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Motivation

To get fusion working
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Tokamak formalism

I Magnetic field geometry described by Clebsch representation: B =∇α×∇ψ
I Cooridinate system: (ψ, θ, ζ)↔ (x, y, z)

I ψ ↔ flux surface label ↔ x

I θ ↔ poloidal angle ↔ z (for tokamak)

I ζ ↔ toroidal angle ↔ z (for stellarators)

I α = θ − ιζ ↔ y
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Tokamak formalism

I Despite fusion being only 10 years away, δf -gyrokinetic simulations for full
devices are out of numerical reach

I Consider just a single field line and simulate turbulence along it
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Current state of affairs

I Simulation coordinates: (x, y, z)→ (ψ, α, ζ)
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Current state of affairs

I Simulation coordinates: (x, y, z)→ (ψ, α, ζ)

I Initialise some δf and φ at t = 0 on simulation domain

I Evolve gyrokinetic equation pseudo-spectrally

I Decay in v‖; g(t,x, v‖ → ±∞, µ)→ 0

I Turbulence is taken as periodic in perpendicular directions, kx, ky � 1/L

I Use twist and shift boundary conditions in z to capture extended modes
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Twisting and shifting

I If ŝ ∝ dq/dψ 6= 0 then domain gets sheared as it travels around device
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Twisting and shifting

I If ŝ ∝ dq/dψ 6= 0 then domain gets sheared as it travels around device

I Eddies get sheared

I Pushed to higher perpendicular wavenumbers
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Twisting and shifting

I Use “twist-and-shift” boundary conditions to map sheared domain back onto
original one
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Twisting and shifting

I Demand that any function, A(t, x, y, z) =
∑
k Âkx,ky (t, z)eiky(y−y0)+ikx(x−x0),

be periodic at the same poloidal location, θ
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Twisting and shifting

I Demand that any function, A(t, x, y, z) =
∑
k Âkx,ky (t, z)eiky(y−y0)+ikx(x−x0),

be periodic at the same poloidal location, θ

I But y = y(ψ(x), θ, ζ) = ζ − q(ψ)θ

A(t, x, y(x, θ, z), z) = A(t, x, y(x, θ, z + 2pπ), z + 2pπ) (1)

I Let k′ be the wavenumber that satisfies the above:

Âk(z) = Âk′(z + 2pπ)(phase factor) (2)

I {k′x, k′y} = {kx + δkx, ky}
I δkx ∝ dy

dx
, δkx = 2πŝky

I phase factor = −2πpiky
dy
dα
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Twisting and shifting

I Demand that any function, A(t, x, y, z) =
∑
k Âkx,ky (t, z)eiky(y−y0)+ikx(x−x0),

be periodic at the same poloidal location, θ
I But y = y(ψ(x), θ, ζ) = ζ − q(ψ)θ

A(t, x, y(x, θ, z), z) = A(t, x, y(x, θ, z + 2pπ), z + 2pπ) (1)

I Let k′ be the wavenumber that satisfies the above:

Âk(z) = Âk′(z + 2pπ)(phase factor) (2)

I δkx = 2πŝky
I δkx = N∆kx
I 2πŝky = N∆kx
I jtwist = 2πŝLx

Ly
∈ Z
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Tokamaks are trivial

I Fluxtube simulations are sufficient for Tokamak because we can stitch our
fluxtubes together
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Stepping outside the axisymmetric box

I Geometry sampled varies with field line

I Method of stitching together fluxtubes no longer holds

I Currently no δf poloidally-global code that can correctly deal with kinetic
electrons
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What do we expect to be different?
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What do we expect to be different?

I We have a ky spectrum for a given fieldlines
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What do we expect to be different?

I Different fieldlines have different spectra
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What do we expect to be different?

I Full flux effects should sample all fieldlines
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Where there is geometry there are problems

Geometry is at the root of all evil...

I Geometry is no longer trivial

I But how does geometry enter our code?

.
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Simplified notation GK:

∂g

∂t
= (geometric factors)︸ ︷︷ ︸
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Where there is geometry there are problems

Geometry is at the root of all evil...

I Geometry is no longer trivial

I But how does geometry enter our code?

.

Simplified notation GK:

∂g

∂t
= (geometric factors)︸ ︷︷ ︸

e.g b̂·∇z

· (∇g +∇ 〈φ〉R︸ ︷︷ ︸
J0,kφ̂k

) (3)

I Bessel functions J0(ak) with ak = k⊥v⊥
Ωs

I Geometric factors are α-dependent

I Gyro-averaging introduces coupling between different ky-modes → no longer a
local operation

I Geometric factors are introducing non-linear terms in ky

I Domain changes for each fieldline
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Overcoming adversity

I Problem: A full flux δf -gyrokinetic code couples together all ky’s
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Overcoming adversity

I Problem: A full flux δf -gyrokinetic code couples together all ky’s

I Solution: Michael Barnes

I Bessel functions, QN

I Geometric factors

I Non-constant domain

I Fourier Decompose functions once at the beginning of code

〈φ〉R =
∑
k′′

eik
′′·RJ0(ak′′,s)φ̂k′′ , (4)

(〈φ〉R)k =

∫
d2R

∑
k′′,k′α

ei(k
′′
ψ−kψ)ψei(k

′
α+k′′α−kα)αĴk′′,k′α,sφ̂k′′ , (5)

where we have used

J0(ak′′,s) =
∑
k′α

Ĵk′′,k′α,s(z, µ)eik
′
αα. (6)
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Overcoming adversity

I Problem: A full flux δf -gyrokinetic code couples together all ky’s

I Solution: Michael Barnes

I Bessel functions, QN

I Geometric factors

I Non-constant domain

I Work with ḡ = g
F0

I Multiply coefficients in real space

I Modify implicit terms
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Overcoming adversity

I Problem: A full flux δf -gyrokinetic code couples together all ky’s

I Solution: Michael Barnes

I Bessel functions, QN

I Geometric factors

I Non-constant domain

I Fixed 2π poloidal domain.in θ, now set ∆ky using ρ∗

I Fieldlines will vary in path length around device

I Modify coordinates accordingly, and make “large aspect ratio approximation”
for terms treated implicitly

b̂ ·∇z = 〈b̂ ·∇z〉α +
[
b̂ ·∇z − 〈b̂ ·∇z〉α

]
(4)
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Rhostar scans
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Sanity Check

I Miller Geometry:
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Sprinkle in some geometry

12 / 15



Sprinkle in some geometry

I W7-X, nonlinear with kinetic electrons
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WARNING
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WARNING
I Zonal modes may not be being treated correctly

|φ|2
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Why do we care?

Want to answer some global questions

I Look at effects on transport

I Look at global modes, e.g. TEM
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Why do we care?

Want to answer some global questions

I Look at effects on transport

I Look at global modes, e.g. TEM

I Can stellarators support zonal flows
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Summary

I Aim for poloidally-global δf -gyrokinetic code

I Making progress but zonal flows are being dealt with incorrectly

Thank You
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