Effective Collision Operator for Heat-Flux-Generated Whistler Turbulence

Evan Yerger ¹, Matthew Kunz ¹, and Anatoly Spitkovsky ¹

¹Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton NJ, 08544, USA

13th Plasma Kinetics Working Meeting

August 3, 2022

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Whistler Heat Flux Instability

Simulations

Collision Operator

(ロ)、(型)、(E)、(E)、 E) のQ(()

Outline

Whistler Heat Flux Instability

Simulations

Collision Operator

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Background

Parallel whistler dispersion relation:

$$\omega = \left(\textit{k}_{\parallel}\textit{d}_{e}
ight)^{2} |\Omega_{e}|,$$

When $k_{\parallel}
ho_e\sim 1$

$$\omega \simeq rac{|\Omega_e|}{eta_e}, \quad v_{
ho} = rac{\omega}{k_{\parallel}} \simeq rac{v_{ ext{th},e}}{eta_e}, \quad v_{\parallel, ext{res}} = ext{sign}(k_{\parallel}) igg(rac{1}{eta_e} + nigg) v_{ ext{th},e}.$$

A distribution function with a heat flux can overcome cyclotron damping at $n = \pm 1$ resonances.

Whistler Heat Flux Instability

Simulations

Collision Operator

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Setup

Using electromagnetic PIC code TRISTAN-MP (Anatoly Spitkovsky), following Komarov et al. 2018

Boundary Conditions:

x: Absorbing E&M, re-sample particles with wall temperature

y: Periodic E&M, periodic particles

Linear temperature profile with two equilibria:

$$abla p_0 = 0$$
 and $abla p_0 =
ho_0 { extbf{g}}$

Results I

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

Results II

Outline

Whistler Heat Flux Instability

Simulations

Collision Operator

Let's Take the Next Step

Can we construct a collision operator for whistler turbulence so we can perform a Chapman-Enskog-Braginskii like closure for this instability?

Let's Take the Next Step

Can we construct a collision operator for whistler turbulence so we can perform a Chapman-Enskog-Braginskii like closure for this instability?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Three Methods:

- 1. Fokker-Planck
- 2. Quasilinear
- 3. Chapman-Enskog

Let's Take the Next Step

Can we construct a collision operator for whistler turbulence so we can perform a Chapman-Enskog-Braginskii like closure for this instability?

Three Methods:

- 1. Fokker-Planck
- 2. Quasilinear
- 3. Chapman-Enskog

For each we can ask:

- Is the method self-consistent?
- If so, what model can we derive from it?

Fokker-Planck Method: Background I

$$\frac{\partial f(t, \mathbf{x}, \mathbf{v})}{\partial t} = -\frac{\partial}{\partial \mathbf{v}} \cdot \mathbf{A}(t, \mathbf{x}, \mathbf{v}) f(t, \mathbf{x}, \mathbf{v}) + \frac{\partial^2}{\partial \mathbf{v} \partial \mathbf{v}} : \mathbf{B}(t, \mathbf{x}, \mathbf{v}) f(t, \mathbf{x}, \mathbf{v}).$$
$$\mathbf{A}(t, \mathbf{x}, \mathbf{v}) \doteq \lim_{\Delta t \to "0"} \frac{\langle \Delta \mathbf{v}(t, \mathbf{x}, \mathbf{v}, \Delta t) \rangle}{\Delta t}$$

 and

$$m{B}(t,m{x},m{v})\doteqrac{1}{2}\lim_{\Delta t
ightarrow "0"}rac{\langle\Deltam{v}(t,m{x},m{v},\Delta t)\Deltam{v}(t,m{x},m{v},\Delta t)
angle}{\Delta t},$$

where

$$\Delta \mathbf{v}(t, \mathbf{x}, \mathbf{v}, \Delta t) = \mathbf{v}(t + \Delta t, \mathbf{x}) - \mathbf{v}(t, \mathbf{x})$$

 $\langle \dots \rangle \doteq \int d\mathbf{v} (\dots) f(t, \mathbf{x}, \mathbf{v}).$

Fokker-Planck Method: Background II

Ornstein-Uhlenbeck proess

$$d\mathbf{v}_t = -\nu(\mathbf{v} - \bar{\mathbf{v}})\mathrm{d}t + \sigma \mathrm{dW}_t$$

moments of Δv have evolve in time

$$egin{aligned} &\langle \Delta v
angle &= ig(ar v - v_0ig)ig(1 - e^{-
u\Delta t}ig) \ &\langle \Delta v^2
angle - \langle \Delta v
angle^2 &= rac{\sigma^2}{2
u}ig(1 - e^{-2
u\Delta t}ig). \end{aligned}$$

Recover the Fokker-Planck equation for $\Delta t \ll \nu$:

$$egin{aligned} \mathcal{A}(\mathbf{v},t) &= rac{\langle \Delta \mathbf{v}
angle}{\Delta t} \simeq -
u ig(\mathbf{v}-ar{\mathbf{v}}ig) \ \mathcal{B}(\mathbf{v},t) &= rac{1}{2} rac{\langle \Delta \mathbf{v}^2
angle}{\Delta t} \simeq rac{\sigma^2}{2}. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Fokker-Planck Method: Background II

Ornstein-Uhlenbeck proess

$$d\mathbf{v}_t = -\nu(\mathbf{v} - \bar{\mathbf{v}})\mathrm{d}t + \sigma\mathrm{dW}_t$$

Assumptions:

- Stationary: $\nu(t) = \nu$, $\sigma(t) = \sigma$
- Markov: $\Delta t \gg \tau_{\rm ac}$
- PDF of increments is Gaussian

Any deviation from these is non-FP behavior

A Note on Autocorrelation Time

For Fokker-Planck

$$au_{\sf ac} \ll \Delta t \ll
u^{-1}$$

But

$$au_{\mathsf{ac}}^{\mathsf{lin}} \sim (\textit{v}_{\parallel} \cdot \Delta \textit{k}_{\parallel})^{-1}$$

Consider a wave packet centered at $k\rho_e \sim 1$ with $\Delta k/k \sim 1$. For gyroresonaces $v_{||} \sim v_{\text{th},e}$:

$$au_{\sf ac}^{\sf lin} \sim \Omega_e^{-1}$$

But for $v_{\parallel} \rightarrow 0$:

$$\tau_{\rm ac}^{\rm lin} \to \infty$$

Fokker-Planck fomally invalid as $v_{\parallel} \rightarrow 0$

(Unless nonlinearities are involved)

・ロト・西・・田・・田・・日・

Quasilinear Method: Background I

In its simplest form, a quasilinear diffusion coefficient follows the form

$$D \sim \int \frac{d^3 \mathbf{k}}{(2\pi)^3} W_B(\mathbf{k}) \delta(\omega(\mathbf{k}) - \mathbf{k}_{\parallel} \mathbf{v}_{\parallel} - \mathbf{n} \Omega_e).$$

Assuming $\omega(k) \ll k_{\parallel} v_{\parallel} \sim \Omega_e$ and $W_B({m k}) = W_B(k) \sim k^a$,

$$\delta(\omega(k) - k_{\parallel}v_{\parallel} - n\Omega_e) \sim \frac{1}{|v_{\parallel}\cos\theta|}\delta(k - k_{\parallel, \rm res}), \qquad {\rm where} \qquad k_{\parallel, \rm res} = -\frac{n\Omega_e}{v_{\parallel}\cos\theta}.$$

Therefore,

$$D \sim \frac{1}{(2\pi)^2} \int_{-1}^{1} d\cos\theta \frac{k_{\parallel,\text{res}}^{a+2}}{|v_{\parallel}\cos\theta|} = \frac{1}{(2\pi)^2} \int_{-1}^{1} d\cos\theta \frac{1}{|v_{\parallel}\cos\theta|} \left(-\frac{n\Omega_e}{v_{\parallel}\cos\theta}\right)^{a+2}$$

will diverge when $v_{\parallel}
ightarrow 0$, sending $k_{\parallel, {
m res}}
ightarrow \infty.$

Quasilinear Method: Background II

The singularity as $v_{||} \to 0$ is the well-known 90-degree pitch angle problem. Replace $\delta(x)$ with:

1. Laplacian

$$\delta(\mathbf{x}) \to \frac{1}{\pi} \frac{\Delta \omega}{(\mathbf{x})^2 + \Delta \omega^2}$$

2. Integral function of D (Dupree 1966)

$$\delta(x) \rightarrow R(x,D) = \int_0^\infty \mathrm{d}\tau \exp\left[i(x)\tau - \frac{1}{3}k_{\parallel}^2 D\tau^3\right]$$

3. Box distribution (Karimabadi et al. 1992)

$$\deltaig(xig) o egin{cases} 1/4\omega_b, & |x| \leq 2\omega_b \ 0, & |x| > \omega_b \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

etc...

Chapman-Enskog Method: Background I

Assume the form of the operator: pitch-angle scattering in the whistler frame $v'_{\parallel} = v_{\parallel} - v_w$, where v_w is the whistler phase speed:

$$C[f] = \frac{\partial}{\partial \xi'} \frac{1 - \xi'^2}{2} \nu(\mathbf{v}', \xi') \frac{\partial f}{\partial \xi'}.$$

Utilize the correction equation from a Chapman-Enskog expansion:

$$\frac{Cf_1}{f_0} = \left(\frac{v^2}{v_{\mathrm{th},e}^2} - \frac{5}{2}\right) v \xi \nabla \ln T.$$

Transform back to lab coordinates:

$$C[f] = C_0[f] + \epsilon_w C_1[f] + \cdots$$

where $\epsilon_{\rm w} \sim v_{\rm w}/v the$.

・ロト・西ト・山田・山田・山下

Chapman-Enskog Method: Background II

 $\epsilon_{\rm w} \sim v_{\rm w}/v the \sim 1/\beta_e$ is same order as diffusive flux (Drake et al. 2021). Put all together and Invert to solve for ν :

$$D_{\xi\xi}(v,\xi) = -f_0 \frac{1-\xi^2}{2} \left(\frac{v^2}{v_{\text{th},e}^2} - \frac{5}{2} \right) v \nabla \ln T \left/ \left(\frac{\partial f_1}{\partial \xi} + v_w \frac{\partial f_0}{\partial v} \right) \right|$$

(ロ) (型) (E) (E) (E) (O)

Fokker-Planck: Velocity Results I

Fokker-Planck Method: Velocity Results II

PDFs of Δv for $\Delta t \Omega_e = \{1/10, 1, 10\}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Fokker-Planck Method: Velocity Results III

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Fokker-Planck Method: Velocity Results IV

$$A(v,\xi) = -\nu_{v}(\xi,\beta_{e})(v-v_{\mathsf{th},e0})$$
$$B(v,\xi) = \frac{\sigma_{v}(\xi,\beta_{e})^{2}}{2}v$$

$$\nu_{\rm v}(\xi,\beta_e) = \nu_{\rm v,0}\beta_e^{.63}f_{\nu_{\rm v}}(\xi)$$

$$\sigma_{\rm v}^2(\xi,\beta_e) = \sigma_{\rm v,0}^2\beta_e^{.52}f_{\sigma_{\rm v}^2}(\xi)$$

 $f_{
u_{
m v}}(\xi)$ and $f_{\sigma_{
m v}}(\xi)$ are nontrivial functions of $\delta B/B_0$

Does not explain
$$q_{\parallel} \sim 1/eta_e$$

Fokker-Planck Method: Pitch-Angle Results I

Pitch-angle scattering dominates velocity

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 のへの

Fokker-Planck Method: Pitch-Angle Results II

PDFs of $\Delta \xi$ for $t\Omega_e = \{1/10, 1, 10\}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Fokker-Planck Method: Pitch-Angle Results III

PDFs of $\Delta \xi$ for $t\Omega_e = \{1/10, 1, 10\}$

Issues:

..

- < ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Fokker-Planck Method: Pitch-Angle Results IV

 ξ -average

b40: $t\Omega_e = 1$ b40x2: $t\Omega_e = 10$ b40x4 : $t\Omega_e = 10$ b40x(2,4) flat because (?) $\langle \Delta \xi^2 \rangle^{1/2} \sim L_{B_{\xi\xi}} = \left(\frac{\partial \ln B_{\xi\xi}}{\partial \xi}\right)^{-1}$

What is the asymptotic shape of the collision operator?

Quasilinear Method: Results I

◆□ > ◆昼 > ◆臣 > ◆臣 > ○ ● ○ ●

Quasilinear Method: Results II

Sufficiently wide broadening gives large scattering at $v_{\parallel} = 0$.

k18 b40 $D_{s\neq0}(v,\xi)/\Omega_e$, $N = 1 \times 10^{-3}$

k18_b40 $D_{s\neq0}(v,\xi)/\Omega_e$, $N = 1 \times 10^{-2}$

Chapman-Enskog Method: Results I

Two methods to construct f_0 :

- $\blacktriangleright f_0 = \langle f \rangle_{\xi}$
 - Simple pitch-angle average
 - Ensures $\int \mathrm{d} \boldsymbol{w} \boldsymbol{w}^{(0,1,2)} f_1 = 0$
 - v-dependence follows f not guaranteed Maxwellian
- $\blacktriangleright f_0 = f_M$
 - Maxwellian constructed from moments
 - ▶ $\int \mathrm{d} \boldsymbol{w} \, \boldsymbol{w}^{(0,1,2)} f_1 \neq 0$
 - v-dependence guaranteed Maxwellian

・ロト・日本・日本・日本・日本・日本

Chapman-Enskog Method: Results II

 $\langle f \rangle_{\xi}$ follows expected scaling – f_M does not

Our expansion ordering is formally incorrect. Let's say you didn't check and try $f_0 = \langle f \rangle_{\xi}$ anyway. In the limit $v_w \to 0$:

$$D_{\xi\xi}(v,\xi) = -f_0 \frac{1-\xi^2}{2} \left(\frac{v^2}{v_{\text{th,e}}^2} - \frac{5}{2}\right) v \nabla \ln T \left(\frac{\partial f_1}{\partial \xi}\right)^{-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

and velocity dependence of f_0 doesn't matter

Chapman-Enskog Method: Results III

- Messy: 0s in the numerator do not exactly cancel singularities in the denominator
- Hotward-propagating electrons diffuse the most
- Exponential scaling in velocity (?)

Nonsense?

Drake 2021 Model

Pitch-angle scattering in the whistler frame $v_{\parallel}'=v_{\parallel}-v_{w}$

$$C[f] = \frac{\partial}{\partial \xi'} \frac{1 - \xi'^2}{2} \nu_{\rm w}(v') \frac{\partial f}{\partial \xi'}.$$
$$\nu_{\rm w} = 0.1 \Omega_e \left(\frac{\delta B}{B_0}\right)^2 \left(\frac{v}{v_{\rm th,e}}\right)^{4/3}$$

- \triangleright $\nu_{\rm w}$ independent of ξ .
- ▶ 0.1 prefactor estimated from their simulations
- ▶ $v^{4/3}$ dependence comes from $k^{-7/3}$ electron-MHD cascade (Biskamp et a. 1999) and quasilinear argument.

Drake 2021 Model

Pitch-angle scattering in the whistler frame $v_{\parallel}'=v_{\parallel}-v_{w}$

$$C[f] = \frac{\partial}{\partial \xi'} \frac{1 - \xi'^2}{2} \nu_{\rm w}(\mathbf{v}') \frac{\partial f}{\partial \xi'}.$$
$$\nu_{\rm w} = 0.1 \Omega_e \left(\frac{\delta B}{B_0}\right)^2 \left(\frac{\mathbf{v}}{\mathbf{v}_{\rm th,e}}\right)^{4/3}$$

- \triangleright ν_w independent of ξ . NOT true for quasilinear operators nor our FP operator
- ▶ 0.1 prefactor estimated from their simulations
- ▶ $v^{4/3}$ dependence comes from $k^{-7/3}$ electron-MHD cascade (Biskamp et a. 1999) and quasilinear argument. Our FP operator suggests closer to $\sim v$

- 1. We didn't have enough scale separation.
 - We tried to go larger L_T (lower $\delta B/B_0$), but PIC noise suppressed the instability.
 - $\delta B/B_0 \ll 1$ for Gaussian statistics
 - ▶ Presumably there are real collisionless systems where $\delta B/B_0 \ge 1/10$ where this is important

- 1. We didn't have enough scale separation.
 - We tried to go larger L_T (lower $\delta B/B_0$), but PIC noise suppressed the instability.
 - $\delta B/B_0 \ll 1$ for Gaussian statistics
 - ▶ Presumably there are real collisionless systems where $\delta B/B_0 \ge 1/10$ where this is important
- 2. Why does

$$u_{\mathsf{w}}\sim rac{eta_{e} extsf{v}_{\mathsf{th},e}}{L_{\mathcal{T}}}\sim rac{\delta B^{2}}{B_{0}^{2}}|\Omega_{e}|$$

carry deep into large $\delta B/B_0$ where other methods fail?

- Can this be used to build a generic nonlinear diffusion model?
- Refine a resonance broadening model?

- 1. We didn't have enough scale separation.
 - We tried to go larger L_T (lower $\delta B/B_0$), but PIC noise suppressed the instability.
 - $\delta B/B_0 \ll 1$ for Gaussian statistics
 - ▶ Presumably there are real collisionless systems where $\delta B/B_0 \ge 1/10$ where this is important
- 2. Why does

$$u_{\mathsf{w}}\sim rac{eta_{e} extsf{v}_{\mathsf{th},e}}{L_{\mathcal{T}}}\sim rac{\delta B^{2}}{B_{0}^{2}}|\Omega_{e}|$$

carry deep into large $\delta B/B_0$ where other methods fail?

- Can this be used to build a generic nonlinear diffusion model?
- Refine a resonance broadening model?

- 1. We didn't have enough scale separation.
 - We tried to go larger L_T (lower $\delta B/B_0$), but PIC noise suppressed the instability.
 - $\delta B/B_0 \ll 1$ for Gaussian statistics
 - ▶ Presumably there are real collisionless systems where $\delta B/B_0 \ge 1/10$ where this is important
- 2. Why does

$$u_{\mathsf{w}}\sim rac{eta_{e} extsf{v}_{\mathsf{th},e}}{L_{\mathcal{T}}}\sim rac{\delta B^{2}}{B_{0}^{2}}|\Omega_{e}|$$

carry deep into large $\delta B/B_0$ where other methods fail?

- Can this be used to build a generic nonlinear diffusion model?
- Refine a resonance broadening model?
- 3. What is the message here?