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Tokamaks aren’t that trivial!

Plasma Physics

Current drive and current-driven instabilities

Geometrically complex (c.f. ITER / SPARC engineering costs) – coils link the
plasma

Turbulence!
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Centrifugal Mirrors: What Are They

Novel device (preceded by PSP-2 & MCX)
Simple geometry, reducing build & maintainance costs
Very long confinement times are possible
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Centrifugal Mirrors: How do They Work?

Ions are pushed away from the ends of the plasma, confining
particles
Elecrons follow (quasineutrality), confinining heat
Flow shear stabilizes macro- and micro- instabilities
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Theory and Modelling for CM

Equilibrium Modelling

Self-consistent asymptotic equilibrium already derived in the limit of M ≫ 1

How robust is this ?

Neoclassical Effects

Neoclassical Fluxes?

Neoclassical Toroidal Viscosity ?

Macrostability

The Infamous Interchange

Kelvin-Helmholtz-Rayleigh

Microstability

ITG / ETG ?

Interchange?
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Ordering

Even though we have already assumed a rapidly-rotating plasma, we have not
made any other assumptions.

The plasma is rapidly rotating M = u/cs ≫ 1.

The electron and ion temperatures are comparable Ti/Te ∼ 1.

The Alfvén Mach number (defined with the line-average density) is of order
unity

We also assume reflection symmetry in the vertical plane z = 0.
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Disc-like structure

Solution structure

Narrow Plasma layer near z = 0, with width scaling as δz ∼ RmidM−2

Inside the layer centrifugal forces balance curvature.

Vacuum solution outside the layer
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Layer Solution: 1

Dropping terms small in β, we have to solve

mi Ni exp

[
msω2

2Ts

(
R2 − R2

max

)]
ω2R∇R = −∇

B2

2µ0
+

1
µ0

B · ∇B, (1)

we expect the rapid rotation to localise the density into a disc-like layer near the
midplane (i.e at z = 0). Making the assumption that the density localises and that
gradients in z dominate over gradients in R, we have to solve for a field that
balances centrifugal forces and magnetic tension in the radial direction:

mi Ni exp

[
msω2

2Ts

(
R2 − R2

max

)]
ω2R =

1
µ0

Bz
∂BR

∂z
(2)
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Layer Solution: 2

Introducing the field line shape as R = R(ψ, z) we can write this as an equation
for R:

mi Ni exp

[
msω2

4Ts

(
R2 − R2

max

)]
ω2R =

1
µ0

Bz
∂

∂z

(
Bz

∂

∂z

∣∣∣∣
ψ

R

)
. (3)

To reduce the complexity of the system, we note that

∇ · B =
∂Bz

∂z
+
∂BR

∂R
≈
∂Bz

∂z
= 0, (4)

and so Bz is constant (with respect to z) inside the layer. Then, we observe that

Bz
∂

∂z

∣∣∣∣
R
= Bz

∂

∂z

∣∣∣∣
ψ

− Bz
∂R
∂z

∣∣∣∣
ψ

∂

∂R

∣∣∣∣
z

= Bz
∂

∂z

∣∣∣∣
ψ

− BR
∂

∂R

∣∣∣∣
z
≈ Bz

∂

∂z

∣∣∣∣
ψ

(5)
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Layer Solution: 3

Hence we have an equation purely along the field line:

mi Ni exp

[
msω2

2Ts

(
R2 − R2

max

)]
ω2R =

1
µ0

(
B2

z
∂2

∂z2

∣∣∣∣
ψ

R

)
. (6)

Simplifying by assuming that R changes only by a small amount inside the layer,
we write

R ≈ Rmax(ψ)− δR (7)

we can solve to find that

δR =
4

M2
Rmax ln

[
cosh

(
M2

4
λ

z
Rmax

)]
, (8)

with M = ωRmax/ cs and

λ =

(
4

M2

Ni miω
2R2

max

B2
z
/
µ0

)1/2

(9)

where λ ∼ 1 as M2 → ∞.
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Layer Solution: 4

From this solution we can now compute
the density profile:

ni = Ni sech
2
(

M2

4
λ

z
Rmax

)
(10)

and calculate the field-line-averaged
density ni in terms of Ni to finally
eliminate Ni :

Ni =
1

32
ni

Rmax
M2M2

A, (11)

where the average Alfven Mach number
is

M2
A =

ni miω
2Rmax

B2
z /2µ0

= 4λ, (12)

which allows us to eliminate λ.
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Exterior Solution

Now we need to solve outside the layer. Thankfully, our solution for ni is such that
it becomes a delta function (consistent with our assumptions). The current layer
due to the plasma is

Jϕ = [BR ]
0+
0− = 2λBz =

1
2

M2
ABz (13)

Greens Function

For a current layer at z = 0:

G(R, z,R′) =
1

2π

√
(R + R′)2 + z2

[(
1 − k2

)
K (k)− E(k)

]
Jϕ (14)

Giving

ψ(R, z) = ψcoil +

∫ b

a
G(R, z,R′)Jϕ(R′)dR′ (15)

Nonlinear Integral Equation for ψ. We solve it numerically.
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Exterior Solution: 2

Simple Two-Coil Setup

Exterior solution formed from the plasma plus two coils of unit strength at
R = 0.5 and z = ±1.0

The plasma pressure is uniform and we assume an ω profile of

ω = ω0(ψ − ψmin)× (ψmax − ψ)/ (ψmax − ψmin)
2 (16)

Figure: Vacuum Solution Figure: Plasma Solution
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Exterior Solution: 3

Two-Coil Setup

Exterior solution formed from the plasma plus two coils of unit strength at
R = 0.5 and z = ±1.0

The plasma pressure is uniform and we assume an ω profile of

ω = ω0(ψ − ψmin)× (ψmax − ψ)/ (ψmax − ψmin)
2 (17)

Figure: Midplane Psi Figure: Midplane Magnetic Field
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Non-Axisymmettric Perturbations

Perturb with a non-axisymmettric B̃

Caused by error fields in the coils – circles are easier than tori but nothing is
perfect.

Pick the simplest possible error, only modify the field strength
B̃ = cos (Nϕ)B.

Define δ = B̃/B.

Naı̈ve estiamtes

If we assume that the torque τNTV is due to Braginskii η0 then

τNTV ∼ δ2 ni Ti

νii

ω

a
(18)

Compared to the classical perpendicular torque

τ⊥ ∼ νii (ρi/a )2 mi ni R2ω (19)

Then τNTV ≪ τ⊥ requires
δ ≪ νii/Ωi . (20)
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Non-Axisymmettric Perturbations II: Drift Kinetics

To leading order, the toroidally-varying part of the drift kinetic equation is

(
v∥b + u

)
· ∇F̃s + ṼDs · ∇ψ

∂F0s

∂ψ
= CL

[
F̃s

]
(21)

If we assume that u ≫ vths and go to the collisionless limit, then

F̃s ∼
∫ ϕ VDs · ∇ψ

ω
dϕ′ (22)

leading to

τNTV ∼
δ2N
M

(
ρi

a

)2
ni mi v2

thi
(23)

and a limit of

δ2 ≪
νii M2(

vthi

/
R
)

N
(24)
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Axisymmettric Stability I: MRI

Magnetorotational Instabiltiy for Bϕ = 0

Driven by differential rotation ( dω
d ln R < 0) coupled to magnetic tension

(k∥ ̸= 0)

Stabilised by k∥vA if it is large eough (k2v2
A ≳ − dω2

d ln R ).
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Axisymmettric Stability II: Parker

The Parker Instability

Driven by magnetic
buoyancy (effective
gravity ωR2 > 0) and
parallel compressibility
(i.e. k∥ ̸= 0)

Stabilised by resistance
to compression, i.e. the
sound wave, when
k2
∥c2

s ≳ ω4R2/ v2
A
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Axisymmettric Stability III: What is k∥min

Stabilisation due to k∥

Both instabilities require k∥ but are also stabilised by it.

Thus, the most unstable mode is at the smallest non-zero k∥
Given our plasma is narrow, with width δ, we estimate

k∥ min ≈ δ−1 =

(
M2M̄2

A
16Rmax

)
(25)

This is asymptotically larger (as M → ∞) than the drive terms, and so we
expect to stabilise these modes completely
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Axisymmettric Stability & Waves: A sketch of a calculation

Eigenfunction Expansion

Following Ogilvie (1998) and Papaloizou & Szuszkiewicz (1992) we solve

B2
z
∂

∂z
un + ρω̂2

nun = 0, lim
z→∞

∂un

∂z
= 0, (26)

and solve the linear theory as an expansion in the eigenmodes un.

For our problem Bz is constant and ρ = ρ0 sech
2
(

16Rmax
M2M̄2

A
z
)

The un are then given by

un = Pl

(
tanh

(
16Rmax

M2M̄2
A

z

))
, l ∈ N (27)

with eigenvalues

ω̂2
n =

(
M4M̄4

Av̂2
A

256R2
max

)[
(2l + 1)2 − 1

]
(28)
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Axisymmettric Stability & Waves: Torsional Alfven Time

Torsional Alfven Waves

Taking the lowest nonzero eigenvalue

τA ∼
(

4
M

)4 π

4
1

M̄3
A

1
ω

(29)

The time to radiate an Alfven wave to infinity is shorter than the cyclic time –
very limited winding up of the field.

TODO: Apply torsional breaking theory from star formation ( Gillis,
Mestel & Paris 1973 ) to check if any radiated momentum is important
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Non-axisymmettric Theory: Kelvin-Helmholtz

Rayleigh’s Theorem

Flow profile is ideally stable if

d
dR

R−1 d
dR

R2ω ̸= 0 (30)

Trivially satisfied for constant viscosity solution

Preliminary evidence of transport profiles suggests that realistic profiles also
satisfy this theorem.

Viscosity / FLR Effects

Plane Pouseille Flow is known to be stable at infinite Reynolds number, but
unstable at large finite Reynolds number. This is due to viscosity exciting
“negative energy waves”.

FLR Effects play the same role as viscosity for a rotating plasma. For
ρ∗ ∼ 0.05 − 0.1, perhaps the effective Reynolds number is not enough to
excite these modes?
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Conclusions

We have found a new magnetic equilibrium for rapidly-rotating mirrors from
an asymptotic expansion in M2 ≫ 1

This equilibrium consists of a disc-like plasma and an exterior vacuum
solution.

There is evidence of an equilibrium limit where this asymptotic equilibrium
breaks down.

The equilibrium is robust to ripple.

Current work

Detailed calculations being prepared for publication.

Application of this model to CMFX - integrate it into the 0D model (currently
uses a square well))

Integration of this model with transport models, much faster than a
Grad-Shafranov solve


