Wave interactions and turbulence in collisionless, high- β plasmas

Stephen Majeski (Advised by M. Kunz, with J. Squire)

Table of Contents

Prerequisites:

- Double adiabats and pressure anisotropy
- Acoustic-Alfvén wave interactions (high β)

Turbulence ($k \ll \rho_i^{-1}$):

- Low-moderate beta
- Magneto-immutability
- High beta (10-100)

Table of Contents

Prerequisites:

- Double adiabats and pressure anisotropy
- Acoustic-Alfvén wave interactions (high β)

Turbulence ($k \ll \rho_i^{-1}$):

- Low-moderate beta
- Magneto-immutability
- High beta (10-100)

New to this talk

All simulations: $T_e = 0$

Cosmic ray transport by turbulent B fields (Kempskii et al '23)

Cosmic ray transport by turbulent B fields (Kempskii et al '23)

MRI turbulence in accretion disks (Kunz et al '16)

Cosmic ray transport by turbulent B fields (Kempskii et al '23)

MRI turbulence in accretion disks (Kunz et al '16)

Coma density fluctuations defy viscous scale (Zhuravleva et al '19)

Prerequisites

Bulk plasma:

(Swiped from Matt Kunz)

Bulk plasma:

Bulk plasma:

 \rightarrow Requires well magnetized, weakly collisional plasmas (with no ρ_i or Ω_i scale variation)

Bulk plasma:

Realistically (heat fluxes, scattering from Coulomb...) ->

 $\Delta\beta \sim 1$

(Sets IA amplitude)

$\Delta\beta \sim 1 \quad \longrightarrow \quad \frac{\delta B_{\parallel}}{B_0} \sim \frac{\delta B_{\perp}}{B_0} \sim \frac{1}{\beta} \sim \Delta \sim \frac{\delta\rho}{\rho_0} \sim \frac{u_{\perp}}{v_A} \sim \frac{u_{\parallel}}{v_{th}} \sim \epsilon$

(considering the waves as linear)

 $\Delta\beta \sim 1 \quad \longrightarrow \quad \frac{\delta B_{\parallel}}{B_0} \sim \frac{\delta B_{\perp}}{B_0} \sim \frac{1}{\beta} \sim \Delta \sim \frac{\delta\rho}{\rho_0} \sim \frac{u_{\perp}}{v_A} \sim \frac{u_{\parallel}}{v_{th}} \sim \epsilon$

Ordering 1D CGL-MHD... $\int z^{\pm} = u_{\perp} \pm \delta B_{\perp} / \sqrt{\rho_0}$

Ordering 1D CGL-MHD...

$$\frac{\partial z^{\pm}}{\partial t} \mp v_A \frac{\partial z^{\pm}}{\partial x} = v_A \frac{\beta}{4} \frac{\partial}{\partial x} \left[(z^+ - z^-) \Delta \right]$$

 $\frac{\partial z^{\pm}}{\partial t} \mp v_A \frac{\partial z^{\pm}}{\partial x} = v_A \frac{\beta}{4} \frac{\partial}{\partial x} \left[(z^+ - z^-) \Delta \right]$

→ AWs propagate linearly, except for modification by ∆

 $\frac{\partial z^{\pm}}{\partial t} \mp v_A \frac{\partial z^{\pm}}{\partial x} = v_A \frac{\beta}{4} \frac{\partial}{\partial x} \left[(z^+ - z^-) \Delta \right]$

→ AWs propagate linearly, except for modification by ∆

→ Nonlinearity is <u>not</u> limited to just changing $v_{A,eff} = v_{A,0}\sqrt{1 + \Delta\beta/2}$

$$\frac{\partial z^{\pm}}{\partial t} \mp v_A \frac{\partial z^{\pm}}{\partial x} = v_A \frac{\beta}{4} \frac{\partial}{\partial x} \left[(z^+ - z^-) \Delta \right]$$

→ AWs propagate linearly, except for modification by ∆

→ Nonlinearity is <u>not</u> limited to just changing $v_{A,eff} = v_{A,0}\sqrt{1 + \Delta\beta/2}$

$$\frac{\partial z^{\pm}}{\partial t} \mp v_A \frac{\partial z^{\pm}}{\partial x} = v_A \frac{\beta}{4} \frac{\partial}{\partial x} \left[(z^+ - z^-) \Delta \right]$$

$\rightarrow \ \text{IAs propagate linearly at} \\ v_{th} \gg v_A$

→ AWs propagate linearly, except for modification by Δ

→ Nonlinearity is <u>not</u> limited to just changing $v_{A,eff} = v_{A,0}\sqrt{1 + \Delta\beta/2}$

$$\frac{\partial z^{\pm}}{\partial t} \mp v_A \frac{\partial z^{\pm}}{\partial x} = v_A \frac{\beta}{4} \frac{\partial}{\partial x} \left[(z^+ - z^-) \Delta \right]$$

→ IAs propagate linearly at $v_{th} \gg v_A$

→ AWs do not affect IAs (without going $\beta^{-3/2}$ further down in order)

IAs propagate linearly at $v_{th} \gg v_A$, so how do they interact without averaging out?

IAs propagate linearly at $v_{th} \gg v_A$, so how do they interact without averaging out?

\rightarrow Frequency matching a

$$\omega_{IA} \sim k_{\parallel,IA} v_{th} \sim k_{\parallel,AW} v_A = \omega_{AW}$$

IAs propagate linearly at $v_{th} \gg v_A$, so how do they interact without averaging out?

\rightarrow Frequency matching a

$$\omega_{IA} \sim k_{\parallel,IA} v_{th} \sim k_{\parallel,AW} v_A = \omega_{AW}$$

 $\frac{\partial z^{\pm}}{\partial t} \mp v_A \frac{\partial z^{\pm}}{\partial x} = v_A \frac{\beta}{4} \frac{\partial}{\partial x} \left[(z^+ - z^-) \Delta \right] \qquad + \qquad \Delta = \Delta_0 e^{ik_{IA}x + i\omega_{IA}t}$

Predicted by solution of a single IA interacting with a single AW.

$$\frac{\partial z^{\pm}}{\partial t} \mp v_A \frac{\partial z^{\pm}}{\partial x} = v_A \frac{\beta}{4} \frac{\partial}{\partial x} \left[(z^+ - z^-) \Delta \right]$$

Max interaction (1D):

Predicted by solution of a single IA interacting with a single AW.

+
$$\Delta = \Delta_0 e^{ik_{IA}x + i\omega_{IA}t}$$

$$\frac{k_{IA}}{k_{AW}} = \frac{2\omega_{AW}(\omega_{AW} + \omega_{IA,r})}{\omega_{IA,r}^2 + \omega_{IA,i}^2 - \omega_{AW}^2} \sim \frac{2}{\sqrt{\beta}}$$

Predicted by solution of a single IA interacting with a single AW.

Max interaction (1D):

$$\frac{k_{IA}}{k_{AW}} = \frac{2\omega_{AW}(\omega_{AW} + \omega_{IA,r})}{\omega_{IA,r}^2 + \omega_{IA,i}^2 - \omega_{AW}^2} \sim \frac{2}{\sqrt{\beta}}$$

 $k_{
m A}/k_{C}$

→ As $k_{IA} \ll k_{AW}$, resultant AWs have wavenumber $k_{AW} + k_{IA} \approx k_{AW}$

→ As $k_{IA} \ll k_{AW}$, resultant AWs have wavenumber $k_{AW} + k_{IA} \approx k_{AW}$

→ As $k_{IA} \ll k_{AW}$, resultant AWs have wavenumber $k_{AW} + k_{IA} \approx k_{AW}$

→ Initial z^+ generates z^- , and initial z^- generates z^+ (regardless of IA)

→ As $k_{IA} \ll k_{AW}$, resultant AWs have wavenumber $k_{AW} + k_{IA} \approx k_{AW}$

→ Initial z^+ generates z^- , and initial z^- generates z^+ (regardless of IA) → Even if $u_{\parallel,IA} \sim u_{\perp,AW}$, IAs likely too fast to be modified by AWs

→ As $k_{IA} \ll k_{AW}$, resultant AWs have wavenumber $k_{AW} + k_{IA} \approx k_{AW}$

→ Even if $u_{\parallel,IA} \sim u_{\perp,AW}$, IAs likely too fast to be modified by AWs MHD:

- → Initial z^+ generates z^- , and initial z^- generates z^+ (regardless of IA)

- AWs are unaffected by slow modes
- Slow modes mixed by δB_{\perp} while propagating otherwise linearly

Turbulence

@ $k \ll \rho_i^{-1}$, turbulence is quite MHD-like

@ $k \ll \rho_i^{-1}$, turbulence is quite MHD-like

Compressive fluctuations passively mixed

@ $k \ll \rho_i^{-1}$, turbulence is quite MHD-like

Compressive fluctuations passively mixed

Critically balanced spatial anisotropy

@ $k \ll \rho_i^{-1}$, turbulence is quite MHD-like

Compressive fluctuations passively mixed

Critically balanced spatial anisotropy \rightarrow

- Depending on forcing, $\Delta\beta < 1$ so $v_{A,eff} \approx v_{A,0}$

Might expect that as $\beta \sim 10$, viscous stress, $\Delta \beta$, Landau damping interfere. But...

Might expect that as $\beta \sim 10$, viscous stress, $\Delta \beta$, Landau damping interfere. But...

(Squire et al 23)

Might expect that as $\beta \sim 10$, viscous stress, $\Delta\beta$, Landau damping interfere. But...

 $\nabla \cdot (\hat{b}\hat{b}\Delta p)$ suppresses coll'lessly damped motions

$\nabla \cdot (\hat{b}\hat{b}\Delta p)$ suppresses coll'lessly damped motions

Drives plasma away from instability thresholds

$\nabla \cdot (\hat{b}\hat{b}\Delta p)$ suppresses coll'lessly damped motions Drives plasma away from instability thresholds Limits viscous heating

Could compressive driving be different?

 Compressive fluctuations not exclusively slow

- Compressive fluctuations not exclusively slow
- AWs may be limited in their ability to mix certain compressive modes

Could compressive driving be different?

 10^{3}

- AWs may be limited in their ability to mix certain compressive modes
- IAs <u>are linearly</u> collisionlessly damped

How do strength of forcing and β affect immutability, dissipation?

How do strength of forcing and β affect immutability, dissipation?

With high β compressive driving, can immutability keep $\Delta\beta$ away from microinstability thresholds, or will the turbulence become "collisional"?

How do strength of forcing and β affect immutability, dissipation?

With high β compressive driving, can immutability keep $\Delta\beta$ away from microinstability thresholds, or will the turbulence become "collisional"?

Heat fluxes diffuse Δp on $(k_{\parallel}v_{th})^{-1}$ timescales \rightarrow can immutability influence the flow before a causal connection is lost?

How do strength of forcing and β affect immutability, dissipation?

With high β compressive driving, can immutability keep $\Delta\beta$ away from microinstability thresholds, or will the turbulence become "collisional"?

Heat fluxes diffuse Δp on $(k_{\parallel}v_{th})^{-1}$ timescales \rightarrow can immutability influence the flow before a causal connection is lost?

Do compressive fluctuations, their larger anisotropy, and their own possible immutability, interfere with the evolution and immutability of the Alfvénic cascade?

Governing equations

$$egin{aligned} &
ho\left(\partial_tm{u}+m{u}\cdotm{
abla}m{u}
ight)=-m{
abla}\left(T_e
ho+p_{\perp}+rac{B^2}{8\pi}
ight)+m{
abla}\cdot\left[\hat{m{b}}\hat{m{b}}\left(arDerlow p+rac{B^2}{4\pi}
ight)
ight],\ &+m{
abla}\cdot(p_{\perp}m{u})+p_{\perp}m{
abla}\cdotm{u}+m{
abla}\cdot(q_{\perp}\hat{m{b}})+q_{\perp}m{
abla}\cdot\hat{m{b}}=p_{\perp}\hat{m{b}}\hat{m{b}}egin{aligned} &m{\partial} p+rac{B^2}{4\pi}
ight)
ight], \end{aligned}$$

$$\partial_t p_\perp + \boldsymbol{\nabla} \cdot (p_\perp \boldsymbol{u}) + p_\perp \boldsymbol{\nabla} \cdot \boldsymbol{u} + \boldsymbol{\nabla} \cdot (q_\perp \hat{\boldsymbol{b}}) + q_\perp \boldsymbol{\nabla} \cdot \hat{\boldsymbol{b}} = p_\perp \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \boldsymbol{\nabla} \boldsymbol{u} - p_\perp \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \boldsymbol{\nabla} \boldsymbol{u}$$

$$\partial_t p_{\parallel} + \boldsymbol{\nabla} \cdot (p_{\parallel} \boldsymbol{u}) + \boldsymbol{\nabla} \cdot (q_{\parallel} \hat{\boldsymbol{b}}) - 2q_{\perp} \boldsymbol{\nabla} \cdot \hat{\boldsymbol{b}} = -2p_{\parallel} \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \boldsymbol{\nabla} \boldsymbol{u} + \frac{2}{3}$$

Heat fluxes

$$\begin{split} - \boldsymbol{\nabla} \cdot (q_{\perp} \hat{\boldsymbol{b}}) &\approx - \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} q_{\perp} \approx \sqrt{\frac{2}{\pi}} \nabla_{\parallel} \left[\frac{c_{\mathrm{s}\parallel}^2}{c_{\mathrm{s}\parallel} |\nabla_{\parallel}| + a_{\perp} \nu_{\mathrm{c}}} \nabla_{\parallel} p_{\perp} \right], \\ - \boldsymbol{\nabla} \cdot (q_{\parallel} \hat{\boldsymbol{b}}) &\approx - \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} q_{\parallel} \approx \sqrt{\frac{8}{\pi}} \nabla_{\parallel} \left[\frac{c_{\mathrm{s}\parallel}^2}{c_{\mathrm{s}\parallel} |\nabla_{\parallel}| + a_{\parallel} \nu_{\mathrm{c}}} \nabla_{\parallel} p_{\parallel} \right], \end{split}$$

(Squire et al 23)

$\nu_{\rm c}\Delta p.$

Riemann solver based on Athena MHD code (Squire et al '23)

Governing equations

$$egin{aligned} &
ho\left(\partial_tm{u}+m{u}\cdotm{
abla}m{u}
ight)=-m{
abla}\left(T_e
ho+p_{\perp}+rac{B^2}{8\pi}
ight)+m{
abla}\cdot\left[\hat{m{b}}\hat{m{b}}\left(arDella p+rac{B^2}{4\pi}
ight)
ight],\ &+m{
abla}\cdot(p_{\perp}m{u})+p_{\perp}m{
abla}\cdotm{u}+m{
abla}\cdot(q_{\perp}\hat{m{b}})+q_{\perp}m{
abla}\cdot\hat{m{b}}=p_{\perp}\hat{m{b}}\hat{m{b}}egin{aligned} &m{
abla}\cdotm{
abla}-rac{1}{3}
u_{
m c}arDellap, \end{aligned}$$

$$\partial_t p_\perp + \boldsymbol{\nabla} \cdot (p_\perp \boldsymbol{u}) + p_\perp \boldsymbol{\nabla} \cdot \boldsymbol{u} + \boldsymbol{\nabla} \cdot (q_\perp \hat{\boldsymbol{b}}) + q_\perp \boldsymbol{\nabla} \cdot \hat{\boldsymbol{b}} = p_\perp \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \boldsymbol{\nabla} \boldsymbol{u} - p_\perp \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \boldsymbol{\nabla} \boldsymbol{u}$$

$$\partial_t p_{\parallel} + \boldsymbol{\nabla} \cdot (p_{\parallel} \boldsymbol{u}) + \boldsymbol{\nabla} \cdot (q_{\parallel} \hat{\boldsymbol{b}}) - 2q_{\perp} \boldsymbol{\nabla} \cdot \hat{\boldsymbol{b}} = -2p_{\parallel} \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \boldsymbol{\nabla} \boldsymbol{u} + \frac{2}{3}$$

Heat fluxes

$$\begin{split} - \boldsymbol{\nabla} \cdot (q_{\perp} \hat{\boldsymbol{b}}) &\approx - \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} q_{\perp} \approx \sqrt{\frac{2}{\pi}} \nabla_{\parallel} \left[\frac{c_{\mathrm{s}\parallel}^2}{c_{\mathrm{s}\parallel} |\nabla_{\parallel}| + a_{\perp} \nu_{\mathrm{c}}} \nabla_{\parallel} p_{\perp} \right], \\ - \boldsymbol{\nabla} \cdot (q_{\parallel} \hat{\boldsymbol{b}}) &\approx - \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} q_{\parallel} \approx \sqrt{\frac{8}{\pi}} \nabla_{\parallel} \left[\frac{c_{\mathrm{s}\parallel}^2}{c_{\mathrm{s}\parallel} |\nabla_{\parallel}| + a_{\parallel} \nu_{\mathrm{c}}} \nabla_{\parallel} p_{\parallel} \right], \end{split}$$

(Squire et al 23)

 $\nu_{\rm c}\Delta p.$

- Riemann solver based on Athena MHD code (Squire et al '23)
- Landau fluid $k_L = |\nabla_{\parallel}|$ is set to parallel box length

Governing equations

$$egin{aligned} &
ho\left(\partial_tm{u}+m{u}\cdotm{
abla}m{u}
ight)=-m{
abla}\left(T_e
ho+p_{\perp}+rac{B^2}{8\pi}
ight)+m{
abla}\cdot\left[\hat{m{b}}\hat{m{b}}\left(arDelta p+rac{B^2}{4\pi}
ight)
ight],\ &+m{
abla}\cdot(p_{\perp}m{u})+p_{\perp}m{
abla}\cdotm{u}+m{
abla}\cdot(q_{\perp}\hat{m{b}})+q_{\perp}m{
abla}\cdot\hat{m{b}}=p_{\perp}\hat{m{b}}\hat{m{b}}:m{
abla}m{u}-rac{1}{3}
u_{
m c}arDelta p, \end{aligned}$$

$$\partial_t p_\perp + \boldsymbol{\nabla} \cdot (p_\perp \boldsymbol{u}) + p_\perp \boldsymbol{\nabla} \cdot \boldsymbol{u} + \boldsymbol{\nabla} \cdot (q_\perp \hat{\boldsymbol{b}}) + q_\perp \boldsymbol{\nabla} \cdot \hat{\boldsymbol{b}} = p_\perp \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \boldsymbol{\nabla} \boldsymbol{u} - p_\perp \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \boldsymbol{\nabla} \boldsymbol{u}$$

$$\partial_t p_{\parallel} + \boldsymbol{\nabla} \cdot (p_{\parallel} \boldsymbol{u}) + \boldsymbol{\nabla} \cdot (q_{\parallel} \hat{\boldsymbol{b}}) - 2q_{\perp} \boldsymbol{\nabla} \cdot \hat{\boldsymbol{b}} = -2p_{\parallel} \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \boldsymbol{\nabla} \boldsymbol{u} + \frac{2}{3}$$

Heat fluxes

$$\begin{split} - \boldsymbol{\nabla} \cdot (q_{\perp} \hat{\boldsymbol{b}}) &\approx - \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} q_{\perp} \approx \sqrt{\frac{2}{\pi}} \nabla_{\parallel} \left[\frac{c_{\mathrm{s}\parallel}^2}{c_{\mathrm{s}\parallel} |\nabla_{\parallel}| + a_{\perp} \nu_{\mathrm{c}}} \nabla_{\parallel} p_{\perp} \right], \\ - \boldsymbol{\nabla} \cdot (q_{\parallel} \hat{\boldsymbol{b}}) &\approx - \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} q_{\parallel} \approx \sqrt{\frac{8}{\pi}} \nabla_{\parallel} \left[\frac{c_{\mathrm{s}\parallel}^2}{c_{\mathrm{s}\parallel} |\nabla_{\parallel}| + a_{\parallel} \nu_{\mathrm{c}}} \nabla_{\parallel} p_{\parallel} \right], \end{split}$$

(Squire et al 23)

 $\nu_{\rm c}\Delta p.$

 Riemann solver based on Athena MHD code (Squire et al '23)

• Landau fluid $k_L = |\nabla_{\parallel}|$ is set to parallel box length

• When $\Delta \beta \geq 1$ or $\Delta \beta \leq -2$, $\nu = 1e10$ locally

eta	1	10	100
Grid	384 x 192 ²	768 x 384 ²	768 x 384 ²
dE/dt (v_A^3/L_{\perp})	0.16	0.16	0.16
No flux?	\checkmark	\checkmark	Χ
Passive?	X	\checkmark	\checkmark

Each setup has been run with compressive (completely random) forcing and Alfvénic (incompressible, $\perp \overrightarrow{B}_0$)

eta	1	10	100
Grid	384 x 192 ²	768 x 384 ²	768 x 384 ²
dE/dt (v_A^3/L_{\perp})	0.16	0.16	0.16
No flux?	\checkmark	\checkmark	Χ
Passive?	X	\checkmark	\checkmark

Each setup has been run with compressive (completely random) forcing and Alfvénic (incompressible, $\perp \overrightarrow{B}_0$)

Ornstein-Uhlenbeck correlated with $\tau_{corr} = 2L_{\perp}/v_A = L_{\parallel}/v_A$

eta	1	10	100
Grid	384 x 192 ²	768 x 384 ²	768 x 384 ²
dE/dt (v_A^3/L_{\perp})	0.16	0.16	0.16
No flux?	\checkmark	\checkmark	X
Passive?	X	\checkmark	\checkmark

Quite fresh! What is shown represents patterns identified over the last \sim week

Each setup has been run with compressive (completely random) forcing and Alfvénic (incompressible, $\perp \vec{B}_0$)

Ornstein-Uhlenbeck correlated with $\tau_{corr} = 2L_{\perp}/v_A = L_{\parallel}/v_A$

Alfvénic vs Compressive driving: u^2 Spectra

Alfvénic vs Compressive driving: u^2 Spectra

ightarrow Largely similar, with spectrum growing steeper as $eta\uparrow$

$$\rightarrow$$
 For $\beta = 1 - 10$, $E_K \sim k_{\perp}^{-5/3}$

³, while $\beta = 100$ exhibits $E_K \sim k_{\perp}^{-2}$

Alfvénic vs Compressive driving: B² Spectra

Alfvénic vs Compressive driving: B^2 Spectra

 \rightarrow Relatively consistent with increasing β

\rightarrow Compressive spectrum appears to be less steep ($\sim k_{\perp}^{-3/2}$) than Alfvenic ($\sim k_{\perp}^{-5/3}$)

Alfvénic vs Compressive driving: Immutability

Alfvénic vs Compressive driving: Immutability

Alfvénic vs Compressive driving: Immutability

 \rightarrow Quite collisionless!

Alfvénic vs Compressive driving: Immutability (rates of strain)

 $\rightarrow \nabla_{\parallel} u_{\parallel}$ suppressed, but ∇u_{\parallel} spectra changing

Alfvénic vs Compressive driving: Immutability (rates of strain)

 $\rightarrow \nabla_{\parallel} u_{\parallel}$ suppressed, but ∇u_{\parallel} spectra changing

 \rightarrow New, essentially flipped ∇u_{\parallel} scalings support more dissipation

Alfvénic vs Compressive driving: Immutability (rates of strain)

Dominant mechanisms for cascade still appear to be Alfvénic

No obvious energy sink among terms considered

→ Heat fluxes possibly responsible

Dominant mechanisms for cascade still appear to be Alfvénic

Compressive driving: Scale of Δp

Compressive driving: Scale of Δp

Compressive driving: Scale of Δp

Compressive driving: Spatial anisotropy

\rightarrow AWs obey critically balanced $l_{\parallel} \sim l_{\perp}^{2/3}$ scaling very well

 $||_{1}$

Compressive driving: Spatial anisotropy

$\rightarrow p_{\parallel}$ and u_{\parallel} structures (associated w/ IAs) appear to also follow AW CB scaling very well

Compressive driving: Spatial anisotropy

$\rightarrow p_{\parallel}$ and u_{\parallel} structures (associated w/ IAs) appear to also follow AW CB scaling very well

 $\rightarrow p_{\perp}$ and B_{\parallel} spectra follow each other, but don't quite agree with any Alfvénic scalings

Summary/To-Do

Both compressively driven and high β turbulence are well regulated by magnetoimmutability, suggesting immutability can compete with heat fluxes.

Immutability does not appear to interfere with heat flux driven damping.

Surprisingly, IA-dominated quantities follow l_{\perp} , l_{\parallel} scalings of critical balance.

Source of resilience of the magnetic spectrum not yet clear. (Fast, NP modes?)

- Eigenmode decomposition: understand which modes appear to be dominating the energy partition at each β , forcing
- Investigate role of heat fluxes by comparing contribution with other transfer functions.

Alfvénic driving: Spatial anisotropy (bonus)

 $\rightarrow p_{\perp}$ and B_{\parallel} spectra approach CB scaling, with p_{\parallel} and u_{\parallel} only slightly differing from compressive driving

→ Spatial anisotropy does not appear to be very sensitive to beta (explains magnetic spectrum?)

Hint of dissipation in compressive $\beta = 10$ run?

Alfvénic vs Compressive driving: Transfer functions (bonus)

 $\mathcal{T}_{\Delta pu}$ for compressive $\beta = 10$ run is ~ 75% of $\beta = 100$ run.

Seems like u^2 spectrum is not very sensitive to viscous dissipation yet.

Compressive driving: u_{\parallel} vs u_{\perp} spectra (bonus)

 \rightarrow Spectrum of u_{\parallel} is steeper than u_{\perp}

 \rightarrow Difference between spectra appears insensitive to β

Compressive driving: Rate of Strain $\beta = 10$ (bonus)

AW interaction: Pressure anisotropy (bonus)

AW interaction: Kinetic + magnetic energy (bonus)

