Intermittency and electron heating in kinetic-Alfvén-wave turbulence

Muni Zhou¹, Zhuo Liu^{1,} Nuno F. Loureiro¹

¹Massachusetts Institute of Technology

Plasma turbulence in the sub-ion-Larmor-radius range

Solar wind magnetic spectrum form Cluster [Alexandrova+ 2019]

Main questions:

What are the spectra of fluctuations?

What is the mechanism causing the -2.8 magnetic spectrum measured in the solar wind?

What is the nature of the dissipative processes?

How are ions and electrons heated?

Electron heating

Efficient electron heating is observed in kinetic turbulence simulations around current sheets.

[Wan+ 2012, 2015]

Some long-standing discussion: relation between current sheets, reconnection, and heating What can be the role of reconnection in kinetic turbulence? setting the spectra? facilitating heating?

Magnetic reconnection yields efficient electron heating

[Loureiro+ 2013]

Spectra and spectral anisotropy

Total magnetic fields $B = B_0 \hat{z} + \delta B_{\perp}$, correlation lengths of fluctuations: length $\ell \sim 1/k_{\parallel}$, thickness $\lambda \sim 1/k_{\perp}$, and width ξ General arguments:

At scales $k_{\perp}\rho_i \gg 1$, equipartition b/w magnetic and density fluctuations gives $\varphi_{\lambda} \sim (\rho_i V_A/c) \delta B_{\perp \lambda}$

Linear time scale is set by propagation of KAWs $\gamma_l \sim \omega_{
m KAW} \propto k_\perp
ho_s k_\parallel V_A \sim
ho_s V_A/(\ell\lambda)$

Dimensionally, the nonlinear eddy-turnover rate is $\gamma_{nl} \sim \varepsilon/(\rho_0 v_{A\lambda}^2/2) \sim \varepsilon/(\delta B_{\perp\lambda}^2/8\pi)$

Critical balance: $\gamma_l \sim \gamma_{nl}$

Kolmogorov-type cascade of KAW

Total magnetic fields $B = B_0 \hat{z} + \delta B_{\perp}$, correlation lengths of flue General arguments:

At scales $k_{\perp}\rho_i \gg 1$, equipartition b/w magnetic and density fluc (

Linear time scale is set by propagation of KAWs

Dimensionally, the nonlinear eddy-turnover rate is

Critical balance: $\gamma_l \sim \gamma_{nl}$

Specify the nonlinear physics!

IF $\gamma_{nl} \sim u_{\lambda}/\lambda$, where $u_{\lambda} \sim (c/B_0)\varphi_{\lambda}/\lambda$

[Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]

Intermittency

Total magnetic fields $B = B_0 \hat{z} + \delta B_\perp$, correlation400General arguments:At scales $k_\perp \rho_i \gg 1$, equipartition b/w magnetic an300Linear time scale is set by propagation of KAWs200Dimensionally, the nonlinear eddy-turnover rate i100Critical balance: $\gamma_l \sim \gamma_{nl}$

Specify the nonlinear physics!

IF $\gamma_{nl} \sim u_{\lambda}/\lambda$, where $u_{\lambda} \sim (c/B_0)\varphi_{\lambda}/\lambda$ **IF** $\gamma_{nl} \sim u_{\lambda}/\lambda$ $\gamma_{nl} \sim \varepsilon/(\delta B_{\perp\lambda}^2 p_{\lambda})$ Volume-filling factor $p_{\lambda} \propto \lambda$. 2D "energy containing" sheets

0

500

• Kolmogorov-type cascade of KAWs --- $k_{\perp}^{-7/3}$

[Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]

• Intermittency --- $k_{\perp}^{-8/3}$ and $k_{\parallel}^{-7/2}$

[Boldyrev&Perez 2012]

Tearing mediation

Total magnetic fields $B = B_0 \hat{z} + \delta B_{\perp}$, correlation lengths of General arguments:

At scales $k_{\perp}\rho_i \gg 1$, equipartition b/w magnetic and density

Linear time scale is set by propagation of KAWs $\gamma_l \sim \omega_{
m K}$

Dimensionally, the nonlinear eddy-turnover rate is $\gamma_{nl} \sim$

Critical balance: $\gamma_l \sim \gamma_{nl}$

Specify the nonlinear physics!

IF $\gamma_{nl} \sim u_{\lambda}/\lambda$, where $u_{\lambda} \sim (c/B_0)\varphi_{\lambda}/\lambda$ IF $\gamma_{\rm nl} \sim u_{\lambda}/\lambda$ $\gamma_{nl} \sim \varepsilon/(\delta B_{\perp\lambda}^2 p_{\lambda})$ Volume-filling factor $p_\lambda \propto \lambda$ 2D "energy containing" sheets IF $\gamma_{\rm nl} \sim \gamma_t \sim v_{A\lambda} \rho_i d_e^{1/2} \lambda^{-5/2}$

- Kolmogorov-type cascade of KAWs --- $k_{\perp}^{-7/3}$ [Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]
- Intermittency --- $k_{\perp}^{-8/3}$ and $k_{\parallel}^{-7/2}$

[Boldyrev&Perez 2012]

Tearing mediation --- $k_{\perp}^{-8/3}$ (or k_{\perp}^{-3}) and $k_{\parallel}^{-7/2}$

[Loureiro&Boldyrev 2017] (the original MHD version of the theory: Loureiro&Boldyrev 2017; Mallet+ 2017)

Isothermal limit --- Spectra and spectral anisotropy

General arguments:

At scales $k_{\perp}\rho_i \gg 1$, equipartition b/w magnetic and density fluctuations gives $\varphi_{\lambda} \sim (\rho_i V_A/c) \delta B_{\perp \lambda}$

Linear time scale is set by propagation of KAWs $\gamma_l \sim \omega_{
m KAW} \propto k_\perp
ho_s k_\parallel V_A \sim
ho_s V_A/(\ell\lambda)$

Dimensionally, the nonlinear eddy-turnover rate is $\gamma_{nl} \sim \varepsilon/(\rho_0 v_{A\lambda}^2/2) \sim \varepsilon/(\delta B_{\perp\lambda}^2/8\pi)$

Critical balance: $\gamma_l \sim \gamma_{nl}$

Specify the nonlinear physics!

IF $\gamma_{nl} \sim u_{\lambda}/\lambda$, where $u_{\lambda} \sim (c/B_0)\varphi_{\lambda}/\lambda$ IF $\gamma_{\rm nl} \sim u_{\lambda}/\lambda$ $\gamma_{nl} \sim \varepsilon/(\delta B_{\perp\lambda}^2 p_{\lambda})$ Volume-filling factor $p_{\lambda} \propto \lambda$. 2D "energy containing" sheets IF $\gamma_{\rm nl} \sim \gamma_t \sim v_{A\lambda} \rho_i d_e^{1/2} \lambda^{-5/2}$

Total magnetic fields $B = B_0 \hat{z} + \delta B_{\perp}$, correlation lengths of fluctuations: length $\ell \sim 1/k_{\parallel}$, thickness $\lambda \sim 1/k_{\perp}$, and width ξ

- Kolmogorov-type cascade of KAWs --- $k_{\perp}^{-7/3}$ [Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]
- Intermittency --- $k_{\perp}^{-8/3}$ and $k_{\parallel}^{-7/2}$

[Boldyrev&Perez 2012]

Tearing mediation --- $k_{\perp}^{-8/3}$ (or k_{\perp}^{-3}) and $k_{\parallel}^{-7/2}$

[Loureiro&Boldyrev 2017] (the original MHD version of the theory: Loureiro&Boldyrev 2017; Mallet+ 2017)

Studying phase-space dynamics is crucial to understand particle heating

injection

- Phase mixing (field-particle interaction)
- "kinetic-channel" of dissipation at small velocity-space

k

Nonlinear advection "fluid-channel" of dissipation at small spatial scales

spatial space

Anti-phase-mixing and plasma echoes

Schekochihin+ 2016; Adkins & Schekochihin 2018

Q: is it obvious that echoes are expected in the sub- ρ_i range with electromagnetic fluctuations?

Confirmed by simulations in the inertial range with compressive fluctuations [Meyrand+ 2018]

Kinetic Reduced Electron Heating Model (KREHM) framework

A rigorous asymptotic reduction of gyrokinetics (GK) valid in the limit of low electron plasma-beta $\beta_e \sim m_e/m_i$ [Zocco+ 2011]

lons become isothermal.

GK Poisson's law containing FLR $\delta n_e/n_{0e} = 1$ Electrons are described by $\delta f_e = g_e + (\delta n_e / n_{0e} + 2v_{\parallel}v_{\parallel})$ $\frac{1}{n_{0e}} \frac{d\delta n_e}{dt} = -\hat{b} \cdot \nabla \frac{e}{cm_e} d_e^2 \nabla_{\perp}^2 A_{\parallel}$ $\frac{d}{dt} (A_{\parallel} - d_e^2 \nabla_{\perp}^2 A_{\parallel}) = -c \frac{\partial \varphi}{\partial z} + \frac{c}{c}$ Continuity: Ohm's law $\frac{dg_e}{dt} + v_{\parallel}\hat{b} \cdot \nabla \left(g_e - \frac{\delta T_{\parallel e}}{T_{0e}}F_{0e}\right)$ Kinetic equation Hermite expansion: $g_e(r, v_{\parallel}, t) = \sum_{i=1}^{\infty} g_i(r, v_{\parallel}, t)$ m:

$$\begin{split} &/\tau(\hat{\Gamma}_{0}-1)e\varphi/T_{0e} \\ u_{\parallel e}/v_{\text{the}}^{2})F_{0e} \\ & \parallel \\ & \\ \\ & \\ \frac{cT_{e0}}{e}\hat{b}\cdot\nabla\left(\frac{\delta n_{e}}{n_{0e}}+\frac{\delta T_{\parallel e}}{T_{0e}}\right) \\ & \\ = C[g_{e}] + \left(1-\frac{v_{\parallel}^{2}}{v_{\text{the}}^{2}}\right)F_{0e}\hat{b}\cdot\nabla\frac{e}{cm_{e}}d_{e}^{2}\nabla_{\perp}^{2}A_{\parallel} \\ & \\ \\ & \\ \\ & \\ \sum_{=0}^{\infty}H_{m}(v_{\parallel}/v_{\text{the}})g_{m}(r,t)F_{0e}(v_{\parallel})/\sqrt{2^{m}m!} \end{split}$$

Kinetic Reduced Electron Heating Model (KREHM) framework

A rigorous asymptotic reduction of gyrokinetics (GK) valid in the limit of low electron plasma-beta $\beta_e \sim m_e/m_i$ [Zocco+ 2011]

lons become isothermal.

GK Poisson's law containing FLR $\delta n_e/n_{0e} = 1/2$ Electrons are described by $\delta f_e = g_e + (\delta n_e / n_{0e} + 2v_{\parallel}u)$ $\frac{1}{n_{0e}} \frac{d\delta n_e}{dt} = -\hat{b} \cdot \nabla \frac{e}{cm_e} d_e^2 \nabla_{\perp}^2 A_{\parallel}$ $\frac{d}{dt} (A_{\parallel} - d_e^2 \nabla_{\perp}^2 A_{\parallel}) = -c \frac{\partial \varphi}{\partial z} + \frac{cT_{e0}}{e} d_e^2 \nabla_{\perp}^2 A_{\parallel}$ Continuity: Ohm's law $\frac{dg_m}{dt} = -v_{\rm the}\hat{b}\cdot\nabla\left(\sqrt{\frac{m+1}{2}}g_{m+1}\right)$ Kinetic equation

 g_m : Hermite moments of g_e

$$/ au(\hat{\Gamma}_0 - 1)e\varphi/T_{0e}$$

$$\iota_{\parallel e}/v_{\rm the}^2)F_{0e}$$

$$\frac{cT_{e0}}{e}\hat{b}\cdot\nabla\left(\frac{\delta n_e}{n_{0e}}+\frac{\delta T_{\parallel e}}{T_{0e}}\right)$$

$$+1 + \sqrt{\frac{m}{2}}g_{m-1} - \delta_{m,1}g_2 \bigg) - \sqrt{2}\delta_{m,2}\hat{b} \cdot \nabla \frac{e}{cm_e} d_e^2 \nabla_{\perp}^2 A_{\parallel}$$

With kinetic electrons --- Phase space cascade and electron heating

$$\begin{split} \frac{dg_m}{dt} &= \frac{\partial g_m}{\partial t} + \frac{c}{B_0} \{\varphi, g_m\} \\ \hline \frac{dg_m}{dt} &= -v_{\text{th}e} \hat{\mathbf{b}} \cdot \nabla \left(\sqrt{\frac{m+1}{2}} g_{m+1} + \sqrt{\frac{m}{2}} g_{m-1} - \delta_{m,1} g_2 \right) \left[-\sqrt{2} \delta_{m,2} \hat{\mathbf{b}} \cdot \nabla J_{\parallel} \right] \\ &\approx k_{\parallel} v_{\text{th}e} g_m / \sqrt{m} \sim \frac{v_{\text{th}e}}{B_0} \{A_{\parallel}, g_m\} / \sqrt{m} \end{split}$$

space $\hat{b}\cdot
abla J_{\parallel}$

Critical Hermite moments and echos?

$$\frac{dg_m}{dt} = \frac{\partial g_m}{\partial t} + \frac{c}{B_0} \{\varphi, g_m\}$$
Source of free energy in velocity space $\hat{b} \cdot \nabla J_{\parallel}$

$$\frac{dg_m}{dt} = -v_{\text{the}} \hat{\mathbf{b}} \cdot \nabla \left(\sqrt{\frac{m+1}{2}} g_{m+1} + \sqrt{\frac{m}{2}} g_{m-1} - \delta_{m,1} g_2 \right) \left[-\sqrt{2} \delta_{m,2} \hat{\mathbf{b}} \cdot \nabla J_{\parallel} \right]$$

$$\approx k_{\parallel} v_{\text{the}} g_m / \sqrt{m} \sim \frac{v_{\text{the}}}{B_0} \{A_{\parallel}, g_m\} / \sqrt{m}$$
1000

At each scale λ , there is a critical Hermite order m_{cr} :

nonlinear advection rate ~ Phase mixing rate

$$\frac{c}{B_0} \{\varphi, g_{m_{\rm cr}}\} \sim \frac{v_{\rm the}}{B_0} \{A_{\parallel}, g_{m_{\rm cr}}\} / \sqrt{m_{\rm cr}}$$
$$m_{\rm cr}(\lambda) \sim (\lambda/d_e)^2 / (2\tau^2)$$

Above m_{cr} plasma echo is expected to happen and impede phase mixing In weakly collisional plasmas, the collisional cut off $\gg m_{cr}$ Why is efficient electron heating observed in solar wind [Chen+ 2019] and in kinetic simulations[e.g. Howes+2016-2018]?

A zeroth-order solution of g_e in the velocity space and its Hermite spectrum

$$\begin{split} \frac{dg_m}{dt} &= \frac{\partial g_m}{\partial t} + \frac{c}{B_0} \{\varphi, g_m\} \\ \hline \frac{dg_m}{dt} &= -v_{\text{th}e} \hat{\mathbf{b}} \cdot \nabla \left(\sqrt{\frac{m+1}{2}} g_{m+1} + \sqrt{\frac{m}{2}} g_{m-1} - \delta_{m,1} g_2 \right) \left[-\sqrt{2} \delta_{m,2} \hat{\mathbf{b}} \cdot \nabla J_{\parallel} \right] \\ &\approx k_{\parallel} v_{\text{th}e} g_m / \sqrt{m} \sim \frac{v_{\text{th}e}}{B_0} \{A_{\parallel}, g_m\} / \sqrt{m} \end{split}$$

In the phase-mixing dominated regime, *l.h.s.* << *r.h.s.*

To the lowest order:

The Hermite spectrum of g_e :

$$g_{m+1} = -\sqrt{m/(m+1)}g_{m-1}$$
 for $m \ge 3$, and
 $g_3 = -\sqrt{2/3} (\rho_s/d_e)J_{\parallel}$

$$E_m \equiv \langle |g_m|^2/2 \rangle \approx \langle |g_{m+1}| |g_{m-1}| \rangle /2$$

$$E_{m+1}/E_{m-1} \approx g_{m+1}g_m/(g_{m-1}g_{m-2}) = \sqrt{(m-1)/(m+1)}$$

$$E_m \propto m^{-1/2}$$

Turbulence at scales below the electron skin depth

In the range $\lambda \ll d_e \lesssim
ho_i\,$, fluctuations become electrostatic.

Equipartition between density fluctuations and kinetic energy of parallel electron flows:

$$(\delta n_e/n_{0e})^2 n_{0e} T_{0e} \sim d_e^2 |\nabla_{\perp}^2 A_z|^2 / 8\pi \quad \longrightarrow$$

Assuming standard Kolmogorov-type cascade: $\varepsilon \sim \gamma_{nl} e^2 n_{0e} \varphi^2 / T_{0e}$ $\gamma_{nl} \sim \varphi_\lambda / \lambda^2$

$$E_{\varphi}(k_{\perp}) \propto k_{\perp}^{-7/3}, \quad E_B(k_{\perp})$$

Critical m_{cr} where phase-mixing rate balance nonlinear-advection rate:

$$m_{\rm cr} \sim (\lambda/d_e)^4/(2\tau^2)$$

dissipation should dominate \rightarrow steep Hermite spectrum

 $\varphi_{\lambda} \sim (\rho_i V_A/c) d_e \delta B_{\perp\lambda}/\lambda$

 $k_{\perp}(k_{\perp}) \propto k_{\perp}^{-13/3}.$

At $k_{\perp}d_e \gg 1$, nonlinear advection is always faster than phase mixing --- fluid-channel of

We perform simulations for turbulence in the kinetic range by solving KREHM equations

White-noise forcing added to the continuity equation (forcing density perturbation) at box scale **Balanced** turbulence

Energy injection balanced by dissipation through hyper-collision at large m or through hyperdiffusion at large k_{\perp}

- **Isothermal** limit, i.e., $g_e = 0$: Energy spectra of fluctuations, spectral anisotropy, intermittency
- electron kinetic physics accounted for $(g_e \neq 0)$: phase space dynamics, electron heating •

Spectra and spectral anisotropy

Existing models:

- Kolmogorov-type cascade of KAWs --- $k_{\perp}^{-7/3}$. [Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]
- Intermittency $-k_{\perp}^{-8/3}$ and $k_{\parallel}^{-7/2}$ [Boldyrev&Perez 2012] Tearing mediation $-k_{\perp}^{-8/3}$ (or k_{\perp}^{-3}) and $k_{\parallel}^{-7/2}$ [Loureiro&Boldyrev 2017]

(the original MHD version of the theory: Loureiro&Boldyrev 2017; Mallet+ 2017)

Our approach to distinguish the role of intermittency vs tearing mediation:

In numerical simulations, the frozen flux constraint can instead be broken by (hyper) resistivity $\eta_H \nabla_1^{\alpha}$:

$$E_B(k_\perp)dk_\perp \propto k_\perp^{-(7nlpha+2lpha+2)/(3nlpha+2)}dk_\perp$$

n is the parameter for the configuration of magnetic fields: n=1 Harris sheet; n=2 sinusoidal profile

Isothermal simulations – Energy spectra

Simulations are performed in the sub- ρ_i range, with the flux-unfreezing mechanism being the main difference.

 $\sim k_{\perp}^{-8/3}$ spectrum; predicted by the intermittency model and the tearing-mediation model

Energy spectra is not set by tearing mediation

Simulations are performed in the sub- ρ_i range, with the flux-unfreezing mechanism being the main difference.

If the spectra are set by the tearing mediation:

 $E_B(k_\perp)dk_\perp \propto k_\perp^{-(7\alpha+3)/(3\alpha+1)}$

Electron inertia: -8/3 Resistivity: -2.4 Hyper-resistivity: -2.6

The overlap of the spectra rules out tearing-mediation as the physical mechanism underpinning the energy cascade.

Energy spectra is not set by tearing mediation

Simulations are performed in the sub- ρ_i range, with the flux-unfreezing mechanism being the main difference.

If the spectra are set by the tearing mediation:

 $E_B(k_\perp)dk_\perp \propto k_\perp^{-(7\alpha+3)/(3\alpha+1)}$

Electron inertia: -8/3 Resistivity: -2.4 Hyper-resistivity: -2.6

The overlap of the spectra rules out tearing-mediation as the physical mechanism underpinning the energy cascade.

Spectral anisotropy shows no evidence of progressive alignment

3D structure functions of the magnetic fields:

$$\int_{0}^{J} S_{2}(\delta \mathbf{r}) \equiv \langle |\Delta \mathbf{B}(\mathbf{r}, \delta \mathbf{r})|^{2} \rangle_{\mathbf{r}}$$

$(\ell \sim 1/k_{\parallel})$

Spectral anisotropy shows no evidence of progressive alignment

Isotropic morphology of eddies in perpendicular planes - no progressive alignment for tearing mediation

Why don't the turbulence eddies become tearing unstable?

3D structure functions of the magnetic fields:

$$\int_{0}^{J} S_{2}(\delta \mathbf{r}) \equiv \langle |\Delta \mathbf{B}(\mathbf{r}, \delta \mathbf{r})|^{2} \rangle_{\mathbf{r}}$$

$(\ell \sim 1/k_{\parallel})$

Spectral anisotropy shows no evidence of progressive alignment

High-order structure function indicates 2D intermittent structures

$$S_q(\delta \mathbf{r}) \equiv \langle |\Delta \mathbf{B}(\mathbf{r}, \delta \mathbf{r})|^q \rangle_{\mathbf{r}} \sim \delta \mathbf{r}^q$$

Main assumption to derive the -8/3 spectrum by Boldyrev&Perez 2012

Simulations with kinetic electrons

 $y/
ho_i$

 $k_{\perp,max}d_e = 10$

$$\rho_i = d_e = 2L$$

100 200

In the sub- ρ_i range:

spectra become steeper (than $k_{\perp}^{-8/3}$)

In the sub- d_e range:

 $E_{\varphi}(k_{\perp}) \propto k_{\perp}^{-7/3}, \quad E_B(k_{\perp}) \propto k_{\perp}^{-13/3}.$

High-*m* dissipation turns on at ρ_i .

In the range $\rho_i < \lambda < d_e$, the "kinetic dissipation" dominates.

In the range $d_e > \lambda$, the "fluid dissipation" dominates.

Landau damped EM energy matches electron heating

EM fluctuations are Landaudamped at each scale independently \rightarrow phase mixing domination

From the linear dispersion relation of KAWs: damping rate γ_{KAW} and frequency ω_{KAW}

A zeroth-order solution of g_e in the velocity space and its Hermite spectrum

 g_4

$$g_{m+1} = -\sqrt{m/(m+1)}g_{m-1}$$

 $g_3 = -\sqrt{2/3} (\rho_s/d_e)J_{\parallel}$

 g_2

With kinetic electrons --- Phase space cascade and electron heating

Assuming φ and A_{\parallel} have the same configuration/gradients

At each scale λ , there is a critical Hermite order m_{cr} :

Nonlinear advection rate~ Phase mixing rate

$$\frac{c}{B_0} \{\varphi, g_{m_{\rm cr}}\} \sim \frac{v_{\rm the}}{B_0} \{A_{\parallel}, g_{m_{\rm cr}}\} / \sqrt{m_{\rm cr}}$$

$$m_{\rm cr}(\lambda) \sim (\lambda/d_e)^2/(2\tau^2)$$

For both cases, there is a sufficiently wide dynamical range that echo could happen.

Local weakening of nonlinearity around current sheets enables strong phase mixing

The ratio of the nonlinear-advection rate to phase-mixing rate as a function of normalized current density. The positions with large energy density of g_m (with strong current density) have locally weakened nonlinearity.

for $m \geq 3$, and

 10^{-2}

Heating occurs around current sheets

The ratio of the nonlinear-advection rate to phase-mixing rate as a function of normalized current density. The positions with large energy density of g_m (with strong current density) have locally weakened nonlinearity.

Magenta contours indicates regions with strong collisional dissipation.

We study the kinetic turbulence in the low- β limit, composed of KAWs. In this specific regime:

- The magnetic and density energy spectra in kinetic turbulence is set by intermittency.
- The kinetic channel (via phase mixing) of energy dissipates dominates the fluid channel, energy dissipated at small scales in velocity space.
- Electron heating is caused by Landau damping of KAWs in this regime.
- Energy dissipation/electron heating occurs mostly around current sheets, due to the local weakening of nonlinearity.

