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Introduction

▶ Understanding (turbulent) heat transport in magnetically confined plasmas is
crucial to the design of successful tokamak experiments

▶ These systems are incredibly complicated; what methods can we use to
better understand them?

▶ Focus on two particular instances of where physics results derived in the
context of reduced models carries over to the tokamak torus:

i) Scale invariance of electrostatic drift-kinetics

ii) The thermo-Alfvénic instability (TAI)
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Scale invariance

▶ Electrostatic (βs → 0) drift-kinetic (k⊥ρs ≪ 1) limit of gyrokinetics:

∂

∂t

(
hs −

qsϕ

T0s
f0s

)
+

(
v∥b0 + vds

)
·∇hs +

c

B0
b0 · [∇ϕ×∇ (hs + f0s)]
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∑
s′

C
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ss′ [hs],

0 =
∑
s

qs
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T0s
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]
.

2 / 13



Scale invariance

▶ Electrostatic (βs → 0) drift-kinetic (k⊥ρs ≪ 1) limit of gyrokinetics:

∂

∂t

(
hs −

qsϕ

T0s
f0s

)
+

(
v∥b0 + vds

)
·∇hs +

c

B0
b0 · [∇ϕ×∇ (hs + f0s)]

=
∑
s′

C
(ℓ)

ss′ [hs],

0 =
∑
s

qs

[
−qsϕ

T0s
n0s +

∫
d3v ⟨hs⟩r

]
.

▶ One-parameter transformation:

h̃even
s = λ2 heven
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ϕ̃ = λ2 ϕ(x/λ2, y/λ2, z/λ2/α, t/λ2),

for any λ. Note α = 1, 2 in the collisionless (ν∗ → 0) and collisional (ν∗ ≫ 1)
limits, respectively.
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▶ One-parameter transformation:

h̃even
s = λ2 heven

s (x/λ2, y/λ2, z/λ2/α, t/λ2),

h̃odd
s = λ2/α hodd

s (x/λ2, y/λ2, z/λ2/α, t/λ2),

ϕ̃ = λ2 ϕ(x/λ2, y/λ2, z/λ2/α, t/λ2),

for any λ. Note α = 1, 2 in the collisionless (ν∗ → 0) and collisional (ν∗ ≫ 1)
limits, respectively.

▶ Mathematically, the existence of this symmetry is a consequence of the scale
invariance of electrostatic DK.
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Implications for transport

▶ Suppose that our original solutions were periodic in x, y and z with domain
sizes Lx, Ly and L∥, respectively. Then, the transformed solutions will still be

periodic in x, y and z, except now with domain sizes λ2Lx, λ
2Ly and λ2/αL∥.
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2Lx, λ

2Ly,λ
2/αL∥, t/λ

2) = λ2Qs(Lx, Ly,L∥, t).

▶ Locality: Qs is independent of perpendicular domain size (local DK).

▶ Stationarity: Qs has been able to reach a statistical steady-state.

▶ Given that λ can be chosen arbitrarily, it follows that:

Qs ∝ Lα
∥
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Scale invariance in a slab

∂

∂t
τ̄−1φ− c1v

2
the

2νei

∂2

∂z2

[(
1 +

1

τ̄

)
φ−

(
1 +

c2
c1

)
δTe

T0e

]
= 0,

d

dt

δTe

T0e
+

2

3

c1v
2
the

2νei

∂2

∂z2

{(
1 +

1

τ̄

)(
1 +

c2
c1

)
φ−
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c3
c1
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(
1 +

c2
c1

)2
]
δTe

T0e

}

= −ρevthe
2LT

∂φ

∂y
.

▶ Describes physics on scales:

k∥LT ∼
√
σ, k⊥ρ⊥ ∼ 1, ρ⊥ =

ρe
σ

LT

λei
,

where σ is some arbitrary constant satisfying

βe︸︷︷︸
EM effects

≪ σ ≪ 1︸︷︷︸
thermal diffusion

.

▶ Manifestly invariant under the derived DK symmetry:

δT̃e = λ2δTe(x/λ
2, y/λ2, z/λ, t/λ2), ϕ̃ = λ2ϕ(x/λ2, y/λ2, z/λ, t/λ2).
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▶ Characteristic parallel and perpendicular frequencies:

ω∥ = c1

(
k∥vthe

)2
2νei

, ω∗e =
kyρevthe
2LT

.

▶ Supports the collisional slab ETG (sETG) instability (Adkins et al., 2022):
for ω∥ ≪ ω ≪ ω∗e,

ω = ±1 + isgn(ky)√
2

(
1 +

c2
c1

)1/2 (
ω∥|ω∗e|τ̄

)1/2
.
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Scale invariance in a slab

▶ We conducted a series of simulations in which we varied the parallel system
size at fixed parallel resolution.

▶ Perpendicular hyperviscosity was introduced in order to provide an ultraviolet
cutoff for the sETG instability. Breaks scale invariance?
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Scale invariance in a slab

▶ Logarithmic fits to the data give slopes of 2.02 and 2.06, respectively.

▶ Appears to agree quite well with the predicted scaling. But are the plasma
dynamics? See Adkins et al. (2023)
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Scale invariance in a tokamak

▶ So how do we extend these ideas to toroidal geometry?

▶ Scale invariance is broken by the existence of some spatial inhomogeneity of
the (parallel) magnetic equilibrium. For a tokamak:

L∥ ∼ πqR ⇒ Qs ∝ qα

▶ This could have implications for plasma systems in which magnetic fields have
(significant) parallel structure on scales much shorter than the connection
length e.g., edge plasmas (Parisi et al., 2020, 2022) or in stellerators
(Roberg-Clark et al., 2022).
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Scale invariance in a tokamak

▶ We performed a series of ion-scale (adiabatic electron) simulations using the
gyrokinetic code GX for Cyclone-Base-Case parameters (Dimits et al., 2000).

▶ Parameters: r/a = 0.5, R/a = 2.8, ŝ = 0.8, a/LTi = 2.5, a/Ln = 0.8,
νii/(vthi/a) = 1.2× 10−4.
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Scale invariance in a tokamak

▶ Drop-off in transport at lower values of q appears to be consistent with the
onset of the Dimits shift (see, e.g., Rogers et al., 2000).
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Instabilities above the de scale

▶ The electron inertial scale de = ρe/
√
βe plays a key role in the linear (and

nonlinear) dynamics of low-beta plasmas ⇒ flux-freezing scale
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Instabilities above the de scale

▶ At k⊥de ≫ 1, electrons are allowed to stream freely across unperturbed field
lines. sETG and cETG, E ×B drive.
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Instabilities above the de scale

▶ At k⊥de ≪ 1, δB⊥ is created as electrons move along field lines and drag
them along. sTAI and cTAI, magnetic flutter drive (as well as E ×B).
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Curvature-mediated TAI

d

dt

δne

n0e
= −ρevthe
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δTe

T0e
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dA
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δTe

T0e
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ρe
LT

∂A
∂y︸ ︷︷ ︸

1○

,

x̂

ŷ

ẑ ∇T0e,∇B0Hot Cold

B0 + δB⊥

B0

δTe < 0

δTe > 0

δTe > 0

δTe < 0

▶ A perturbation δBx = B0ρe∂yA sets
up a variation of total temp. along
the perturbed field line as it makes
excursions into hot and cold
regions.

▶ Rapid thermal conduction along
field lines creates a temperature
perturbation that compensates for
this.
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▶ Velocity dependence of magnetic
drifts vde creates an electron
density perturbation (hot particles
drift faster than cold ones).

▶ This electron density perturbation
has both ky ̸= 0 and k∥ ̸= 0.

9 / 13



Curvature-mediated TAI
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▶ The parallel density gradient must
be balanced by the parallel electric
field.

▶ Inductive part leads to an increase
in δBx, deforming the field line
further into the hot and cold
regions ⇒ feedback.

▶ The does not require the usual
E ×B feedback mechanism to be
present.
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General TAI dispersion relation

▶ More generally, both the sTAI and cTAI can be captured in a single
dispersion relation:

ω2 = −
(
2ωdeω∗e − ω2

KAW

)(
τ̄ +

1

1 + iξ∗

)
, ξ∗ =

√
π

2

ω∗e

|k∥|vthe
.

▶ Also valid in the collisional regime, in which thermal conduction replaces
parallel streaming as the relevant parallel timescale:

ξ∗ =

√
π

2

ω∗e

|k∥|vthe
⇒ ξ∗ =

ω∗e

κk2
∥
.

▶ The general physical mechanism is the competition between the diamagnetic
drifts (arising from the presence of the ETG) and rapid parallel streaming
(collisionless) or thermal conduction (collisional) along perturbed magnetic
field lines ⇒ accessing the magnetic flutter drive.
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TAI in gyrokinetics
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▶ Extensive details of the Thermo-Alfvénic instability can be found in
Adkins et al. (2022).
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▶ Extensive details of the Thermo-Alfvénic instability can be found in
Adkins et al. (2022).

▶ Can we recover the TAI in gyrokinetics? Following results from D. Kennedy
(CCFE) and M. Giacomin (York)

▶ Performed simulations of sTAI in GS2 and GENE, showing remarkably
agreement with theory. Here, Lref/LTe = 105, k∥,min = 0.03LT /

√
βe.
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TAI in gyrokinetics

▶ What about curvature? Both GS2 and GENE are also able to recover the cTAI
in constant-curvature geometries.
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TAI in gyrokinetics

▶ What about curvature? Both GS2 and GENE are also able to recover the cTAI
in constant-curvature geometries.

▶ The sTAI and cTAI have different parity eigenfunctions, as expected. Both
instabilities are highly electromagnetic in nature, with A ≫ φ.
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TAI in gyrokinetics

▶ Increase complexity further: magnetic shear + Shafranov shift.
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TAI in gyrokinetics

▶ Increase complexity further: magnetic shear + Shafranov shift.

▶ It appears that the TAI instability mechanism appears to survive the
transition to toroidicity. Another win for the slab?

▶ We plan to further push towards a realistic (STEP relevant) tokamak
geometry, and determine how TAI fits within the established electromagnetic
instability “zoo”.
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Electromagnetic sTAI-driven turbulence

▶ Simulations of turbulence driven by the (collisional) sTAI display a lack of
saturation similar to that seen in gyrokinetic codes.
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Electromagnetic sTAI-driven turbulence

▶ The time-evolution of individual poloidal wavenumbers kydeχ of the
temperature perturbations. The dominant (growing) wavenumber at late
times is kydeχ = 0.0157, corresponding to the second poloidal harmonic.
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Electromagnetic sTAI-driven turbulence

(a) (LT /deχ)φ (b) (LT /deχ)δTe/T0e

(c) (LT /deχ
2)A

▶ The three-dimensional nature of the sTAI can be seen in the parallel structure
manifest in all of the fields, as can the Alfvénic character of the instability in
the fact that the electrostatic and magnetic vector potential perturbations are
approximately in phase.
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Electromagnetic sTAI-driven turbulence

(a) (LT /deχ)φ (b) (LT /deχ)δTe/T0e

(c) (LT /deχ
2)A

▶ The magnetic vector potential is now at significantly larger scales than the
other two fields, displaying a streamer-like structure, albeit one with a
non-zero k∥.
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Electromagnetic sTAI-driven turbulence

(a) (LT /deχ)φ (b) (LT /deχ)δTe/T0e

(c) (LT /deχ
2)A

▶ The lack of saturation is associated with a now fully-developed streamer-like
structure (with non-zero parallel and poloidal variation) in the parallel
magnetic vector potential. This structure appears to be impervious to all
mechanisms of nonlinear shearing.
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Electromagnetic sTAI-driven turbulence

▶ This behaviour is reproduced in gyrokinetic simulations of sTAI turbulence
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Electromagnetic sTAI-driven turbulence

▶ This behaviour is reproduced in gyrokinetic simulations of sTAI turbulence ⇒
minimal model that reproduces the gyrokinetic electromagnetic
blow up.
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Summary and future work

▶ Scale invariance of gyrokinetic turbulence.

SYMMETRY
(scale invariance vs. L∥)

⇒ TRANSPORT
(heat flux scaling Qs ∝ Lα

∥ )

Future work: extensions to more general geometries (stellarators),
electromagnetic scale invariance (or not?)

▶ The thermo-Alfvénic instability (TAI) extracts free energy from the
equilibrium temperature gradient through finite perturbations to the
magnetic-field direction. Appears to survive the transition to toroidicity.

ω2 = −
(
2ωdeω∗e − ω2

KAW

)(
τ̄ +

1

1 + iξ∗

)
,

Future work: probing the robustness of this survival (e.g., ions)

▶ Electromagnetic “blow-ups” reminiscent of those in full gyrokinetics
appear to be reproducible in sTAI-driven turbulence. Future work:
determining how (and whether) these blow-ups can be arrested in these
simple models, application to more general gyrokinetic simulations.

13 / 13



Adkins, T., Ivanov, P. G. & Schekochihin, A. A. 2023 Scale invariance and critical balance in electrostatic
drift-kinetic turbulence. J. Plasma Phys. 89, 905890406.

Adkins, T., Schekochihin, A. A., Ivanov, P. G. & Roach, C. M. 2022 Electromagnetic instabilities and plasma
turbulence driven by electron-temperature gradient. J. Plasma Phys. 88, 905880410.

Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. I., Dorland, W., Hammett, G. W., Kim, C., Kinsey,
J. E., Kotschenreuther, M., Kritz, A. H., Lao, L. L., Mandrekas, J., Nevins, W. M., Parker, S. E.,
Redd, A. J., Shumaker, D. E., Sydora, R. & Weiland, J. 2000 Comparisons and physics basis of tokamak
transport models and turbulence simulations. Phys. Plasmas 7, 969.

Parisi, J. F., Parra, F. I., Roach, C. M., Giroud, C., Dorland, W., Hatch, D. R., Barnes, M., Hillesheim,
J. C., Aiba, N., Ball, J., Ivanov, P. G. & contributors, JET 2020 Toroidal and slab ETG instability
dominance in the linear spectrum of JET-ILW pedestals. Nucl. Fusion 60, 126045.

Parisi, J. F., Parra, F. I., Roach, C. M., Hardman, M. R., Schekochihin, A. A., Abel, I. G., Aiba, N.,
Ball, J., Barnes, M., Chapman-Oplopoiou, B., Dickinson, D., Dorland, W., Giroud, C., Hatch, D. R.,
Hillesheim, J. C., Ruiz Ruiz, J., Saarelma, S., St-Onge, D. & Contributors, JET 2022 Three-dimensional
inhomogeneity of electron-temperature-gradient turbulence in the edge of tokamak plasmas. Nucl. Fusion 62,
086045.

Roberg-Clark, G. T., Plunk, G. G. & Xanthopoulos, P. 2022 Coarse-grained gyrokinetics for the critical ion
temperature gradient in stellarators. Phys. Rev. Res. 4, L032028.

Rogers, B. N., Dorland, W. & Kotschenreuther, M. 2000 Generation and stability of zonal flows in
ion-temperature-gradient mode turbulence. Phys. Rev. Lett. 85, 5336.


	Introduction
	Scale invariance
	Thermo-Alfvénic instability
	Electromagnetic ``blow-ups"
	Summary and future work
	References

