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All simulations: Te = 0
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Individual particles:

Double adiabats:

Requires well magnetized, weakly collisional plasmas (with no  or  scale variation)ρi Ωi

Bulk plasma:
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Realistically (heat fluxes, scattering from Coulomb…)              CGL-MHD

Individual particles:

Double adiabats:

Bulk plasma:

μ =
mv2

⊥

2B
𝒥 = ∮ v∥ds

d
dt ( p∥B2

n3 ) ≠ 0
d
dt ( p⊥

nB ) ≠ 0

Δ =
p⊥

p∥
− 1
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MHDCGL-MHD

Acoustic wave:

Linear  and dampingΔ

Slow wave

Alfvén wave

β = 16

vA,eff = vA,0 1 + Δβ/2
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Δβ ∼ 1
(Sets IA amplitude)
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∂t
∓ vA

∂z±

∂x
= vA

β
4

∂
∂x [(z+ − z−)Δ] + Linear ion acoustic waves

AWs propagate linearly, except 
for modification by Δ

Nonlinearity is not limited to just 
changing vA,eff = vA,0 1 + Δβ/2

IAs propagate linearly at 
vth ≫ vA

AWs do not affect IAs (without 
going  further down in order)β−3/2
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IAs propagate linearly at , so how do they interact without averaging out?vth ≫ vA

β = 400

Frequency matching ωIA ∼ k∥,IAvth ∼ k∥,AWvA = ωAW



Predicted by solution of a single IA interacting with a single AW.
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Predicted by solution of a single IA interacting with a single AW.

kIA

kAW
=

2ωAW(ωAW + ωIA,r)
ω2

IA,r + ω2
IA,i − ω2

AW
∼

2
βMax interaction (1D):

β = 400
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Some important things to note:

As , resultant AWs have wavenumber kIA ≪ kAW kAW + kIA ≈ kAW

Even if , IAs likely too fast to be modified by AWsu∥,IA ∼ u⊥,AW

MHD:

Initial  generates , and initial  generates  (regardless of IA)z+ z− z− z+

AWs are unaffected by slow modes

Slow modes mixed by  while propagating otherwise linearlyδB⊥
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Low-Moderate , Coll’less:β

@ , turbulence is quite MHD-likek ≪ ρ−1
i

Alexandrova et al ’09 



Low-Moderate , Coll’less:β

Compressive fluctuations passively mixed
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Low-Moderate , Coll’less:β

Compressive fluctuations passively mixed

Depending on forcing,  so Δβ < 1
vA,eff ≈ vA,0

Critically balanced spatial anisotropy

@ , turbulence is quite MHD-likek ≪ ρ−1
i
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(Squire et al 23)

Might expect that as , viscous stress, , Landau damping interfere. But…β ∼ 10 Δβ

Spectra, spatial anisotropy resemble “passive” 
 MHD simulations (even though should have 

 @ outer scale)
Δp
|Δβ | > 2



Magneto-immutability: self organizing to minimize , b̂b̂ : ∇ ⃗u δB



 —- active,  - - passive

(Squire et al ’23)
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Limits viscous heating

Drives plasma away from instability thresholds

 suppresses coll’lessly damped motions∇ ⋅ (b̂b̂Δp)

MHD-like conservative cascade

Magneto-immutability: self organizing to minimize , b̂b̂ : ∇ ⃗u δB

(Squire et al 23)
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•Compressive fluctuations not exclusively 
slow


•AWs may be limited in their ability to 
mix certain compressive modes


•IAs are linearly collisionlessly damped


• different 
δu∥,IAC

vA
∼ β

δB∥,IAC

B0
→

EM

EK

Only incompressible driving so far..

Could compressive driving be different?
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Questions to ask:

How do strength of forcing and  affect immutability, dissipation?β

Heat fluxes diffuse  on  timescales  can immutability influence the flow before a 
causal connection is lost?

Δp (k∥vth)−1 →

With high  compressive driving, can immutability keep  away from microinstability 
thresholds, or will the turbulence become “collisional”?

β Δβ

Do compressive fluctuations, their larger anisotropy, and their own possible immutability, 
interfere with the evolution and immutability of the Alfvénic cascade?
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Simulation parameters: Landau-fluid CGL-MHD

•When  or , 
 locally

Δβ ≥ 1 Δβ ≤ − 2
ν = 1e10

Governing equations

Heat fluxes

•Landau fluid  is set 
to parallel box length

kL = |∇∥ |

•Riemann solver based on 
Athena MHD code (Squire et al ’23)

(Squire et al 23)
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compressive (completely 
random) forcing and Alfvénic 
(incompressible, )⊥ ⃗B 0
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Simulation parameters: Landau-fluid CGL-MHD

*Quite fresh! What is shown represents patterns identified over the last week*∼

β 1 10 100

Grid 384 x 1922 768 x 3842 768 x 3842

dE/dt (        ) 0.16 0.16 0.16

No flux? √ √ X

Passive? X √ √

v3
A/L⊥

Each setup has been run with 
compressive (completely 
random) forcing and Alfvénic 
(incompressible, )⊥ ⃗B 0

Ornstein-Uhlenbeck correlated 
with τcorr = 2L⊥/vA = L∥/vA
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Alfvénic vs Compressive driving:  Spectrau2

β = 1

β = 1 β = 10

β = 10 β = 100

β = 100

 For , , while  exhibits → β = 1 − 10 EK ∼ k−5/3
⊥ β = 100 EK ∼ k−2

⊥

 Largely similar, with spectrum growing steeper as → β ↑

k⊥ k⊥ k⊥
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Alfvénic vs Compressive driving:  SpectraB2

β = 1 β = 10 β = 100
 Compressive spectrum appears to be less steep ( ) than Alfvenic ( )→ ∼ k−3/2

⊥ ∼ k−5/3
⊥

 Relatively consistent with increasing  → β
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Alfvénic vs Compressive driving: Immutability (rates of strain)
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 suppressed, but  spectra changing→ ∇∥u∥ ∇u∥

Alfvénic, β = 100

 —- active,  - - passive
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Alfvénic, β = 100

 suppressed, but  spectra changing→ ∇∥u∥ ∇u∥

 New, essentially flipped  scalings 
support more dissipation

→ ∇u∥

Alfvénic vs Compressive driving: Immutability (rates of strain)
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Alfvénic vs Compressive driving: Fluxes

Alfvénic, β = 100
Alfvénic, β = 100

Compressive, β = 100

No obvious energy sink among 
terms considered


 Heat fluxes possibly responsible→

Dominant mechanisms for 
cascade still appear to be 
Alfvénic
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Compressive driving: Scale of Δp

k⊥

Compressive, β = 10

 AWs cannot maintain large  
against heat fluxes

→ ∇∥Δp

Compressive, β = 100 Suggests compressive source→



Compressive driving: Spatial anisotropy

∼

 AWs obey critically balanced 
 scaling very well

→
l∥ ∼ l2/3

⊥

, compressiveβ = 100



Compressive driving: Spatial anisotropy
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Compressive driving: Spatial anisotropy

  and  spectra follow each 
other, but don’t quite agree with any 

Alfvénic scalings

→ p⊥ B∥

, compressiveβ = 100

  and  structures (associated w/ 
IAs) appear to also follow AW CB 

scaling very well

→ p∥ u∥



Summary/To-Do

Both compressively driven and high  turbulence are well regulated by magneto-
immutability, suggesting immutability can compete with heat fluxes.

β

Immutability does not appear to interfere with heat flux driven damping.

Surprisingly, IA-dominated quantities follow  scalings of critical balance.l⊥, l∥

Eigenmode decomposition: understand which modes appear to be dominating 
the energy partition at each , forcingβ

Investigate role of heat fluxes by comparing contribution with other transfer 
functions.

Source of resilience of the magnetic spectrum not yet clear. (Fast, NP modes?)



Alfvénic driving: Spatial anisotropy (bonus)

 Spatial anisotropy does not appear 
to be very sensitive to beta (explains 

magnetic spectrum?)

→

  and  spectra approach CB 
scaling, with  and  only slightly 
differing from compressive driving

→ p⊥ B∥

p∥ u∥

l⊥

l∥



Alfvénic vs Compressive driving: Fluxes (bonus)

Alfvénic, β = 10

Compressive, β = 10

Hint of dissipation in 
compressive  run?β = 10



Alfvénic vs Compressive driving: Transfer functions (bonus)

Seems like  spectrum is not 
very sensitive to viscous 
dissipation yet. 

u2

 for compressive 
 run is  of 
 run.

𝒯Δpu

β = 10 ∼ 75 %
β = 100



Compressive driving:  vs  spectra (bonus)u∥ u⊥

 Spectrum of  is steeper than → u∥ u⊥

 Difference between spectra appears 
insensitive to 

→
β

β = 1

β = 100
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Alfvénic Compressive



Compressive driving: Rate of Strain  (bonus)β = 1

Alfvénic

Compressive



AW interaction: Pressure anisotropy (bonus)



AW interaction: Kinetic + magnetic energy (bonus)


