Moment methods for magnetized Vlasov equations

B. Després SU/LJLL,
with R. Dai, F. Charles and S. Hirstoaga
Funding: ANR Muffin

Our model problem

It is 3D magnetized transport (think of Tokamaks)

$$
\left\{\begin{array}{l}
\partial_{t} f+\mathbf{v} \cdot \nabla_{\times} f+\left(\mathbf{E}+\frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_{0}(\mathbf{x})\right) \cdot \nabla_{v} f=0 \\
t>0, \mathbf{x} \in \Omega \subset \mathbb{R}^{3}
\end{array}\right.
$$

$\mathbf{E}(t, \mathbf{x})$ is a self consistent electric field evaluated with a Poisson or a Maxwell solver.
$\mathbf{B}_{0}(\mathbf{x})$ is a given magnetic field (application in Tokamaks, fusion plasmas). The regime $\varepsilon \rightarrow 0^{+}$corresponds to strong magnetic fields.

Objective of the MUFFIN project: explore and optimize original computational and numerical scenarios for multiscale and high dimensional transport codes.

References on moments

- Moment problem: first occurence Stieltjes 1894/1895.

See Akhiezer "the classical moment problem" 1965

- Moments and modeling : kinetic equations $\int f(v) v^{i} d v$ with $i=1,2,3$, Muller-Rugierri (extended thermodynamics 1993), Levermore 1996, ...

Physics+Num:

- Holloway: Spectral velocity discretizations for the Vlasov-Maxwell equations, 1996.
- Mandell/Dorland/Landreman: Laguerre-Hermite Pseudo-Spectral Velocity Formulation of Gyrokinetics, 2018.
- Grandgirard/.../Zarzoso: A 5D gyrokinetic full-f global semi-lagrangian code for flux-driven ion turb. sim., 2016.
- Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence, 2016, Schekochihin \rightarrow Hammett
- Math+Num Pham/Helluy/Crestetto 2012, Delzanno 2015, Manzini/.../Markidis 2016
- Filbet-Xiong, Conservative Discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System, 2020 (Filbet FKTW05 2022.)
- Filbet+Bessemoulin-Chatard, 2022.
- Charles+Dai+D.+Hirstoaga, Discrete moments models for Vlasov equations
with non constant strong magnetic limit, HAL 2023 to appear in CRAS 2023.

Hermite polynomials (convenient for plasma

Take the Maxwellian weight $G(v)=e^{-v^{2} / 2}$.

- Hilbert basis of the space $\int_{\mathbb{R}} f^{2}(v) G(v) d v<\infty$.
- Rodrigue's representation $H_{n}(v)=(-1)^{n} G(v)^{-1} \frac{d^{n}}{d v^{n}} G(v)$.
- The degree of H_{n} is n. The parity of H_{n} is the parity of n.
- $\int H_{n}(v) H_{m}(v) G(v) d v=(2 \pi)^{\frac{1}{2}} n!\delta_{n m}, \quad n, m \in \mathbb{N}$.
- Symmetric Hermite functions $\phi_{n}(v)=(2 \pi)^{-\frac{1}{4}} n!^{-\frac{1}{2}} H_{n}(v) M(v)$

$$
\varphi_{0}(v)=\frac{M(v)}{(2 \pi)^{\frac{1}{4}}}, \varphi_{1}(v)=\frac{v M(v)}{(2 \pi)^{\frac{1}{4}}}, \varphi_{2}(v)=\frac{\left(v^{2}-1\right) M(v)}{(8 \pi)^{\frac{1}{4}}}, \ldots,
$$

with recursion formulas

$$
\begin{cases}v \varphi_{n}(v)=\sqrt{n+1} \varphi_{n+1}(v)+\sqrt{n} \varphi_{n-1}(v), & n \in \mathbb{N} \\ \varphi_{n}^{\prime}(v)=-\sqrt{\frac{n+1}{2}} \varphi_{n+1}(v)+\sqrt{\frac{n}{2}} \varphi_{n-1}(v), & n \in \mathbb{N}\end{cases}
$$

Vlasov versus Gyromodels

Co,
$=0$,

$$
\left\{\begin{array}{l}
\partial_{t} f+\mathbf{v} \cdot \nabla_{x} f+\left(\mathbf{E}+\frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_{0}(\mathbf{x})\right) \cdot \nabla_{v} f=0 \\
t>0, \mathbf{x} \in \Omega \subset \mathbb{R}^{3}
\end{array}\right.
$$

- Gyrokinetic models (this version from Grandgirard et al)

$$
B_{\| s}^{*} \frac{\partial \bar{F}_{s}}{\partial t}+\nabla_{X} \cdot\left(B_{\| s}^{*} \frac{d \mathbf{x}_{G}}{d t} \bar{F}_{s}\right)+\frac{\partial}{\partial v_{G \|}}\left(B_{\| s}^{*} \frac{d v_{G}}{d t} \bar{F}_{s}\right)=R H S .
$$

- A rigorous limit (Filbet-Rodriguez 2021) is as follows. Set $\mathbf{b}_{0}(t, \mathbf{x})=\frac{\mathbf{B}(t, \mathbf{x})}{|\mathbf{B}(t, \mathbf{x})|}$, $v=\left\langle\mathbf{v}, \mathbf{b}_{0}(t, \mathbf{x})\right\rangle, w=\frac{\left|\mathbf{v}_{\perp}\right|^{2}}{2}$ and $\mathcal{V}_{0}(t, \mathbf{x})=\left(v \mathbf{b}_{0}, E_{\|}+w \nabla_{x} \cdot \mathbf{b}_{0},-v w \nabla_{x} \cdot \mathbf{b}_{0}\right)$. In the limit $\varepsilon \rightarrow 0$, one has

$$
\partial_{t} G+\nabla_{\mathbf{x}, v, w}\left(\mathcal{V}_{0} G\right)=0
$$

Objective of this talk: alternative moment methods which capture the limit $\varepsilon \rightarrow 0$ without any modeling assumptions.

Main ingredient: anisotropic moment methods

Parallel dir. $\mathbf{b}_{0}(\mathbf{x})=\frac{\mathbf{B}_{0}(\mathbf{x})}{\left|\mathbf{B}_{0}(\mathbf{x})\right|}$.
Complete $\mathbf{b}_{0}(\mathbf{x})$ as a local direct orthonormal basis $\mathbf{b}_{i}(\mathbf{x}) \cdot \mathbf{b}_{j}(\mathbf{x})=$ $\delta_{i j}$ and rescale the orthonormal directions as

$$
\mathbf{d}_{i}(\mathbf{x})=\frac{\mathbf{b}_{i}(\mathbf{x})}{\sqrt{T}}, \quad i=1,2
$$

Rescale the parallel direction

$$
\mathbf{d}_{0}(\mathbf{x})=\frac{\mathbf{b}_{0}(\mathbf{x})}{\sqrt{T}}
$$

$T>0$ is the constant temperature.

Change-of-basis matrix is $M(\mathbf{x})=\left(m_{i j}(\mathbf{x})\right)_{1 \leq i, j \leq 3}=\left(\mathbf{b}_{0}(\mathbf{x})\left|\mathbf{b}_{1}(\mathbf{x})\right| \mathbf{b}_{2}(\mathbf{x})\right)$.
The local change of variable is
$\mathbf{v} \mapsto \mathbf{w}=\left(\mathbf{v} \cdot \mathbf{d}_{0}(\mathbf{x}), \mathbf{v} \cdot \mathbf{d}_{1}(\mathbf{x}), \mathbf{v} \cdot \mathbf{d}_{2}(\mathbf{x})\right)^{t}=\frac{1}{\sqrt{T}} M^{t}(\mathbf{x}) \mathbf{v}$ with $d v=T^{\frac{3}{2}} d w$.

Second ingredient: asymmetric shape functions

- A generic notation for a multi-index with three components is

$$
\mathbf{n}=\left(n_{0}, n_{1}, n_{2}\right) \in \mathbb{N}^{3} \text { with }|n|=n_{0}+n_{1}+n_{2} .
$$

- The shape functions are functions of (\mathbf{x}, \mathbf{v})

$$
\begin{gathered}
\varphi_{\mathbf{n}}(\mathbf{x}, \mathbf{v})=\varphi_{n_{0}}\left(\mathbf{v} \cdot \mathbf{d}_{0}(\mathbf{x})\right) \varphi_{n_{1}}\left(\mathbf{v} \cdot \mathbf{d}_{1}(\mathbf{x})\right) \varphi_{n_{2}}\left(\mathbf{v} \cdot \mathbf{d}_{2}(\mathbf{x})\right) . \\
\text { Then } \psi_{\mathbf{n}}(\mathbf{x}, \mathbf{v})=e^{-\frac{|v|^{2}}{2 T}} \varphi_{\mathbf{n}}(\mathbf{x}, \mathbf{v}) \\
\text { and } \boldsymbol{\psi}^{\mathbf{n}}(\mathbf{x}, \mathbf{v})=e^{\frac{|\mathbf{v}|^{2}}{T}} \varphi_{\mathbf{n}}(\mathbf{x}, \mathbf{v}) \quad \text { (polynomials). }
\end{gathered}
$$

Remark

Number of velocity basis-functions equal to

$$
\text { Card }\left\{0 \leq n_{0}+n_{1}+n_{2} \leq N\right\}=\frac{(N+1)(N+2)(N+3)}{6}
$$

Main model ($\mathbf{E}=0$ for simplicity)

- The (Petrov-Galerkin) moment model writes

$$
\begin{aligned}
& f^{N}(\mathbf{x}, \mathbf{v}, t)=\sum_{|\mathbf{m}| \leq N} u_{\mathbf{m}}(\mathbf{x}, t) \boldsymbol{\psi}_{\mathbf{m}}(\mathbf{x}, \mathbf{v}) \\
& {\left[\int_{\mathbf{v}}\left(\partial_{t} f^{N}+\mathbf{v} \cdot \nabla_{x} f^{N}+\frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_{0}(\mathbf{x}) \cdot \nabla_{v} f^{N}\right) \boldsymbol{\psi}^{\mathbf{n}} d v\right](\mathbf{x}, \mathbf{v})=0, \forall(\mathbf{x}, t) \text { and }|\mathbf{n}| \leq N .}
\end{aligned}
$$

- The unknown is the vector

$$
U(\mathbf{x}, t)=\left(u_{\mathbf{m}}(\mathbf{x}, t)\right)_{|\mathbf{m}| \leq N} .
$$

Lemma

By construction the mass and the total energy are preserved since

$$
1,|\mathbf{v}|^{2} \in \underset{|\mathbf{n}| \leq N}{\operatorname{Span}}\left\{\boldsymbol{\psi}^{\mathbf{n}}\right\}, \quad \text { for } 2 \leq N .
$$

Transport matrices

- Notational simplicity $\mathbf{E}:=0$: one gets linear Friedrichs system with non constant matrices

$$
\partial_{t} U(\mathbf{x}, t)+\left[\sum_{i=1}^{3} \partial_{x_{i}}\left(A_{i}(\mathbf{x}) U(\mathbf{x}, t)\right)-B(\mathbf{x}) U(\mathbf{x}, t)\right]=\frac{1}{\varepsilon} C(\mathbf{x}) U(\mathbf{x}, t)
$$

where for example

$$
\begin{aligned}
a_{\mathrm{nm}}^{1}(\mathbf{x}) & =\frac{T^{2}}{\sqrt{2}} m_{11}(\mathbf{x})\left(\sqrt{m_{0}+1} \delta_{m_{0}+1, n_{0}}+\sqrt{m_{0}} \delta_{m_{0}-1, n_{0}}\right) \delta_{m_{1}, n_{1}} \delta_{m_{2}, n_{2}} \\
& +\frac{T^{2}}{\sqrt{2}} m_{12}(\mathbf{x}) \delta_{m_{0}, n_{0}}\left(\sqrt{m_{1}+1} \delta_{m_{1}+1, n_{1}}+\sqrt{m_{1}} \delta_{m_{1}-1, n_{1}}\right) \delta_{m_{2}, n_{2}} \\
& +\frac{T^{2}}{\sqrt{2}} m_{13}(\mathbf{x}) \delta_{m_{0}, n_{0}} \delta_{m_{1}, n_{1}}\left(\sqrt{m_{2}+1} \delta_{m_{2}+1, n_{2}}+\sqrt{m_{2}} \delta_{m_{2}-1, n_{2}}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
c_{\mathrm{nm}}(\mathbf{x})=T^{\frac{3}{2}}\left|\mathbf{B}_{0}(\mathbf{x})\right| \delta_{m_{0}, n_{0}}(& -\sqrt{\left(n_{1}+1\right) n_{2}} \delta_{m_{1}, n_{1}+1} \delta_{m_{2}, n_{2}-1} \\
& \left.+\sqrt{n_{1}\left(n_{2}+1\right)} \delta_{m_{1}, n_{1}-1} \delta_{m_{2}, n_{2}+1} \quad\right) .
\end{aligned}
$$

Lemma

The matrices A_{i} and B are symmetric, C is antisymmetric and one has $\sum_{i=1}^{3} \partial_{x_{i}} A^{i}(\mathbf{x})=B(\mathbf{x})+B^{t}(\mathbf{x})$.
The stability property holds $\partial_{t}|U|^{2}(\mathbf{x}, t)+\sum_{i=1}^{3} \partial_{x_{i}}\left(A_{i} U \cdot U\right)(\mathbf{x}, t)=0$.

Formal limit $\varepsilon \rightarrow 0$

- Consider $U_{\varepsilon}=U_{0}+\varepsilon U_{1}+O\left(\varepsilon^{2}\right)$ solution of

$$
\partial_{t} U_{\varepsilon}+\sum_{i=1}^{3} \partial_{x_{i}}\left(A_{i} U_{\varepsilon}\right)-B U_{\varepsilon}=\frac{1}{\varepsilon} C U_{\varepsilon}
$$

The hierarchy of equations starts with

$$
\left\{\begin{array}{l}
0=C U_{0} \\
\partial_{t} U_{0}+\sum_{i=1}^{3} \partial_{x_{i}}\left(A_{i} U_{0}\right)-B U_{0}=C U_{1} \\
\cdots
\end{array}\right.
$$

The gyro-kernel does not depend of the space variable

$$
\mathcal{K}=\{U \mid C(\mathbf{x}) U=0\}=\{U \mid C(\mathbf{y}) U=0\}
$$

$$
\mathcal{K}=\left\{U=\left(u_{\mathbf{n}}\right)_{|\mathbf{n}| \leq N \mid} \left\lvert\, \begin{array}{ll}
& -\sqrt{m_{1}\left(m_{2}+1\right)} u_{m_{0}, m_{1}-1, m_{2}+1} \\
& \left.+\sqrt{\left(m_{1}+1\right) m_{2}} u_{m_{0}, m_{1}+1, m_{2}-1}=0 \text { for all }|\mathbf{m}| \leq N\right\}
\end{array}\right.\right.
$$

At the end of the analysis, one ellipse corresponds to a basis function which is a Laguerre polynomial (known in numerical plasma physics).

Remark

The number of basis functions is

$$
\operatorname{Card}\left\{\left(m_{0}, s\right) \mid m_{0}+2 s \leq k\right\}=\frac{(N+1)(N+3)}{4} \text { or } \frac{(N+1)(N+3)+1}{4} .
$$

The Gyro-moment model

Let matrix P be the rectangular matrix from the projected space in the total space

$$
P \in \mathcal{M}_{a, b}(\mathbb{R}) \text { where } a \approx \frac{(N+1)(N+3)}{4} \text { and } b=\frac{(N+1)(N+2)(N+3)}{6} .
$$

- One has $C P=P C=0$ and $P^{t} P=\tilde{I}$.

Lemma

The gyro-moment model writes

$$
\begin{equation*}
\partial_{t} \widetilde{U}+\sum_{i=1}^{3} \partial_{x_{i}}\left(\widetilde{A}_{i}(\mathbf{x}, t) \widetilde{U}(\mathbf{x}, t)\right)=\widetilde{B}(\mathbf{x}) \widetilde{U}(\mathbf{x}, t) \tag{1}
\end{equation*}
$$

where

$$
\widetilde{A}_{i}(\mathbf{x})=P^{t} A_{i}(\mathbf{x}) P, \quad \widetilde{B}(\mathbf{x})=P^{t} B(\mathbf{x}) P .
$$

The magnetic force disappeared, as in gyrokinetics models.

- One can say it is an Asymptotic-Preserving model.
- This is an alternative to classical gyrokinetic models (Gysela, Gene, ...).

An interesting possibility: enriched gyro-moment

Assume $0<\varepsilon$ is small, and consider the graphics

The simplest non trivial idea is to add degrees of freedom for all (m_{0}, m_{1}, m_{2}) where $m_{0}+1 \leq N$ and $m_{1}+m_{2}=1$.

Remark

The number of basis functions is

$$
\frac{(N+1)(N+3)}{4}+2 N \text { or } \frac{(N+1)(N+3)+1}{4}+2 N .
$$

Structure of enriched gyro-moment model

- One gets naturally

$$
U=(P, Q) \mathcal{U}, \quad \mathcal{U}=\binom{\widetilde{U}}{\widehat{U} \in \mathbb{R}^{2 N}}
$$

where P and $\widetilde{U} \in \mathcal{K}$ are unchanged, and we consider new notations

$$
\widehat{\mathbf{n}}=\left(n_{0}, n_{1}, n_{2}\right) \text { where } n_{0} \in \mathbb{N}, n_{1}+n_{2}=1 \text { and }|\widehat{\mathbf{n}}|=n_{0}+1 .
$$

The matrix is $Q=\left(q_{\mathbf{m}, \widehat{\mathbf{n}}}\right)_{|\mathbf{m}|,|\mathbf{n}| \leq N}$ with $q_{\mathbf{m}, \widehat{\mathbf{n}}}=\delta_{m_{0}, n_{0}} \delta_{m_{1}, n_{1}} \delta_{m_{2}, n_{2}}$.

- This is a enriched gyro-kinetic model

$$
\partial_{t} \mathcal{U}+\sum_{i=1}^{3} \partial_{x_{i}}\left(\mathcal{A}_{i}(\mathbf{x}) \mathcal{U}\right)=\mathcal{B}(\mathbf{x}) \mathcal{U}+\frac{1}{\varepsilon} \mathcal{C}(\mathbf{x}) \mathcal{U}
$$

where

$$
\mathcal{C}=\left(\begin{array}{cc}
0 & 0 \\
0 & Q^{t} C Q
\end{array}\right)
$$

and $\varepsilon>0$ is presumably small, but non zero.

Numerical solver and numerical instability

(1) First step
$T^{\frac{3}{2}} \partial_{t} U(\mathbf{x}, t)+\sum_{i=1}^{3} \partial_{x_{i}}\left(A_{i}(\mathbf{x}) U(\mathbf{x}, t)\right)-B(\mathbf{x}) U(\mathbf{x}, t)-\frac{1}{\varepsilon} C(\mathbf{x}) U(\mathbf{x}, t)=0$. Cranck-Nicolson discretization in time + FE method in space.
(2) Second step
$T^{\frac{3}{2}} \partial_{t} U(\mathbf{x}, t)+\sum_{i=1}^{3} E_{i}(\mathbf{x}, t) D_{i}(\mathbf{x}) U(\mathbf{x}, t)=0$.
We solve the Poisson equation, with a Finite Element (FE) Poisson solver, to get the potential Φ. Then $\mathbf{E}=-\nabla \Phi$.

$t \mapsto\|U\|_{L^{2}}$: a numerical instability shows up in the electric step

Why this numerical instability

Stability issue

Consider the 1D equation $\partial_{t} f+e \partial_{v} f=0(e \in \mathbb{R}$ is constant) discretized with the moment method with asymmetric Hermite functions

$$
\partial_{t}\left(\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2} \\
u_{3} \\
\ldots
\end{array}\right)=e T^{-\frac{1}{2}}\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \cdots \\
\sqrt{2} & 0 & 0 & 0 & 0 & \cdots \\
0 & \sqrt{4} & 0 & 0 & 0 & \cdots \\
0 & 0 & \sqrt{6} & 0 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)\left(\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2} \\
u_{3} \\
\ldots
\end{array}\right)
$$

The matrix D is triangular, which is the reason of the numerical instability. Indeed

$$
\exp \left(t e T^{-\frac{1}{2}} D\right)=\sum_{n \geq 0} \frac{\left(t e T^{-\frac{1}{2}}\right)^{n}}{n!} D^{n}
$$

This triangular structure is common to all recent papers on moment methods with asymmetric Hermite functions:

- G. Manzini, G. L. Delzanno, J. Vencels and S. Markidis, A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system, J. Comput. Phys. 317, 82-107, 2016.
- All recent papers by Delzanno
- F. Filbet and M. Bessemoulin-Chatard, On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system, J. Comput. Phys. 451 (2022).
- Charles+Dai+D.+Hirstoaga, Discrete moments models for Vlasov equations with non constant strong magnetic limit, HAL 2023 to appear in CRAS 2023.

A cure: introduce time in asymmetric functions

Redefine $\mathbf{d}_{i}(\mathbf{x}, t)=\frac{\mathbf{b}_{i}(\mathbf{x})}{\sqrt{T(t)}}$ and

$$
\begin{gathered}
\boldsymbol{\varphi}_{\mathbf{n}}(\mathbf{x}, \mathbf{v}, t)=\varphi_{n_{0}}\left(\mathbf{v} \cdot \mathbf{d}_{0}(\mathbf{x}, t)\right) \varphi_{n_{1}}\left(\mathbf{v} \cdot \mathbf{d}_{1}(\mathbf{x}, t)\right) \varphi_{n_{2}}\left(\mathbf{v} \cdot \mathbf{d}_{2}(\mathbf{x}, t)\right) \\
\psi_{\mathbf{n}}(\mathbf{x}, \mathbf{v}, t)=T(t)^{-\frac{3}{2}} \psi_{n_{0}}\left(\mathbf{v} \cdot \mathbf{d}_{0}(\mathbf{x}, t)\right) \psi_{n_{1}}\left(\mathbf{v} \cdot \mathbf{d}_{1}(\mathbf{x}, t)\right) \psi_{n_{2}}\left(\mathbf{v} \cdot \mathbf{d}_{2}(\mathbf{x}, t)\right)
\end{gathered}
$$

and

$$
\boldsymbol{\psi}^{\mathbf{n}}(\mathbf{x}, \mathbf{v}, t)=\psi^{n_{0}}\left(\mathbf{v} \cdot \mathbf{d}_{0}(\mathbf{x}, t)\right) \psi^{n_{1}}\left(\mathbf{v} \cdot \mathbf{d}_{1}(\mathbf{x}, t)\right) \psi^{n_{2}}\left(\mathbf{v} \cdot \mathbf{d}_{2}(\mathbf{x}, t)\right)
$$

The new abstract form of the moment model is

$$
\begin{aligned}
& f^{N}(\mathbf{x}, \mathbf{v}, t)=\sum_{|\mathbf{m}| \leq N} u_{\mathbf{m}}(\mathbf{x}, t) \boldsymbol{\psi}_{\mathbf{m}}(\mathbf{x}, \mathbf{v}, t) \\
& \int g^{N}(\mathbf{x}, \mathbf{v}, t) \psi^{\mathbf{n}}(\mathbf{x}, \mathbf{v}, t) d v=0 \quad \text { for }|\mathbf{n}| \leq N
\end{aligned}
$$

where $g^{N}(\mathbf{x}, \mathbf{v}, t)=\partial_{t} f^{N}(\mathbf{x}, \mathbf{v}, t)+\mathbf{v} \cdot \nabla_{\chi} f^{N}(\mathbf{x}, \mathbf{v}, t)+\frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_{0}(\mathbf{x}) \cdot \nabla_{v} f^{N}(\mathbf{x}, \mathbf{v}, t)$.

The moment model with electric field writes

$$
\begin{align*}
& \partial_{t} U(\mathbf{x}, t)+\sum_{i=1}^{3} \partial_{x_{i}}\left(A_{i}(\mathbf{x}) U(\mathbf{x}, t)\right)-B(\mathbf{x}) U(\mathbf{x}, t) \tag{2}\\
+ & \sum_{i=1}^{3} E_{i}(\mathbf{x}, t) D_{i}(\mathbf{x}) U=\frac{1}{\varepsilon} C(\mathbf{x}) U(\mathbf{x}, t)-T^{\prime}(t) R(t) U
\end{align*}
$$

To be coupled with the Poisson equation and $\mathbf{E}=-\nabla \varphi$.

Lemma

The model is stable in quadratic norm under the condition $T^{\prime}=\gamma\|\mathbf{E}\|_{\infty}^{2}$ where $\gamma>0$ is a coefficient. More precisely one obtains

$$
\|U(t)\|^{2} \leq e^{t} \mid U(0) \|^{2}
$$

Idea adapted from Filbet/Bessemoulin-Chatard 2022.

Idea of proof: use weighted norm

One notices that

$$
\int_{v \in \mathbb{R}} e^{\frac{v^{2}}{T(t)}}|f(x, v, t)|^{2} d v=\int\left|\sum_{m} u_{m}(x, t) \varphi_{n}\left(\frac{v}{\sqrt{T(t)}}\right)\right|^{2}=\sum_{m \geq 0}\left|u_{m}(x, t)\right|^{2}
$$

Then

$$
\begin{array}{rlrl}
\frac{d}{d t} \sum\left|u_{m}\right|^{2} & =2 \int e^{\frac{v^{2}}{T(t)}} f \partial_{t} f & & -\frac{T^{\prime}(t)}{T(t)^{2}} \int e^{\frac{v^{2}}{T(t)}}|f|^{2} v^{2} \\
& =2 \int e^{\frac{v^{2}}{T(t)}} f e \partial_{v} f & & -\frac{T^{\prime}(t)}{T(t)^{2}} \int e^{\frac{v^{2}}{T(t)}}|f|^{2} v^{2} \\
& =-2 \int e^{\frac{v^{2}}{T(t)}}|f|^{2} \frac{e}{T} v d v & & -\frac{T^{\prime}(t)}{T(t)^{2}} \int e^{\frac{v^{2}}{T(t)}}|f|^{2} v^{2} \\
& \leq 2 \int e^{\frac{v^{2}}{T(t)}}|f|^{2}\left(\frac{1}{2}+\frac{1}{2}\left(\frac{e}{T} v\right)^{2}\right) d v & & -\frac{T^{\prime}(t)}{T(t)^{2}} \int e^{\frac{v^{2}}{T(t)}}|f|^{2} v^{2} \\
& \leq \int e^{\frac{v^{2}}{T(t)}}|f|^{2} d v & & +\left(-\frac{T^{\prime}}{T^{2}}+\frac{\gamma e^{2}}{T^{2}}\right) \int e^{\frac{v^{2}}{T(t)}}|f|^{2} v^{2} \\
& \leq \int e^{\frac{v^{2}}{T(t)}}|f|^{2} & & \\
& \leq \sum\left|u_{m}(x, t)\right|^{2} . &
\end{array}
$$

Diocotron without stabilization (first seconds,

$$
\begin{gathered}
\left\{\begin{array}{l}
\partial_{t} f+\mathbf{v} \cdot \nabla_{x} f+\left(\mathbf{E}+\frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_{0}(\mathbf{x})\right) \cdot \nabla_{v} f=0, \\
\nabla \cdot \mathbf{E}=\int f d v-\rho_{e} .
\end{array}\right. \\
f_{0}(\mathbf{x}, \mathbf{v})= \begin{cases}\frac{n_{0}}{(\sqrt{2 \pi})^{3}}(1+\eta \cos (k \theta)) \exp ^{-4(r-6.5)^{2}} \exp ^{-|v|^{2} / 2}, & r^{-} \leq r \leq r^{+}, \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Non-homogenous magnetic field

$$
\mathbf{B}_{0}(\mathbf{x})=\omega_{c}(\mathbf{x}) \frac{1}{\sqrt{1+\alpha^{2} x_{3}^{2}+\alpha^{2} x_{2}^{2}}}\left(1, \alpha x_{2},-\alpha x_{3}\right)^{\top} \text { and } \varepsilon>0\left(=1 \text { or } 10^{-2}\right) .
$$

With stabilization

Data similar to Muralikrishnan-Cerfon-et al JCP 2021.

This numerical stabilizer works fine, but it is physically disgusting.

The number of moments for the reduced model

Finite Element in space
Separation of variables $=$ tensorialization $x-v$

N	Moments $(\|\mathbf{m}\| \leq N)$	Moments (in cyclotron kernel)
5	56	12
10	286	36
15	816	72
20	1771	121
200	1373701	10201

Table: The number of moments.
(1) For finite element matrices, one needs $\mathcal{O}\left(w s^{3}\right)$ double floats;
(2) The number of moments for the complete-moment model

$$
r=(N+1)(N+2)(N+3) / 6
$$

(3) The number of moments for the gyro-moment model

$$
r= \begin{cases}(N+1)(N+3) / 4, & N \text { odd } \\ ((N+1)(N+3)+1) / 4, & N \text { even }\end{cases}
$$

Matrix storage	Storage for the Krylov method	Computational cost
$\mathcal{O}\left(w s^{3}\right)$	$\mathcal{O}\left(k r s^{3}\right)$	$\mathcal{O}\left(k r^{2} s^{3}\right)$

Table: Complexity of storage and computational cost.

Validation: the transport equation

Moment models
Stability issue
Miscellaneous numerics

Vlasov equation: $\partial_{t} f_{\epsilon}+\mathbf{v} \cdot \nabla_{x} f_{\epsilon}+\frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_{0}(\mathbf{x}) \cdot \nabla_{v} f_{\epsilon}=0$,
with $\mathbf{B}_{0}(\mathbf{x})=\mathbf{b}_{0}(\mathbf{x})=\{1,0,0\}^{\top}, \varepsilon=10^{15}$.
Exact solution: $u_{0,0,0}(t=0, \mathbf{x})=1+\cos \left(2 \pi\left(x_{1}+x_{2}+x_{3}\right)\right) e^{-\pi^{2} t^{2}}$.

Finite Element Mesh.

- Similar as in: Pham/Helluy/Crestetto, A. Space-only hyperbolic approximation of the Vlasov equation, 2012.
- Recurrence described in: M. Mehrenberger L Navoret, N. Pham, Recurrence phenomenon for Vlasov-Poisson simulations on regular finite element mesh, Commun. in Comput. Phys., 2020.

Linear Landau damping

We consider the non-linear Vlasov-Poisson system:

$$
\left\{\begin{array}{l}
\partial_{t} f+\mathbf{v} \cdot \nabla_{x} f+\left(\mathbf{E}+\frac{1}{\varepsilon} \mathbf{v} \times \mathbf{B}_{0}(\mathbf{x})\right) \cdot \nabla_{v} f=0 \\
\nabla \cdot \mathbf{E}=\int f d v-\rho_{e}
\end{array}\right.
$$

We keep periodic solutions in x_{1}-direction, and consider the initial density function

$$
f(0, \mathbf{x}, \mathbf{v})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{3}\left(1+\alpha \cos \left(k x_{1}\right)\right) \exp ^{-|\mathbf{v}|^{2} / 2}
$$

Figure: Landau damping. Damped electric field with $k=0.4$, and $\epsilon=10^{15}$.

The Bernstein-Landau paradox

We consider the non-linear Vlasov-Poisson system:

$$
\left\{\begin{array}{l}
\partial_{t} f+\mathbf{v} \cdot \nabla_{x} f+\left(\mathbf{E}+\mathbf{v} \times \mathbf{B}_{0}(\mathbf{x})\right) \cdot \nabla_{v} f=0, \\
\nabla \cdot \mathbf{E}=\int f d v-\rho_{e} .
\end{array}\right.
$$

We keep periodic solutions in x_{1}-direction, and consider the initial density function

$$
f(0, \mathbf{x}, \mathbf{v})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{3}\left(1+\alpha \cos \left(k x_{1}\right)\right) \exp ^{-|\mathbf{v}|^{2} / 2}, \quad k=0.4
$$

Conclusions

- Extension of the validity of moments models/Friedrichs systems to 3D anisotropic magnetized Vlasov equations: main tool is anisotropic basis function $\varphi_{\mathbf{n}}(\mathbf{x}, \mathbf{v}, t)$.

It provides moment methods which capture the strong magnetic field limit without any modeling assumptions.

- Our MUF implicit code uses also standard space FEM+parallelism+preconditionner
Ask Ruiyang Dai for all implementation techniques.
- Another stabilization procedure is under development, not disgusting at all.

