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Motivation and main results

* Motivation: Wave-particle interactions are sensitive to collisional dynamics
— Fundamental plasma physics problem
— Fusion application: developing reduced models for energetic particle transport
— Galactic application: understanding radial migration

* Goal: understand the influence of collisions on particle transport as a result of resonant
interaction with discrete near-threshold instabilities

* Main results:
— Near threshold, a quasilinear transport equation for &f naturally emerges from
nonlinear theory
— Collisional scattering broaden resonances while drag leads to their shifting and splitting



» Establishing a particle transport framework for marginally unstable
modes in a plasma

e Comparison of the developed theory with nonlinear simulations

* Applications:
o energetic particle transport in a tokamak
o dark matter dynamics in galaxies

 Summary and implications
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Basics of resonant dynamics
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Three mechanisms at play:

* 7L: wave growth rate due to a resonant minority species
* 7Yd: wave background damping rate

* « and V: effective collisional drag and scattering rates

For simplicity, position and velocity variables will be used in this talk but all
@PPP_L - results hold for actions and angles 5



The effect of collisions is exacerbated within narrow

layers

e Resonances are delicate interactions that occur within narrow layers

* Even if the non-resonant dynamics is hardly affected by collisions, the resonance can

be highly affected by them
o Su & Oberman, PRL 1968; Berk & Breizman, PoF 1990; Callen, PoP 2014; Catto, JPP 2021

1/3
* Heuristic arguments lead to v ~ (VJ_wz) /

/ I \ mode frequency

effective collision rate )
L 90-degree pitch
within a resonance )
angle scattering rate

* NOVA-K numerical evaluation indicates that v is typically 2 orders of magnitude larger
than v for TAEs in present day tokamaks.




Discrete “gap” modes (e.g., Alfvénic eigenmodes) can

be strongly excited by energetic particles

(c) Coupling type

C.Z. Cheng, L. Chen, M.S.
Chance, Annals Phys.
1985

An
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Unlike in turbulence modeling, the modes are discrete in nature and their resonances
can dynamically switch between isolated and overlapping scenarios ->need for
developing models for single modes




A new self-consistent formulation for the dynamics of a marginally

unstable mode has been derived from first principles

Nonlinear kinetic theory in the vicinity of a resonance:

g a_f 1 2 i(kz—wt) a_f_y_?)az(f_FO) a_28(f_FO)
ot _H)(’?x + k:Re (wbe ) ov _lkz ov? ,+| k ov .

bounce frequency scatt'ering dynamical friction (drag)

Sufficiently near marginal instability, two small parameters emerge: l
‘

velocity v

position T

i) |co%|/1/2 < 1: allows the integration of the kinetic equation to all orders
via perturbation theory (already noted by Berk & Breizman, PRL 1996)

ii) V> Y0 — Va:leads to phase memory erasure - time delays become
unimportant (new insight)

The distribution relaxation is then naturally cast as a resonance-broadened
guasilinear diffusion equation:

of (v,t) [

velocity v

ot v
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The resulting set of transport equations

Distribution function evolution af(v,t) J [27;3 |a)%|272(v)af] =C|f - F|

o o o

Resonance function k [ (kv — o) o2 s2 .
(emerges from the derivation R(v) = A ds cos ( s+ e

v v V2
without further assumptions)

d|owy, ()| 2012
Amplitude evolution dt 2[7L( ) 7’d]|a)b(t)|
2.2 oo
Growth rate v (1) = 27 Zza)/ dvR(v) afgv’ )
m _ o v

The quasilinear approach involves a considerable dimensionality reduction that leads
to numerical speed

@PPPL. The above system is shown to lead to the same saturation level as nonlinear theory
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Scattering broadens the resonances while drag shifts them

verification against the Vlasov nonlinear code BOT
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For large enough drag, resonances not only shift but

also begin to split
different portions of phase space become resonantly activated

[ T
(a) Resonance Function

—alv=0
03k (Drag Dominant)

—alv=1|]

-10 10
(kv — w)/v For reference, the analytic expression is
0.02 '(b) Theory vs Simulation 6 (a > 1) | | i SN
0.01 5f(1) t) — |a)b(t)| FO ¢ g
' ’ 2kv? v
0 ' - w dse=S3 [o? kv — 22
i [ e e
-0.01 0 AT+t | v v: 2
. (kv —w)s a*s?
-0.02—a/v=4 + §8In +55 .
—alv=8 v v: 2
@PPPL -0.03 [{= = ‘Simulation | \
PRINCETON -40 -30 -20 0 10 12

-10
PLASMA PHYSIC o
LABORATORY (k’v w)/V



Drag increases the instability saturation level

Saturation levels match nonlinear simulations near threshold
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The new analytic development extends the physics of previous

quasilinear simulations from interpretive to predictive

ECE, #159243 (6.4 M

140 DiiI-D
The Resonance-broadened quasilinear o 120 s
. . . I b
(RBQ) code is the numerical realization of > 100 e
the model: S ol -
g ‘ f N=3
“ 60 n=2
* It uses eigenstructures calculated by 40
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an MHD solver Time (ms)

R(e;ults calculated by RBQ/TRANSP
a

classical
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« It feeds NUBEAM/TRANSP with Previous analyses < 4,
anomalous diffusivities due to wave- reliedonmode =
particle interaction amplitude c
measurements e
g
@PPR 0 1?9243U‘9? nomm.ali
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Application to a fundamental astrophysical problem:

the rate of slowing down of galactic bar rotation

Chris Hamilton (IAS)
The galactic dynamics is isomorphic to the derived
plasma quasilinear system

Galaxy Plasma
Gravitational potential Discrete spectrum (e.g., Alfvén,

B disturbance due to bar rotation| Langmuir,...)
Stars and dark matter particles | Resonant sub-population (e.g.,

in the halo fast ions, electrons on the tail)
Diffusion due to non-resonant |Pitch angle scattering
interaction

96®(0,J,1t)

Solving the kinetic equation allows for predicting the T(t) = /dOdJ £(0,J,1)
torque on the bar and its slowdown rate o 20,

plasma kinetic theory enters here

@ “Galactic bar resonances with diffusion: an analytic model with implications for bar-dark matter halo dynamical friction”,
C Hamilton, E A Tolman, L Arzamasskiy, V N Duarte, arXiv:2208.03855 (Astrophys. J., 2023, accepted) 18



Collisions drastically alter the predicted galactic bar

resonant dynamics

X
Cgﬁ A D Collisionless prediction (Tremaine &
o 1 ~l{ \ - Weinberg, 1984): friction on the bar
g asymptotically vanishes
5 o d-- = _
& collisionality parameter Collisional prediction (Hamilton et al,
a ..... A =0 - A =1.0 .
5 — A = 0.001 A =40 2023): real galactic bars always decelerate
nw —1 - —— A =0.01 —— A=10.0 [
(a) —— A =0.1 — A = 40.0
1 1
0 10 15
t [Gyr]

Timely predictions in the Gaia observation era, with the distribution of over a billion stars
mapped out-> quantitative comparison can constrain dark matter models

@PPPL “Galactic bar resonances with diffusion: an analytic model with implications for bar-dark matter halo dynamical friction”,
C Hamilton, E A Tolman, L Arzamasskiy, V N Duarte, arXiv:2208.03855 (Astrophys. J., 2023) 19
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Summary and implications of the work

Near an instability threshold, nonlinear kinetic theory naturally becomes resonance-
broadened quasilinear theory, even for a single mode and in the absence of any
resonance overlap

o fundamental features of nonlinear theory are automatically built into the quasilinear system,
such as saturation levels and growth timescales

o the resonance function (shape of the resonance) emerges spontaneously in the derivation
* scattering broadens the resonance
* drag leads to resonance shifting and splitting

o physically transparent - useful in guiding and interpreting simulations

o the numerical realization of the model is the Resonance Broadening Quasilinear (RBQ) code
* fully predictive and self-consistent, and interfaced with TRANSP;
* fast enough for analysis between shots and for pilot plant design optimization

@PPPL Duarte et al, “Collisional resonance function in discrete-resonance quasilinear plasma systems”, Phys. Plasmas 26, 120701 (2019)
Duarte et al, “Shifting and splitting of resonance lines due to dynamical friction in plasma”, Phys. Rev. Lett. 130, 105101 (2023) 21



In fusion: extension and implementation for stellarators
—possible starting point is to use the orbits around rational surfaces
obtained by Thomas Foster (yesterday’s presentation)

In galaxies: treat radial migration due to the combined influence of bar modes
and spiral (density) waves in the galactic disk
—being done by Nick Pham (2" year grad student)

22
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Extension to multiple instabilities

Nick Pham (2" year grad student)

Relevant for the coupling between 600 (b)
* Overlapping Alfvénic eigenmodes (in fusion 400
experiments) < 2
. . . . . 0 W
» Spiral density waves + bar potential (in galaxies) e »00] \/ \/ V V\/ TA
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BB s N M. Pham and VND, “Evolution of coupled weakly-driven waves in a dissipative plasma” (arXiv:2305.10322, submitted)



Quasilinear theory is a reduced approach to kinetic

instabilities

In a regime where there is no effective particle trapping in resonances, the kinetic (Vlasov)
description of phase mixing can be approximated by an irreversible, diffusive process

O,t) = Q0
% n Qg—i + Re (wie'?) g—é = C[f, Fy 3—{ - 8_QD6_£ = C[f, F] J represents (£, Py, 1)

For quasilinear theory to be valid, the linear mode properties (e.g., eigenstructure and
resonance condition) should not change in time

Quasilinear diffusion theory was independently proposed by

A. A. Vedenoy, E. P. Velikhov, and R. Z. Sagdeey, Sov. Phys. Usp. 4, 332 (1961).
W. Drummond and D. Pines, Nucl. Fusion Suppl. 2(Pt. 3), 1049 (1962).

Later generalized to action-angle variables:

A. N. Kaufman, Phys. Fluids 15, 1063 (1972).




Drag features not covered in this presentation

Lilley, Breizman & Sharapov, PRL 2009, PoP 2010

* High drag/scattering ratio leads to less
likelihood of steady saturation (more i ‘
likelihood of chirping) A, ,M,A\ M A Adaln N ,N') A 0“

* Drag leads to asymmetric chirping G T TR il

-10 - - - -
@ 2000 4000 tx T 6000 8000
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Verification of the analytical predictions against ORBIT

simulations of Alfvénic resonances

Modification of the distribution function vs canonical toroidal momentum

0.04

Red and black: guiding-center ORBIT
simulation results for two different levels

of collisionality

0.02

of !

Green: analytic fit

-0.02

P N R R R White, Duarte et al, Phys. Plasmas 26, 032508 (2019)
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Energetic particles can be a show-stopper for burning

JENQER

* Energetic particles can drive instabilities (e.g., Alfvénic) and lead to particle losses
o >30% losses will likely prevent ignition
o >5% losses will already be damaging for the first wall
(ITPA Physics Basis on Physics of energetic ions, Nucl. Fusion 47, 5264 (2007))

* EP-driven instabilities and their associated transport have been identified as one of the
main physics gaps that need to be closed to confidently design a low-capital-cost tokamak

fusion pilot plant
(FESAC Long Range Plan, 2020)




The Resonance-broadened quasilinear (RBQ) code is the

numerical realization of the model:
an efficient and realistic approach to fast ion transport

Workflow
1) Background plasma profiles read 2) Damping rates and multi- 3) RBQ evolves the quasilinear
from the TRANSP code. dimensional resonance structure distribution function together with the
Eigenstructure calculated by the calculated by the NOVA-K code amplitudes of the modes and provides
linear MHD code NOVA transport coefficients to TRANSP
1.0 n=6l ! m=21/\\ 22
-+ -4
c 10
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Early development of broadened quasilinear theory

* The broadening of resonances is a ubiquitous phenomenon in physics (e.g., in atomic spectra)

* In plasma physics, broadened strong turbulence theories for dense spectra have been developed
(e.g., Dupree, Phys. Fluids 1966);

The line broadening model (6 () — R (Q)): d |wg|2 Jdt = 2 (v (t) — ) |wb|

of (2,t) =m0 8th
ot 269[ ’@ ]:CU‘?FO] o= [* g@m

* R is an arbitrary resonance function (usually taken as in flat-top form) with f_oo R(2)dQ2 = 1
* )y is the trapping (bounce) frequency at the elliptic point (proportional to square
root of mode amplitudE) H. Berk, B. Breizman, J. Fitzpatrick, and H.

Wong, Nucl. Fusion 35, 1661 (1995).




A sub-population of energetic particles is ubiquitous in
fusion plasmas

Sources of energetic particles:

radiofrequency heating
neutral beam injection
alpha particles
runaway electrons

NSTX-U, Princeton Plasma Physics Laboratory




Historically, resonance overlap (Chirikov criterion) has

been invoked to justify the applicability of QL theory

Wp,1 + Wh,2 Z |Ql - Q2|
Wp is the bounce (trapping) frequency

In this case, most trapped particles will not “belong” to a
particular wave anymore but will be “shared” by the two

Waves.

* Intrinsic stochastic diffusion: due to
interaction with broad spectrum

* Extrinsic stochasticity: by collisions
. : o ¥
inducing randomization of phase

The end goal of this talk is to show that in the presence of collisions, a QL theory can be
formulated from first principles near marginal stability, even for a single resonance.

Interesting properties emerge:
(i) it recovers the saturation level predicted by nonlinear theory

@PPPL (i)  the resonance function can be analytically calculated



The overlapping of resonances lead to losses due to

global diffusion

 The resonance broadened quasilinear model is designed to address both
regimes of isolated and overlapping resonances

— the fast ion distribution function relaxes while self-consistently evolving the amplitude of modes

without overlap with overlap
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First-principle analytical determination of the

collisional resonance broadening — part |

ot ' op 90

from collisions, turbulence,...)

vk (Fo — f)
Start with the kinetic equation: ﬁ X Qg 1 Re (wgew) ﬁ — C[f, FO]{ygwttm (f — Fy) /092

Periodicity over the canonical angle allows the distribution to be written as a Fourier series:
fle,0t) =R () + ¥ (fa(2t)e™ +cc)

Near marginal stability, a perturbation theory can be developed in orders of w%/u%)scatt
which leads to the ordering |F}| > f{(l)‘ > | @ f§(2)’. When memory effects are weak,
i.e., VK,scatt/ (VL,O —va) > 1,

2
_ wy £ Afo 1, 50 = 2% p1\
fr= 2 (i + vi) or 2 (W LA] e h) = —vich

Y




Simple analytical formula replicates essential features of

nonlinear theory near threshold

Amplitude vs time
Green: nonlinear simulation
Black: analytical formula
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First-principles analytical determination of the

collisional resonance broadening — part Il

Blue curve: pitch-angle scattering
Red curve: Krook collisions

. . . . . Green curve: previous heuristic broadenin
When decoherence is strong, the distribution function has P (Berk, NF ,9g5)

no angle dependence: 0.4 VscatRso
(1) = Fo(Q) + fo(2,1) o3

Broadening (a)
functions

0(92) > R(Q)

0.2
In the limit vk scatt/ (YL,0 —va) > 1, the distribution 0.1
relaxation is naturally cast as a diffusion equation: 0
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1 e Q
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Many experiments are consistent with a quasilinear type of

fast ion relaxation

The stiff transport suggests a stochastic fast ion transport mediated by overlapping resonances

_1200F 9.3 MW Fast-lon Transport
s | 7.6 MW ] ~0.8{(a) ssnpa p m1o .
S 6.4 MW Xe} : 17 @ C.Collins etal, PRL 2016
> 800 37 MW 5 0.6f 2 gt 12
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Self-consistent formulation of collisional quasilinear transport

near threshold replicates essential features of nonlinear theory

of (2 o, of (2

) = § Joo dORAG dlwp|” fdt = 2 (e (8) =) |w3]

The QL plasma system automatically replicates the
nonlinear growth rate and the wave saturation
levels |wp sat| = 8%/4 (1 — %z/%,o)l/4 vk calculated

Amplitude vs time
Green: nonlinear Black: quasilinear

L e (a) 20 !\ (b)

from fully kinetic theory near marginality, A~
d t - 0 f
& 0h = - ywh0 - L [ il = Yo 2
dt 2 Jip

g Ve=3 10 5 _
xf dty exp[—v(2t — ' — 1) ] 0p(t)wg(t + 1, — 1) M V_e“ T . | Ve =2 |

o 0 10 20 30 40 50 0 10 20

(Berk, Breizman and Pekker, Phys. Rev. Lett. 1996) (Duarte & Gorelenkov, Nucl. Fusion 2019)
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