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Upper bounds on gyrokinetic instabilities Wendelsten

P. Helander, G.G. Plunk, L. Podavini and A. Zocco
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Gyrokinetics

Gyrokinetics has come to dominate large parts of theoretical plasma physics.

« Thousands of papers, millions (!) of lines of code.

Most of the literature treats particular linear instabilities and turbulence.
« Zoology: ITG, ETG, KBM, RBM, TEM, TIM, MTM ... (and branches thereof)

« Sensitive to details (geometry, collisions, impurities, beta, ...)

“All these bloody complications of plasma physics are the pain of our life.” A. Schekochihin 24.07.2023

What can be said in general?

« Except for obvious conservation laws etc.
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The equations of flux-tube gyrokinetics

Consider the nonlinear gyrokinetic equation:
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Field equations

Potentials (in Coulomb gauge, div A =0) are found from Poisson‘s and Ampere‘s laws:

nge?
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@ a L a a

a

Consider the entropy budget:
« multiply the gyrokinetic equation by Ja_ and take the real part,

a0
« integrate over flux tube and velocity space:

Re ;Ta</(---) ﬁ{’id%>
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Entropy budget

This gives

H{k, ) - <Ta Fao d"v 1, K 140
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D(k,t) =Im Z €q </ga,kwfax;=kd3v> = entropy production by transport fluxes
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Free energy

H(k,t) can be written
H(k,t) =U(k,t) —T5S.(k,t) =Helmholtz free energy of fluctuations

where
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Entropy production

In the relation

—ZHkt 2) [C(k,t) + D(k,1)]

k

D measures the production of free energy due to transport:

% dInp, dInT,
D = Re ZT </ga (Vi + 6vj + v 6b*) - VFa0d3v>:—Re Z<TGFGW—I—QQ i >
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Bounds on instability growth rates

First consider linear instability with a single k. Thanks to the H-theorem

T

Y=

where the quadratic form D is bounded from above and H from below.

 Implies universal upper bounds on all gyrokinetic instabilities.
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Modes of optimal growth

The best possible upper bound is obtained by maximising

Mgl === 9= 19as

TN
dg dg 0

If the distribution function at t=0 is chosen in this way, the free energy will momentarily grow at
the rate A.

Different from the usual gyrokinetic linear stability problem.

« Solutions correspond to “modes of optimal growth® rather than linear eigenmodes.
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Eigenmodes vs modes of optimal growth

An eigenmode is an exponentially growing solution to the linearised gyrokinetic equation

—iwy )t
Jlin ™~ 8(7 )

. . . D
In contrast, a “mode of optimal growth* maximises the ratio Algopt] = H{gom}
opt

The instantaneous growth rate of the free energy is then maximised.
 This growth rate may, or may not, be sustainable. g,, does not depend on time.

* It equals or exceeds the linear growth grate.

Algopt] > v

« Can easily be computed: corresponds to (at most) a 6-dimensional matrix eigenvalue problem.

Size of matrix: 2 x number of fields
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Example: hydrogen plasma with adiabatic electrons

In this case
1 6(5(/51(
— Ji dS — ’ — Yi
2 n(lJrT)/g oa v (90 T g gk)
1 2 iWsi . .
H = nT; <; Lgl d’v — (1 +’f)|90|2> D= 5; <f(90 g— g )wszd%>

where D and ¢ only depend on two moments of g:

1 : .
Kjlg) = ~ / g% Jud®, G = (0,1)

n

Therefore, begin by minimising H over all functions g with given values of these moments. Using
Lagrange multipliers cO and cl1, we consider the functional

Hg] — 2coKo[g] — 2¢1K1[g]
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Adiabatic electrons, cont‘d

It follows that the minimising function is of the form

g = (co+ c12?) JoiFyo
Hence

o nT@G(bZ)
21+ 7)

G[] * GO * * G% *
H =nT; |Gy 1—1+ cocy + G 1—1+ (coer + cocy) + G2—1_|_T Cocy

(coe1 — cocy)

T T

where

Gi(b;) = " /Fioxzjjgz'd%a G(b) = Go(b;)Ga(b;) — G1(by)

and the problem has been reduced to finding the minimum ratio of two quadratic forms in c, and c;.
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Bound on instabilites with adiabatic electrons

Upper bound on any instability with adiabatic electrons:

|mw*@-| G(bi) 2 92 T;
< . = . e —
=" (1+ 7)1+ 7—Go(b;)] bi = kLo T T
3
G(b) = (3 = 200+ 02 ) T30 + LD (0) = BT302)  T0) = Fufb)e

Valid for ITG and trapped-ion instabilities with adiabatic
electrons in any magnetic geometry and for any collisionality.
Of order
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Comparison with numerical simulations: adiabatic electrons
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Kinetic electrons

When kinetic electrons are included, the bound no longer vanishes in the limit £k, — 0
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Bounds on electromagnetic instabilities

Electromagnetic terms arise that are proportional to Upper bound in the limit ki pe < kipi <1

2oneT, -
66’ — MO 28 = 5gb
B 10k
Can be calculated from a matrix eigenvalue problem. 001k 0B,
« Terms from parallel magnetic fluctuations relatively
unimportant if g, << 1. | 0B
102
Collisions can only lower the bounds. = = - s - o - :

UPPER BOUNDS ON GYROKINETIC INSTABILITIES 16



Bounding the bounds

A non-optimal bound is

vy T(Loi + 7) 32 1+ 21, + T2 /2
< M iabi 1 e ; k e 1
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Nonlinear growth

Since

D(k, t) < }/bound(k)H(k’ t)'

the growth of the sum

Htot(t) — ZH(k, t),
k

is bounded by

dHtot

I

dt <2 % Ybound (k)H(k7 t) < 2’)/maXHt0t

ybound(k) < Vmax

for all k

* In the absence of collisions, the free energy can
grow momentarily at any rate up to this bound.

« If the plasma is linearly stable, this growth is
followed by damping.
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Dependence on geometry

These bounds are general and thus
insensitive to magnetic-field geometry.

« ...except for depence on

B)
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Discriminates between configurations with
different flux-surface compression.

« Example: low-iota and high-mirror
configurations in W7-X.

More dependence on geometry with different
choice of energy.
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Stroteich, Xanthopoulos, Plunk and Schneider (2022)
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Extensions

1. At low beta, the electrostatic energy satisfies

T;

d —x o .
dti}{:EQ;K} K:Re€1</6¢’ (U|m+2wd>gd3v>

o2
E= <(T +1— Ip) = |5¢|2>

and one can consider the growth of

i~

H=H - AE

where A is a free parameter to be optimised over. The result is an upper bound that depends on
the geometry of the magnetic field.

2. If the electrons are fast, w < kjvre, we can constrain their distribution function by Vge = 0.
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Conclusions

Rigorous upper bounds can be derived on the growth rates of gyrokinetic instabilities.
« Valid both linearly and nonlinearly.

These bounds apply for any magnetic geometry (flux-tube), any collisionality, and for any

number of species.
Apply to all branches of the ITG, ETG, TEM, TIM, KBM, and MTM instabilities.

 For ion-scale instabilities

Cory
L’

Y < C(ﬁnkLpivnianeaTi/TeﬂB) — O(l)

The bounds reflect dependencies on gradients, temperatures, and wave numbers derived in

a large number of special cases derived over the years.
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