B. Després SU/LJLL, with R. Dai, F. Charles and S. Hirstoaga Funding: ANR Muffin

Moment methods for magnetized Vlasov equations

B. Després SU/LJLL, with R. Dai, F. Charles and S. Hirstoaga Funding: ANR Muffin

Our model problem

Moment models

Stability issue

Miscellaneous numerics

It is **3D** magnetized transport (think of Tokamaks)

$$\begin{cases} \partial_t f + \mathbf{v} \cdot \nabla_{\mathsf{x}} f + \left(\mathbf{E} + \frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_0(\mathbf{x})\right) \cdot \nabla_{\mathsf{v}} f = 0, \\ t > 0, \ \mathbf{x} \in \Omega \subset \mathbb{R}^3. \end{cases}$$

E(t, x) is a self consistent electric field evaluated with a Poisson or a Maxwell solver.

 $B_0(x)$ is a given magnetic field (application in Tokamaks, fusion plasmas). The regime $\varepsilon \to 0^+$ corresponds to strong magnetic fields.

Objective of the MUFFIN project: explore and optimize original computational and numerical scenarios for multiscale and high dimensional transport codes.

References on moments

Moment models

Stability issue

Miscellaneous numerics

- Moment problem: first occurence Stieltjes 1894/1895. See Akhiezer "the classical moment problem" 1965
- Moments and modeling : kinetic equations $\int f(v)v^i dv$ with i = 1, 2, 3, Muller-Rugierri (extended thermodynamics 1993), Levermore 1996, ...

Physics+Num:

- Holloway: Spectral velocity discretizations for the Vlasov-Maxwell equations, 1996.
- Mandell/Dorland/Landreman: Laguerre-Hermite Pseudo-Spectral Velocity Formulation of **Gyrokinetics**, 2018.

- Grandgirard/.../Zarzoso: A 5D gyrokinetic full-f global semi-lagrangian code for flux-driven ion turb. sim., 2016.

- Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence, 2016, Schekochihin \rightarrow Hammett

- Math+Num Pham/Helluy/Crestetto 2012, Delzanno 2015,

Manzini/.../Markidis 2016

- Filbet-Xiong, Conservative Discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System, 2020 (Filbet FKTW05 2022.)
- Filbet+Bessemoulin-Chatard, 2022.
- Charles+Dai+D.+Hirstoaga, Discrete moments models for Vlasov equations with non constant strong magnetic limit, HAL 2023 to appear in CRAS 2023.

Hermite polynomials (convenient for plasma physics)

Moment models

Stability issue

Miscellaneous numerics

Take the Maxwellian weight $G(v) = e^{-v^2/2}$.

- Hilbert basis of the space $\int_{\mathbb{R}} f^2(v) G(v) dv < \infty$.
 - Rodrigue's representation $H_n(v) = (-1)^n G(v)^{-1} \frac{d^n}{dv^n} G(v)$.
 - The degree of H_n is n. The parity of H_n is the parity of n.

•
$$\int H_n(v)H_m(v)G(v)dv = (2\pi)^{\frac{1}{2}}n! \ \delta_{nm}, \quad n,m \in \mathbb{N}.$$

• Symmetric Hermite functions $\phi_n(v) = (2\pi)^{-\frac{1}{4}} n!^{-\frac{1}{2}} H_n(v) M(v)$

$$\varphi_0(v) = \frac{M(v)}{(2\pi)^{\frac{1}{4}}}, \ \varphi_1(v) = \frac{vM(v)}{(2\pi)^{\frac{1}{4}}}, \ \varphi_2(v) = \frac{(v^2-1)M(v)}{(8\pi)^{\frac{1}{4}}}, \ \dots,$$

with recursion formulas

$$\begin{cases} v\varphi_n(v) = \sqrt{n+1}\varphi_{n+1}(v) + \sqrt{n}\varphi_{n-1}(v), & n \in \mathbb{N}, \\ \varphi'_n(v) = -\sqrt{\frac{n+1}{2}}\varphi_{n+1}(v) + \sqrt{\frac{n}{2}}\varphi_{n-1}(v), & n \in \mathbb{N}. \end{cases}$$

Vlasov versus Gyromodels

b

Moment models

Stability issue

Miscellaneous numerics

$$\left\{ egin{array}{l} \partial_t f + \mathbf{v} \cdot
abla_x f + \left(\mathbf{E} + rac{1}{arepsilon} \mathbf{v} imes \mathbf{B}_0(\mathbf{x})
ight) \cdot
abla_v f = 0, \ t > 0, \ \mathbf{x} \in \Omega \subset \mathbb{R}^3. \end{array}
ight.$$

• Gyrokinetic models (this version from Grandgirard et al)

$$B_{\parallel s}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla_x \cdot (B_{\parallel s}^* \frac{d\mathbf{x}_G}{dt} \bar{F}_s) + \frac{\partial}{\partial v_{G\parallel}} (B_{\parallel s}^* \frac{dv_G}{dt} \bar{F}_s) = RHS.$$

• A rigorous limit (Filbet-Rodriguez 2021) is as follows. Set $\mathbf{b}_0(t, \mathbf{x}) = \frac{\mathbf{B}(t, \mathbf{x})}{|\mathbf{B}(t, \mathbf{x})|}$, $v = \langle \mathbf{v}, \mathbf{b}_0(t, \mathbf{x}) \rangle$, $w = \frac{|\mathbf{v}_{\perp}|^2}{2}$ and $\mathcal{V}_0(t, \mathbf{x}) = (v\mathbf{b}_0, E_{\parallel} + w\nabla_x \cdot \mathbf{b}_0, -vw\nabla_x \cdot \mathbf{b}_0)$. In the limit $\varepsilon \to 0$, one has

$$\partial_t G + \nabla_{\mathbf{x},v,w}(\mathcal{V}_0 G) = 0$$

Objective of this talk: alternative moment methods which capture the limit $\varepsilon \rightarrow 0$ without any modeling assumptions.

Main ingredient: anisotropic moment methods

Moment models

Stability issue

Miscellaneous numerics

Parallel dir.
$$b_0(x) = \frac{B_0(x)}{|B_0(x)|}.$$

Complete $\mathbf{b}_0(\mathbf{x})$ as a local direct orthonormal basis $\mathbf{b}_i(\mathbf{x}) \cdot \mathbf{b}_j(\mathbf{x}) = \delta_{ij}$ and rescale the orthonormal directions as

$$\mathbf{d}_i(\mathbf{x}) = rac{\mathbf{b}_i(\mathbf{x})}{\sqrt{T}}, \qquad i = 1, 2.$$

Rescale the parallel direction

$$\mathbf{d}_0(\mathbf{x}) = rac{\mathbf{b}_0(\mathbf{x})}{\sqrt{\mathcal{T}}}$$

T > 0 is the constant temperature.

Change-of-basis matrix is $M(\mathbf{x}) = (m_{ij}(\mathbf{x}))_{1 \le i,j \le 3} = (\mathbf{b}_0(\mathbf{x}) | \mathbf{b}_1(\mathbf{x}) | \mathbf{b}_2(\mathbf{x})).$ The local change of variable is $\mathbf{v} \mapsto \mathbf{w} = (\mathbf{v} \cdot \mathbf{d}_0(\mathbf{x}), \mathbf{v} \cdot \mathbf{d}_1(\mathbf{x}), \mathbf{v} \cdot \mathbf{d}_2(\mathbf{x}))^t = \frac{1}{\sqrt{T}} M^t(\mathbf{x}) \mathbf{v}$ with $d\mathbf{v} = T^{\frac{3}{2}} dw$.

Second ingredient: asymmetric shape functions

Moment models

Stability issue

Miscellaneous numerics \bullet A generic notation for a multi-index with three components is

$$\mathbf{n} = (n_0, n_1, n_2) \in \mathbb{N}^3$$
 with $|n| = n_0 + n_1 + n_2$.

 \bullet The shape functions are functions of (x,v)

$$\varphi_{\mathbf{n}}(\mathbf{x},\mathbf{v}) = \varphi_{n_0}\left(\mathbf{v}\cdot\mathbf{d}_0(\mathbf{x})\right)\varphi_{n_1}\left(\mathbf{v}\cdot\mathbf{d}_1(\mathbf{x})\right)\varphi_{n_2}\left(\mathbf{v}\cdot\mathbf{d}_2(\mathbf{x})\right)$$

$$\begin{split} \text{Then } \psi_{\mathbf{n}}\left(\mathbf{x},\mathbf{v}\right) &= e^{-\frac{|\mathbf{v}|^{2}}{2T}}\varphi_{\mathbf{n}}\left(\mathbf{x},\mathbf{v}\right)\\ \text{and } \psi^{\mathbf{n}}\left(\mathbf{x},\mathbf{v}\right) &= e^{\frac{|\mathbf{v}|^{2}}{T}}\varphi_{\mathbf{n}}\left(\mathbf{x},\mathbf{v}\right) \quad (\text{ polynomials}). \end{split}$$

Remark

Number of velocity basis-functions equal to

Card
$$\{0 \le n_0 + n_1 + n_2 \le N\} = \frac{(N+1)(N+2)(N+3)}{6}$$

Main model ($\mathbf{E} = 0$ for simplicity)

Moment models

Stability issue

Miscellaneous numerics

• The (Petrov-Galerkin) moment model writes $f^{N}(\mathbf{x}, \mathbf{v}, t) = \sum_{|\mathbf{m}| \le N} u_{\mathbf{m}}(\mathbf{x}, t) \psi_{\mathbf{m}}(\mathbf{x}, \mathbf{v}),$ $\left[\int_{\mathbf{v}} \left(\partial_{t} f^{N} + \mathbf{v} \cdot \nabla_{x} f^{N} + \frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_{0}(\mathbf{x}) \cdot \nabla_{v} f^{N} \right) \psi^{\mathbf{n}} dv \right] (\mathbf{x}, \mathbf{v}) = 0, \ \forall (\mathbf{x}, t) \text{ and } |\mathbf{n}| \le N.$

• The unknown is the vector

$$U(\mathbf{x},t) = (u_{\mathbf{m}}(\mathbf{x},t))_{|\mathbf{m}| \leq N}.$$

Lemma

By construction the mass and the total energy are preserved since

$$1, |\mathbf{v}|^2 \in \operatorname{Span}_{|\mathbf{n}| \leq N} \{ \psi^{\mathbf{n}} \}, \qquad ext{for } 2 \leq N.$$

Transport matrices

Moment models

Stability issue

Miscellaneou: numerics \bullet Notational simplicity E:=0: one gets linear $\mbox{Friedrichs system}$ with non constant matrices

$$\partial_t U(\mathbf{x},t) + \left[\sum_{i=1}^3 \partial_{x_i} \left(A_i(\mathbf{x})U(\mathbf{x},t)\right) - B(\mathbf{x})U(\mathbf{x},t)\right] = \frac{1}{\varepsilon}C(\mathbf{x})U(\mathbf{x},t)$$

where for example

$$\begin{split} \mathbf{a_{nm}^{1}}(\mathbf{x}) &= \frac{T^{2}}{\sqrt{2}}m_{11}(\mathbf{x})\left(\sqrt{m_{0}+1}\delta_{m_{0}+1,n_{0}}+\sqrt{m_{0}}\delta_{m_{0}-1,n_{0}}\right)\delta_{m_{1},n_{1}}\delta_{m_{2},n_{2}} \\ &+ \frac{T^{2}}{\sqrt{2}}m_{12}(\mathbf{x})\delta_{m_{0},n_{0}}\left(\sqrt{m_{1}+1}\delta_{m_{1}+1,n_{1}}+\sqrt{m_{1}}\delta_{m_{1}-1,n_{1}}\right)\delta_{m_{2},n_{2}} \\ &+ \frac{T^{2}}{\sqrt{2}}m_{13}(\mathbf{x})\delta_{m_{0},n_{0}}\delta_{m_{1},n_{1}}\left(\sqrt{m_{2}+1}\delta_{m_{2}+1,n_{2}}+\sqrt{m_{2}}\delta_{m_{2}-1,n_{2}}\right). \end{split}$$

and

$$\begin{split} c_{\mathsf{n}\mathsf{m}}(\mathsf{x}) &= \mathcal{T}^{\frac{3}{2}} |\mathsf{B}_0(\mathsf{x})| \delta_{m_0,n_0} \left(-\sqrt{(n_1+1)n_2} \delta_{m_1,n_1+1} \delta_{m_2,n_2-1} \right. \\ &+ \sqrt{n_1(n_2+1)} \delta_{m_1,n_1-1} \delta_{m_2,n_2+1} \quad) \,. \end{split}$$

Lemma

The matrices A_i and B are symmetric, C is antisymmetric and one has $\sum_{i=1}^{3} \partial_{x_i} A^i(\mathbf{x}) = B(\mathbf{x}) + B^t(\mathbf{x})$. The stability property holds $\partial_t |U|^2(\mathbf{x}, t) + \sum_{i=1}^{3} \partial_{x_i} (A_i U \cdot U)(\mathbf{x}, t) = 0$.

Formal limit $\varepsilon \rightarrow 0$

Moment models

Stability issue

Miscellaneou numerics

• Consider $U_{arepsilon}=U_0+arepsilon U_1+O(arepsilon^2)$ solution of

$$\partial_t U_{\varepsilon} + \sum_{i=1}^3 \partial_{x_i} \left(A_i U_{\varepsilon} \right) - B U_{\varepsilon} = \frac{1}{\varepsilon} C U_{\varepsilon}.$$

The hierarchy of equations starts with

$$\begin{cases} 0 = CU_0 \\ \partial_t U_0 + \sum_{i=1}^3 \partial_{x_i} (A_i U_0) - BU_0 = CU_1, \\ \dots \end{cases}$$

The gyro-kernel does not depend of the space variable

$$\mathcal{K} = \{ U \mid C(\mathbf{x})U = 0 \} = \{ U \mid C(\mathbf{y})U = 0 \}$$

$$\begin{split} \mathcal{K} &= \left\{ U = (u_{\mathbf{n}})_{|\mathbf{n}| \leq N} \mid \quad -\sqrt{m_1(m_2+1)} u_{m_0,m_1-1,m_2+1} \\ &+ \sqrt{(m_1+1)m_2} u_{m_0,m_1+1,m_2-1} = 0 \text{ for all } |\mathbf{m}| \leq N \right\}. \end{split}$$

Moment models

Stability issue

Miscellaneous numerics

At the end of the analysis, one ellipse corresponds to a basis function which is a Laguerre polynomial (known in numerical plasma physics).

Remark

The number of basis functions is

Card
$$\{(m_0, s) \mid m_0 + 2s \le k\} = \frac{(N+1)(N+3)}{4}$$
 or $\frac{(N+1)(N+3)+1}{4}$

The Gyro-moment model

Moment models

Stability issue

Miscellaneous numerics Let matrix P be the rectangular matrix from the projected space in the total space

$$P \in \mathcal{M}_{a,b}(\mathbb{R})$$
 where $a pprox rac{(N+1)(N+3)}{4}$ and $b = rac{(N+1)(N+2)(N+3)}{6}$

• One has
$$CP = PC = 0$$
 and $P^tP = \tilde{I}$.

Lemma

The gyro-moment model writes

$$\partial_t \widetilde{U} + \sum_{i=1}^3 \partial_{x_i} \left(\widetilde{A}_i(\mathbf{x}, t) \widetilde{U}(\mathbf{x}, t) \right) = \widetilde{B}(\mathbf{x}) \widetilde{U}(\mathbf{x}, t)$$
(1)

where

$$\widetilde{A}_i(\mathbf{x}) = P^t A_i(\mathbf{x}) P, \quad \widetilde{B}(\mathbf{x}) = P^t B(\mathbf{x}) P.$$

The magnetic force disappeared, as in gyrokinetics models.

- One can say it is an Asymptotic-Preserving model.
- This is an alternative to classical gyrokinetic models (Gysela, Gene, ...).

An interesting possibility: enriched gyro-moment model

Moment models

Stability issue

Miscellaneou: numerics Assume $0 < \varepsilon$ is small, and consider the graphics

The simplest non trivial idea is to add degrees of freedom for all (m_0, m_1, m_2) where $m_0 + 1 \le N$ and $m_1 + m_2 = 1$.

RemarkThe number of basis functions is $\frac{(N+1)(N+3)}{4} + 2N$ or $\frac{(N+1)(N+3) + 1}{4} + 2N$.

Structure of enriched gyro-moment model

Moment models

Stability issue

One gets naturally

$$U = (P, Q)U, \qquad U = \left(egin{array}{c} \widetilde{U} \\ \widehat{U} \in \mathbb{R}^{2N} \end{array}
ight)$$

where ${\it P}$ and $\widetilde{{\it U}} \in {\cal K}$ are unchanged, and we consider new notations

$$\widehat{\mathbf{n}}=(\mathit{n}_0,\mathit{n}_1,\mathit{n}_2)$$
 where $\mathit{n}_0\in\mathbb{N},\ \mathit{n}_1+\mathit{n}_2=1$ and $|\widehat{\mathbf{n}}|=\mathit{n}_0+1.$

The matrix is $Q = (q_{\mathbf{m},\widehat{\mathbf{n}}})_{|\mathbf{m}|,|\widehat{\mathbf{n}}| \leq N}$ with $q_{\mathbf{m},\widehat{\mathbf{n}}} = \delta_{m_0,n_0} \delta_{m_1,n_1} \delta_{m_2,n_2}$.

• This is a enriched gyro-kinetic model

$$\partial_t \mathcal{U} + \sum_{i=1}^3 \partial_{x_i} \left(\mathcal{A}_i(\mathbf{x}) \mathcal{U} \right) = \mathcal{B}(\mathbf{x}) \mathcal{U} + rac{1}{arepsilon} \mathcal{C}(\mathbf{x}) \mathcal{U}$$

where

$$\mathcal{C} = \left(\begin{array}{cc} 0 & 0 \\ 0 & Q^t C Q \end{array}\right),$$

and $\varepsilon > 0$ is presumably small, but non zero.

Numerical solver and numerical instability

Moment models

Stability issue

Miscellaneou numerics

First step

 $\mathcal{T}^{\frac{3}{2}}\partial_{t}U(\mathbf{x},t) + \sum_{i=1}^{3} \partial_{x_{i}}\left(A_{i}(\mathbf{x})U(\mathbf{x},t)\right) - B(\mathbf{x})U(\mathbf{x},t) - \frac{1}{\varepsilon}C(\mathbf{x})U(\mathbf{x},t) = 0.$ Cranck-Nicolson discretization in time + FE method in space.

2 Second step

 $T^{\frac{3}{2}}\partial_t U(\mathbf{x},t) + \sum_{i=1}^3 E_i(\mathbf{x},t) D_i(\mathbf{x}) U(\mathbf{x},t) = 0.$

We solve the Poisson equation, with a Finite Element (FE) Poisson solver, to get the potential Φ . Then $\mathbf{E} = -\nabla \Phi$.

 $t \mapsto \|U\|_{L^2}$: a numerical instability shows up in the electric step

Why this numerical instability

Moment models

Stability issue

Miscellaneous numerics Consider the 1D equation $\partial_t f + e \partial_v f = 0$ ($e \in \mathbb{R}$ is constant) discretized with the moment method with asymmetric Hermite functions

$$\partial_t \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \dots \end{pmatrix} = e^{T^{-\frac{1}{2}}} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \cdots \\ \sqrt{2} & 0 & 0 & 0 & 0 & \cdots \\ 0 & \sqrt{4} & 0 & 0 & 0 & \cdots \\ 0 & 0 & \sqrt{6} & 0 & 0 & \cdots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \dots \end{pmatrix}$$

The matrix D is triangular, which is the reason of the numerical instability. Indeed

$$\exp\left(teT^{-\frac{1}{2}}D\right) = \sum_{n\geq 0} \frac{(teT^{-\frac{1}{2}})^n}{n!}D^n.$$

This triangular structure is common to all recent papers on moment methods with asymmetric Hermite functions:

- G. Manzini, G. L. Delzanno, J. Vencels and S. Markidis, A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system, J. Comput. Phys. 317, 82-107, 2016.

- All recent papers by Delzanno

- F. Filbet and M. Bessemoulin-Chatard, On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system, J. Comput. Phys. 451 (2022).

- Charles+Dai+D.+Hirstoaga, Discrete moments models for Vlasov equations with non constant strong magnetic limit, HAL 2023 to appear in CRAS 2023.

A cure: introduce time in asymmetric functions

Moment models

Stability issue

Miscellaneou numerics

Redefine
$$\mathbf{d}_i(\mathbf{x}, t) = \frac{\mathbf{b}_i(\mathbf{x})}{\sqrt{T(t)}}$$
 and
 $\varphi_n(\mathbf{x}, \mathbf{v}, t) = \varphi_{n_0} (\mathbf{v} \cdot \mathbf{d}_0(\mathbf{x}, t)) \varphi_{n_1} (\mathbf{v} \cdot \mathbf{d}_1(\mathbf{x}, t)) \varphi_{n_2} (\mathbf{v} \cdot \mathbf{d}_2(\mathbf{x}, t))$
 $\psi_n(\mathbf{x}, \mathbf{v}, t) = T(t)^{-\frac{3}{2}} \psi_{n_0} (\mathbf{v} \cdot \mathbf{d}_0(\mathbf{x}, t)) \psi_{n_1} (\mathbf{v} \cdot \mathbf{d}_1(\mathbf{x}, t)) \psi_{n_2} (\mathbf{v} \cdot \mathbf{d}_2(\mathbf{x}, t))$
and
 $\psi^n(\mathbf{x}, \mathbf{v}, t) = \psi^{n_0} (\mathbf{v} \cdot \mathbf{d}_0(\mathbf{x}, t)) \psi^{n_1} (\mathbf{v} \cdot \mathbf{d}_1(\mathbf{x}, t)) \psi^{n_2} (\mathbf{v} \cdot \mathbf{d}_2(\mathbf{x}, t))$

The new abstract form of the moment model is

$$\begin{split} f^{N}(\mathbf{x},\mathbf{v},t) &= \sum_{|\mathbf{m}| \leq N} u_{\mathbf{m}}(\mathbf{x},t) \psi_{\mathbf{m}}(\mathbf{x},\mathbf{v},t), \\ \int g^{N}(\mathbf{x},\mathbf{v},t) \psi^{\mathbf{n}}(\mathbf{x},\mathbf{v},t) dv = 0 \quad \text{ for } |\mathbf{n}| \leq N, \end{split}$$

where $g^{N}(\mathbf{x}, \mathbf{v}, t) = \partial_{t} f^{N}(\mathbf{x}, \mathbf{v}, t) + \mathbf{v} \cdot \nabla_{\mathbf{x}} f^{N}(\mathbf{x}, \mathbf{v}, t) + \frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_{0}(\mathbf{x}) \cdot \nabla_{\mathbf{v}} f^{N}(\mathbf{x}, \mathbf{v}, t).$

Moment models

The moment model with electric field writes

Stability issue

Miscellaneous numerics

$$\partial_t U(\mathbf{x},t) + \sum_{i=1}^3 \partial_{x_i} \left(A_i(\mathbf{x}) U(\mathbf{x},t) \right) - B(\mathbf{x}) U(\mathbf{x},t)$$
(2)

$$+\sum_{i=1}^{3}E_{i}(\mathbf{x},t)D_{i}(\mathbf{x})U=\frac{1}{\varepsilon}C(\mathbf{x})U(\mathbf{x},t)-T'(t)R(t)U.$$

To be coupled with the Poisson equation and $\mathbf{E} = -\nabla \varphi$.

Lemma

The model is stable in quadratic norm under the condition $T' = \gamma ||\mathbf{E}||_{\infty}^2$ where $\gamma > 0$ is a coefficient. More precisely one obtains

$$||U(t)||^2 \le e^t |U(0)||^2.$$

Idea adapted from Filbet/Bessemoulin-Chatard 2022.

Idea of proof: use weighted norm

Moment models

Stability issue

Miscellaneous numerics One notices that

$$\int_{v\in\mathbb{R}}e^{\frac{v^2}{T(t)}}|f(x,v,t)|^2dv=\int\left|\sum_m u_m(x,t)\varphi_n\left(\frac{v}{\sqrt{T(t)}}\right)\right|^2=\sum_{m\geq 0}|u_m(x,t)|^2dv$$

Then

$$\begin{array}{rcl} \frac{d}{dt} \sum |u_m|^2 &=& 2\int e^{\frac{v^2}{T(t)}} f \partial_t f & -\frac{T'(t)}{T(t)^2} \int e^{\frac{v^2}{T(t)}} |f|^2 v^2 \\ &=& 2\int e^{\frac{v^2}{T(t)}} f e \partial_v f & -\frac{T'(t)}{T(t)^2} \int e^{\frac{v^2}{T(t)}} |f|^2 v^2 \\ &=& -2\int e^{\frac{v^2}{T(t)}} |f|^2 \frac{e}{T} v dv & -\frac{T'(t)}{T(t)^2} \int e^{\frac{v^2}{T(t)}} |f|^2 v^2 \\ &\leq& 2\int e^{\frac{v^2}{T(t)}} |f|^2 \left(\frac{1}{2} + \frac{1}{2} \left(\frac{e}{T} v\right)^2\right) dv & -\frac{T'(t)}{T(t)^2} \int e^{\frac{v^2}{T(t)}} |f|^2 v^2 \\ &\leq& \int e^{\frac{v^2}{T(t)}} |f|^2 dv & + \left(-\frac{T'}{T^2} + \frac{\gamma e^2}{T^2}\right) \int e^{\frac{v^2}{T(t)}} |f|^2 v^2 \\ &\leq& \int |u_m(x,t)|^2. \end{array}$$

Diocotron without stabilization (first seconds, N = 70)

Moment models

Stability issue

Miscellaneous numerics

$$\begin{cases} \partial_t f + \mathbf{v} \cdot \nabla_x f + \left(\mathbf{E} + \frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_0(\mathbf{x}) \right) \cdot \nabla_v f = 0, \\ \nabla \cdot \mathbf{E} = \int f dv - \rho_e. \\ f_0(\mathbf{x}, \mathbf{v}) = \begin{cases} \frac{n_0}{(\sqrt{2\pi})^3} (1 + \eta \cos(k\theta)) \exp^{-4(r-6.5)^2} \exp^{-|\mathbf{v}|^2/2}, & r^- \le r \le r^+, \\ 0, & \text{otherwise}, \end{cases}$$

Non-homogenous magnetic field

$$\mathbf{B}_0(\mathbf{x}) = \omega_c(\mathbf{x}) \frac{1}{\sqrt{1 + \alpha^2 x_3^2 + \alpha^2 x_2^2}} (1, \alpha x_2, -\alpha x_3)^\top \text{ and } \varepsilon > 0 \ (=1 \text{ or } 10^{-2}).$$

Vienna 2023

With stabilization

Moment models

Stability issue

Miscellaneous numerics

Data similar to Muralikrishnan-Cerfon-et al JCP 2021.

This numerical stabilizer works fine, but it is physically disgusting.

The number of moments for the reduced model

Moment models

Stability issue

Miscellaneous numerics

Finite Element in space Separation of variables = tensorialization x - v

Ν	Moments ($ \mathbf{m} \leq N$)	Moments (in cyclotron kernel)
5	56	12
10	286	36
15	816	72
20	1771	121
200	1373701	10201

Table: The number of moments.

Complexity

Moment models

Stability issue

Miscellaneous numerics

For finite element matrices, one needs O(ws³) double floats;
The number of moments for the complete-moment model

$$r = (N+1)(N+2)(N+3)/6;$$

The number of moments for the gyro-moment model

$$r = \begin{cases} (N+1)(N+3)/4, & N \text{ odd,} \\ ((N+1)(N+3)+1)/4, & N \text{ even.} \end{cases}$$

Matrix storage	Storage for the Krylov method	Computational cost
$\mathcal{O}(ws^3)$	$\mathcal{O}(krs^3)$	$\mathcal{O}(kr^2s^3)$

Table: Complexity of storage and computational cost.

Validation: the transport equation

Moment models

Stability issue

Miscellaneous numerics

$$\mathsf{V}\mathsf{lasov} \text{ equation: } \partial_t f_\epsilon + \mathbf{v} \cdot \nabla_{\mathsf{x}} f_\epsilon + \frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_0(\mathbf{x}) \cdot \nabla_{\mathsf{v}} f_\epsilon = 0,$$

with $\mathbf{B}_0(\mathbf{x}) = \mathbf{b}_0(\mathbf{x}) = \{1,0,0\}^{\top}$, $\varepsilon = 10^{15}$.

Exact solution: $u_{0,0,0}(t = 0, \mathbf{x}) = 1 + \cos(2\pi(x_1 + x_2 + x_3))e^{-\pi^2 t^2}$.

Finite Element Mesh.

- Similar as in: Pham/Helluy/Crestetto, A. Space-only hyperbolic approximation of the Vlasov equation, 2012.

- Recurrence described in: M. Mehrenberger L Navoret, N. Pham, Recurrence phenomenon for Vlasov-Poisson simulations on

regular finite element mesh, Commun. in Comput. Phys., 2020.

Linear Landau damping

Moment models

Stability issue

We consider the non-linear Vlasov-Poisson system:

Miscellaneous numerics

$$\begin{cases} \partial_t f + \mathbf{v} \cdot \nabla_x f + \left(\mathbf{E} + \frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_0(\mathbf{x}) \right) \cdot \nabla_v f = 0, \\ \nabla \cdot \mathbf{E} = \int f dv - \rho_e. \end{cases}$$

We keep periodic solutions in x_1 -direction, and consider the initial density function

$$f(0, \mathbf{x}, \mathbf{v}) = \left(\frac{1}{\sqrt{2\pi}}\right)^3 \left(1 + \alpha \cos(kx_1)\right) \exp^{-|\mathbf{v}|^2/2}$$

Figure: Landau damping. Damped electric field with k = 0.4, and $\epsilon = 10^{15}$.

The Bernstein-Landau paradox

Moment models

Stability issue

We consider the non-linear Vlasov-Poisson system:

Miscellaneous numerics

$$\begin{cases} \partial_t f + \mathbf{v} \cdot \nabla_x f + (\mathbf{E} + \mathbf{v} \times \mathbf{B}_0(\mathbf{x})) \cdot \nabla_v f = 0, \\ \nabla \cdot \mathbf{E} = \int f dv - \rho_e. \end{cases}$$

We keep periodic solutions in x_1 -direction, and consider the initial density function

$$f(0, \mathbf{x}, \mathbf{v}) = \left(\frac{1}{\sqrt{2\pi}}\right)^3 (1 + \alpha \cos(kx_1)) \exp^{-|\mathbf{v}|^2/2}, \quad k = 0.4.$$

- Rege-Charles-Weder-D. 2020.

Conclusions

Moment models

Stability issue

Miscellaneous numerics

> Extension of the validity of moments models/Friedrichs systems to 3D anisotropic magnetized Vlasov equations: main tool is anisotropic basis function φ_n(**x**, **v**, t).

It provides moment methods which capture the strong magnetic field limit without any modeling assumptions.

- Our MUF implicit code uses also standard space FEM+parallelism+preconditionner Ask Ruiyang Dai for all implementation techniques.
- Another stabilization procedure is under development, not disgusting at all.