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 Collisionless guiding centre simulations show
islands in the orbits of energetic particles.
White (2022, Phys. Plasmas)
White, Bierwage & Ethier (2022, Phys. Plasmas)
Wobig & Pfirsch (2001, Plasma Phys. Control. 
Fusion)

 These islands exist around rational flux
surfaces. The island width increases with
energy, so they could lead to increased
energetic particle transport.

 Aim: to understand particle orbits around
rational flux surfaces and the properties of the
islands in these orbits.

NCSX                  resonance
 Credit: Roscoe White
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Passing Particle Orbits
 On irrational flux surface, the radial drift of passing particles averages out

and their orbit width is
 On a rational surface, the particle does not sample the entire surface, so it

can have a net radial drift.
 Just away from the rational surface, the particle takes a long time to cover

the surface. Overall, it has a larger orbit width
 We expand in
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Guiding Centre Equations
 Coordinates:
 Guiding centre equations:

Poloidal drift Shear

Physical picture for shear term: 
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Guiding Centre Equations
 Order and Taylor expand shear term:

 Time-average over fast transit motion along closed, rational-surface field
lines:

 Characteristics:
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 Equivalent to usual formula for adiabatic invariants in Hamiltonian 
systems:

Hastie, Taylor & Haas (1967, Ann. Phys. (N. Y.))
 Determines island shape: 

 Island width scaling: 
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Adiabatic Invariant
 “Transit invariant”



 Transit invariant determines island shape, analogous to phase plot for
conservative system.

 Note that co- and counter-passing particles have different islands.
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Adiabatic Invariant

vs
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Higher-Order Corrections
         need not be extremely small for energetic particles.
 Observed islands shift away from the rational flux surface as the particle 

energy is increased – need higher-order formula to see this.
 Similar effect has been studied for runaway electrons:

e.g. de Rover, Cardozo & Montvai (1996, Phys. Plasmas)

 Phase space Lagrangian method
 (similar to gyrokinetics):
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Higher-Order Corrections
 Result:

 Island shift:
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Numerical Comparison
 Island width scaling and island 

shape agrees well with 
simulations

Figure credit: Roscoe White

Analytical

Simulated
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Resonance with Modulation of B
 On many surfaces,            does not vary much and the islands are small.
 In Boozer coordinates:

Fourier series, assuming stellarator has     
field periods

This integrates to zero unless

Example: LHD,                                         resonance would need  
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 Trapped particles can drift secularly because they do not sample the
whole flux surface. Orbit determined by conservation of the bounce
adiabatic invariant:

 Most trapped particles do not behave differently on rational surfaces.
 Trapped particles which make many toroidal transits before bouncing 

have diverging bounce period near rational surfaces, so must be 
described using the transit adiabatic invariant.
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Trapped Particle Orbits



‘Semi-Trapped’ Particles
 Semi-trapped particles change from co-passing to counter-passing every 

time they bounce. This allows them to drift through the rational surface. 
 However, there can be interesting orbits that are trapped at the rational 

surface.
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e.g. Kolesnichenko et. al. 
(2006, Nucl. Fusion)
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Transition Rate
 Near a bounce, the transit time diverges and adiabatic invariant theory 

doesn’t immediately apply. But can show that the adiabatic invariant 
only changes by a small amount every bounce.

 Upon bouncing, there is a chance that the particle will transition and 
become trapped:
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Summary
 Near rational surfaces, passing and semi-trapped orbits exhibit islands 

and can be described using a transit adiabatic invariant.

 We can calculate the shapes and positions of these islands.

 Semi-trapped particles drift through the rational surface by alternating 
between co- and counter-passing orbits. There is a chance of a 
transition every time they bounce.

 Aim: theory of transport around rational flux surfaces / resonances, 
including the effect of collisions.
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