding and and merging through reconnection.
Right: Same region as the middle panel, but showing the out-of-plane current.
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Emergence of Alfvén vortices

We start from the variational problem
5/d3r (19,47 - A% =0,

where 6 denotes the functional derivative and A a Lagrangian multiplier.
Identifying A with a characteristic scale K, via A = —K?2, the
Euler-Lagrange equation becomes the Helmholiz equation.

V2A, = —K2A,.

AL(r) = Agdo(KLr), r<re
Az(r) = Ag, r>r,

The solution corresponds to a particular case of so-called Alfvén vortex
solutions, the vortex monopole. The equilibrium is effectively a screw
pinch, with its nonlinear equilibrium resulting from the balance between
the curvature/tension force and the pressure gradient.
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Emergence of Alfvén vortices
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Conclusions

In its simplest form, the reflection-driven turbulence may explain es-
sential features of the solar wind:

» Double power law at intermediate and large scales, with power
indices -3/2 and -1 respectively

» Bi-directional Elsasser cascades in highly imbalance streams.
= Formation of Alfvén vortices.
m Generation of high negative residual energy states.
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Thank you for your attention

Figure: Courtesy of Maxwell Busby
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