Eye of the Tyger: early-time resonances \& singularities in the inviscid Burgers equation

based on arXiv:2207.12416 by CR, Uriel Frisch and Oliver Hahn; submitted to Phys. Rev. Fluids

13th Plasma Kinetics Working Meeting, Wolfgang Pauli Institute

Cornelius Rampf, U Vienna

2nd August 2022

Context and overview (1 of 2)

- Burgers' equation occurs in various areas of applied mathematics, such as fluid mechanics (reduced model for turbulence), gas dynamics, etc.
- In one-space dimension with non-zero viscosity ν, Burgers' equation is

$$
\partial_{t} u+u \nabla_{x} u=\nu \nabla_{x}^{2} u \quad u(x, 0)=u_{0}
$$

- solutions exist
- for $\nu \neq 0$ at all times, obtained from exploiting the Hopf-Cole transformation
- for $\nu \rightarrow \mathbf{0}$ at all times, via convex-hull construction / Legendre transformation
[Hopf '50, Cole '51]
- for $\nu=0$ until the first real singularity (= pre-shock),
through the method of characteristics, a.k.a. Lagrangian coordinates a
- In today's talk, I focus exclusively on the $\boldsymbol{\nu}=\mathbf{0}$ case, and work mostly in Eulerian coordinates \boldsymbol{x}

Context and overview (2 of 2)

1D inviscid Burgers equation $\partial_{t} u+u \nabla_{x} u=0, \quad u(x, 0)=u_{0}$

Why focus "only" on $\nu=0$ and until pre-shock time?

- Numerical simulations (of Burgers, incompressible Euler, Navier-Stokes, ...) very often employ Eulerian coordinates
- Eulerian coordinates are in general not optimal for resolving advection (the term $u \nabla_{x} u$); thus, one may be forced to live with the consequences, such as tygers in Burgers or incompressible Euler
- Many considerations, such as the blow-up problem, require high accuracy in the temporal regime until the first real singularity (if existent)

Outline of today's talk

- we detect so far unknown complex-time singularities in the 1D inviscid Burgers equation
- analysed by two complementary and independent means:

1. asymptotic analysis by means of a Taylor-series representation for the velocity in Eulerian coordinates
2. singularity theory in Lagrangian coordinates (which may be transferred to other fluids)

- for certain implementations, such as for the Taylor-series of u, loss of convergence is accompanied by initially localised resonant behaviour
- these resonances are highly related to the tyger phenomena reported in Galerkin-truncated implementations of inviscid fluids
[e.g. Ray+ '11, Bardos+ '13, Pereira+ '13, Clark Di Leoni+ '18]
- finally, we apply two methods that reduce the amplitude of early-time tygers.

One removes Fourier modes near the Galerkin truncation, the other attempts an iterative UV completion for the Taylor series

Basic setup

- 1D inviscid Burgers equation

$$
\begin{equation*}
\partial_{t} u+u \nabla_{x} u=0, \quad u(x, 0)=u_{0} \tag{1}
\end{equation*}
$$

- one way to investigate the analytic structure is by considering a time-Taylor series representation for the velocity; plug the Ansatz $u=\sum_{n=0}^{\infty} u_{n} t^{n}$ into Burgers' equation and identifying the involved powers in t, one easily finds ($n \geq 0$)

$$
\begin{equation*}
u_{n+1}=\frac{-1}{n+1} \sum_{i+j=n} u_{i} \partial_{x} u_{j} \tag{2}
\end{equation*}
$$

- let's focus first on the simple single-mode model with initial data $u_{0}=-\sin x$. Using (2) one finds

$$
\begin{aligned}
& u_{1}=(-1 / 2) \sin (2 x) \\
& u_{2}=(1 / 8)[\sin x-3 \sin (3 x)] \\
& u_{3}=1 / 6[\sin (2 x)-2 \sin (4 x)] \\
& \vdots \\
& u_{N}=\cdots+c_{N} \sin [(N+1) x] \\
& \text { coefficient }
\end{aligned}
$$

In Fourier space, the N th-order
time-Taylor coefficient has maximum Fourier mode $k= \pm(N+1)$ and thus, u_{N} is band limited.
Such truncations play an important role for triggering tygers

And here are some tygers

(see next slides for asymptotic analysis)

shown results for Taylor-truncated velocity $\mathrm{P}_{N} u:=\sum_{n=0}^{N} u_{n} t^{n}$ with initial data $u_{0}=-\sin x$,
for which pre-shock occurs at $t=1$

$$
\left.\partial_{x} u\right|_{x=0} \rightarrow \infty
$$

Loss of convergence at seemingly boring locations, and at times well before the pre-shock.

These tyger resonances occur at much earlier times than those observed in Galerkin-truncated implementations. (but origin is the same: non-analyticity; see later)
truncated velocity $\mathrm{P}_{N} u$

exact solution obtained in Lagrangian coordinates

Asymptotic analysis of the time-Taylor series

- initial attempt (too naive but constructive): determine the radius of convergence R of the series $u=\sum_{n=0}^{\infty} u_{n}(t-0)^{n}$ by numerical extrapolation of the ratio test $\frac{1}{R}=\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n-1}} \quad$ (if the limit exists)
- Domb \& Sykes (1957) suggest to draw subsequent ratios of u_{n} / u_{n-1} against $1 / n$. For many problems, these ratios settle into a regular behaviour for $n \gg 1$, thereby allowing (linear) extrapolation to $1 / n=0$ (i.e., $n \rightarrow \infty$)
disc of convergence:

Asymptotic analysis of the time-Taylor series

- initial attempt (too naive but constructive): determine the radius of convergence R of the series $u=\sum_{n=0}^{\infty} u_{n} t^{n}$ by numerical extrapolation of the ratio test $\frac{1}{R}=\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n-1}} \quad$ (if the limit exists)
- Domb \& Sykes (1957) suggest to draw subsequent ratios of u_{n} / u_{n-1} against $1 / n$. For many problems, these ratios settle into a regular behaviour for $n \gg 1$, thereby allowing (linear) extrapolation to $1 / n=0$ (i.e., $n \rightarrow \infty$)
- toy example: consider the unrelated problem $f(t)=1 /(1-t)^{2}$
and its time-Taylor series around $t=0$:

$$
f(t)=\sum_{n=0}^{\infty} f_{n} t^{n} \text { with } f_{n}=n+1
$$

Asymptotic analysis of the time-Taylor series

- for the present problem, the Domb-Sykes (DS) is however not suitable as the ratio u_{n} / u_{n-1} can swap sign. Thus, the limit in the ratio test does not exist, i.e., $\lim _{n \rightarrow \infty} u_{n} / u_{n-1} \neq 1 / R$
- sign swap since the convergence-limiting singularity(ies) are at complex location(s)
- Mercer \& Roberts (1990) have generalised the DS method to allow for a pair complex singularity (applied to Poisseuille flow), for which the asymptotic behaviour of u is modelled by

$$
\mathfrak{u}(t)=\left(1-\frac{t}{t_{\star}}\right)^{\nu}+\left(1-\frac{t}{\bar{t}_{\star}}\right)^{\nu}, \quad t_{\star}:=R \mathrm{e}^{\mathrm{i} \theta}
$$

ν..... singularity exponent
$t_{\star} \ldots .$. complex-time location of singularity
in generally x-dependent!

- By considering the Taylor expansion of the model function, one finds
[Mercer \& Roberts 1990]

$$
\begin{aligned}
& B_{n}^{2}=\frac{u_{n+1} u_{n-1}-u_{n}^{2}}{u_{n} u_{n-2}-u_{n-1}^{2}}, \quad n \rightarrow \infty B_{n}= \\
& \frac{1}{R}\left(1-(\nu+1) \frac{1}{n}\right) \\
& \times\left[1+\frac{\nu+1}{2} \frac{\sin (2 n-1) \theta}{\sin \theta} \frac{1}{n^{2}}+O\left(n^{-3}\right)\right]
\end{aligned}
$$

\ldots and a similar estimator for the phase θ. Thus, all unknowns in model function can be obtained by graphical extrapolation (see next)

Mercer-Roberts extrapolation at three exemplary points \boldsymbol{x}

only input needed: the time-Taylor coefficients u_{n} to sufficient high order (here up to $N=70$)

$$
\begin{aligned}
& B_{n}^{2}=\frac{u_{n+1} u_{n-1}-u_{n}^{2}}{u_{n} u_{n-2}-u_{n-1}^{2}}, \quad n \rightarrow \infty B_{n}= \\
& \frac{1}{R}\left(1-(\nu+1) \frac{1}{n}\right) \\
& \times\left[1+\frac{\nu+1}{2} \frac{\sin (2 n-1) \theta}{\sin \theta} \frac{1}{n^{2}}+O\left(n^{-3}\right)\right]
\end{aligned}
$$

Mercer-Roberts (MR) extrapolation over whole space

of course, same analysis can be done for multi-mode initial data; see CR+' 22

Lagrangian singularity theory in a nutshell (1 of 2)

[CR, Frisch \& Hahn '22]

- Introduce direct Lagrangian map $a \mapsto x$ from initial position a at time $t=0$, to current position x at time t, defined through characteristic equation $u(x(a, t), t)=\dot{x}(a, t)$ where the dot denotes Lagrangian (total) time derivative
- Inviscid Burgers' equation becomes $\ddot{x}=0$ which has well-known pre-shock solution $x(a, t)=a+t u_{0}(a)$
- Pre-shock occurs at real time $t=t_{\star}$ when Jacobian determinant $J:=\partial_{a} x$ vanishes
- Now we complexify both time and space, and search for complex Lagrangian locations $\mathfrak{a}_{ \pm}$ for which $J=0$
e.g. for the case $t=|t|$ (i.e., for vanishing phase):

Lagrangian singularity theory in a nutshell (2 of 2)

- Necessary condition for the complex Lagrangian roots of $J=0$ to become relevant at the real-valued Eulerian position: the imaginary part of $x\left(\mathfrak{a}_{ \pm}\right)$has to vanish!

complex current location of pre-shock singularity

Two ways to suppress the growth of tygers

Tyger purging (an adapted technique of Murugan+ '20)

[CR, Frisch \& Hahn '22]

- main idea, remove Fourier modes below the (Galerkin/Taylor) truncation

- integrated error $\sigma\left(t, K_{\mathrm{P}}\right):=\int_{-\pi}^{+\pi}\left[\mathrm{P}_{K_{\mathrm{P}}} v(x(a, t), t)-u_{0}(a)\right]^{2} \mathrm{~d} a$

Tyger purging (an adopted technique of Murugan+ '20)

[CR, Frisch \& Hahn '22]

- works also well for multi-mode initial conditions, e.g. for $u_{0}=-\sin x-4 \cos (2 x)$:

Finally, the "opposite" idea: iterative UV completion

Iterative UV completion

[CR, Frisch \& Hahn '22]

- basic idea: add efficiently Fourier modes instead of discarding modes, as in purging
- integrating Burgers equation $\partial_{t} u=-(1 / 2) \partial_{x} u^{2}$ in time, one obtains in the smooth case

$$
u=u_{0}-\frac{1}{2} \partial_{x} \int_{0}^{t} u^{2}(\tau) \mathrm{d} \tau
$$

- Now let's approximate on the RHS $u^{2}=\left(\mathrm{P}_{N} u\right)^{2}$ where $\mathrm{P}_{N} u=\sum_{n=0}^{N} u_{n} t^{n}$
- the resulting approximation on the velocity is called $v_{\{1\}}$ and is governed by

$$
v_{\{1\}}=v_{0}-\frac{1}{2} \partial_{x} \int_{0}^{t}\left[\mathrm{P}_{N} u(\tau)\right]^{2} \mathrm{~d} \tau, \quad v_{0}=u_{0}
$$

- perform an iterative bootstrapping (à la Duhamel's principle)

$$
v_{\{2\}}=v_{0}-\frac{1}{2} \partial_{x} \int_{0}^{t} v_{\{1\}}^{2}(\tau) \mathrm{d} \tau
$$

[^0]
Iterative UV completion

$$
\text { recall } \quad \mathrm{P}_{N} u:=\sum_{n=0}^{N} u_{n} t^{n}
$$

4th iteration in the bootstrapping, with $\mathbb{P}_{20} u$ as input
bootstrapping reduces the tyger amplitude once convergence is lost (here: $t>0.66$)

Iterative UV completion

violation on energy conservation, once convergence of the Taylor series is lost

$$
\delta E(\mathcal{U}):=\frac{2}{\pi} \int_{-\pi}^{+\pi} \frac{\mathcal{U}^{2}(x, t)}{2} \mathrm{~d} x-1
$$

$$
\mathcal{U}=\mathrm{P}_{70} u, \mathrm{P}_{20} u, v_{\{1\}}, \ldots
$$

$\delta E(\mathcal{U})$ is exactly zero if energy is conserved

Time	$\delta E\left(\mathrm{P}_{70} u\right)$	$\delta E\left(\mathrm{P}_{20} u\right)$	$\delta E\left(v_{\{1\}}\right)$	$\delta E\left(v_{\{2\}}\right)$	$\delta E\left(v_{\{3\}}\right)$	$\delta E\left(v_{\{4\}}\right)$
0.70	$6.14 \mathrm{e}-4$	$2.03 \mathrm{e}-4$	$5.52 \mathrm{e}-5$	$1.49 \mathrm{e}-5$	$4.06 \mathrm{e}-6$	$1.10 \mathrm{e}-6$
0.75	$8.93 \mathrm{e}+0$	$3.00 \mathrm{e}-3$	$9.09 \mathrm{e}-4$	$2.77 \mathrm{e}-4$	$8.56 \mathrm{e}-5$	$2.65 \mathrm{e}-5$
0.80	$6.97 \mathrm{e}+4$	$3.70 \mathrm{e}-2$	$1.25 \mathrm{e}-2$	$4.26 \mathrm{e}-3$	$1.47 \mathrm{e}-3$	$5.12 \mathrm{e}-4$
0.85	$3.14 \mathrm{e}+8$	$3.90 \mathrm{e}-1$	$1.56 \mathrm{e}-1$	$6.09 \mathrm{e}-2$	$2.15 \mathrm{e}-2$	$8.24 \mathrm{e}-3$

energy conservation iteratively restored via bootstrapping

Conclusions \& Outlook

- main cause for early-time tygers to appear: non-analyticity

```
[cf. Bardos & Tadmor '13 on the "old" tygers in (pseudo)-spectral methods]
```


- Lagrangian singularity theory in complex space and time:
origin of the singular landscape is the pre-shock, which is in Lagrangian coordinates a localised complex-time singularity
- both tyger purging or iterative UV completion work well for taming tygers
- precise mechanism of UV completion not yet understood; also, is there a resummation of the iterative method? (cf. Dyson series)
- UV completion for sub-grid scale modelling in general fluids?

Method does not require specifically Taylor-series input; also weak formulations of the method may be feasible

- Apply methods to other fluids, such as incompressible Euler, cosmological Euler-Poisson, etc.

Backup slide 1

Backup slide 2

uescrioen oy a meory mat at its neart empioys me metnou on characteristics (see section IV for the theory applied to multimode initial conditions).

For this we employ the direct Lagrangian map $a \mapsto x$ from initial $(t=0)$ position a to the current/Eulerian position x at time t. The velocity is defined through the characteristic equation $u(x(a, t), a)=\dot{x}(a, t)$, where the overdot denotes the Lagrangian (convective) time derivative. Employing Lagrangian coordinates, the inviscid Burgers equation (1) reduces to $\ddot{x}(a, t)=0$, which has the well-known solution

$$
\begin{equation*}
x(a, t)=a+t u_{0}(a)=a-t \sin a \tag{15}
\end{equation*}
$$

(see e.g. [2, 18]). The Jacobian of the transformation

$$
\begin{equation*}
J(a, t):=\frac{\partial x}{\partial a}=1-t \cos a \tag{16}
\end{equation*}
$$

vanishes at pre-shock time $t=t_{\star}=1$ at location $a=a_{\star}=$ $0=x_{\star}$ (modulo 2π-periodic repetitions).

In section II B we have seen that singularities appear in Eulerian space at times well before $t_{\star}=1$. To assess this scenario within the present description, we must allow the fluid variables to also take complex values. Thus, we complexify the Lagrangian and Eulerian locations and denote them respectively with \mathfrak{a} and $\mathcal{\chi}$. Additionally, as in section II B, we employ the complexified time denoted with t.

Now, let us consider complex times t with $|t| \leq t_{\star}=1$, and search for the complex Lagrangian roots, dubbed $\mathfrak{a}_{ \pm}$, for which the Jacobian of the Lagrangian map vanishes, i.e.,

$$
\begin{equation*}
\mathfrak{a}=\mathfrak{a}_{ \pm}: \quad \mathcal{J}=\frac{\partial \chi}{\partial \mathfrak{a}}=0 \tag{17}
\end{equation*}
$$

One easily finds the two exact roots

$$
\begin{equation*}
\mathfrak{a}_{ \pm}= \pm \arccos \left(\frac{1}{t}\right) \tag{18}
\end{equation*}
$$

which imply the current/Eulerian locations

$$
\begin{equation*}
\chi\left(\mathfrak{a}=\mathfrak{a}_{ \pm}, t\right)= \pm\left[\arccos \left(\frac{1}{t}\right)-t \sqrt{1-\frac{1}{t^{2}}}\right] \tag{19}
\end{equation*}
$$

In the upper panel of Fig. 4, we show the evolution of the complex roots as a function of $t=|t|$. For $t=|t|<1$, these roots are purely imaginary, but if t is not aligned along the real time axis, the roots are in general complex (not shown). Could these complex roots of $\mathcal{J}=0$, evaluated at complex locations in time and space, lead to singularities in Eulerian coordinates before the pre-shock?
To address this question, we show in the lower panel of Fig. 4 the evolution of $\pm \operatorname{Im}\left(\chi\left(\mathfrak{a}_{ \pm}, t\right)\right)$ as a function of $|t|$ for

$$
t=t_{\star}: \quad \operatorname{Im}\left[\arccos \left(\frac{1}{t_{\star}}\right)-t_{\star} \sqrt{1-\frac{1}{t_{\star}^{2}}}\right]=0
$$

Backup slide 3

Here we apply the Lagrangian singularity theory of section IIC to the two-mode initial data (32); the generalization to the multi-mode case is straightforward and discussed at the end of the section. Employing the direct Lagrangian map $a \mapsto x$, one finds

$$
\begin{equation*}
x(a, t)=a-t[\sin a+4 \cos (2 a)], \tag{34}
\end{equation*}
$$

which implies the Jacobian determinant

$$
\begin{equation*}
J(a, t)=1+t[8 \sin (2 a)-\cos a] . \tag{35}
\end{equation*}
$$

Physically, the most relevant singularity is the one that is closest to the origin in time (for a Taylor expansion around $t=0$, this is the singularity that sets the radius of convergence). Thus, within a two-step process, we first define the critical times $t_{\star 1,2,3,4}$ corresponding to the roots $\mathfrak{a}_{1,2,3,4}$, for which

$$
\begin{equation*}
t=t_{\star i}: \quad \operatorname{Im}\left[\mathcal{X}\left(\mathfrak{a}=\mathfrak{a}_{i}, t=t_{\star}\right]=0\right. \tag{38a}
\end{equation*}
$$

is satisfied. Then, as a second and final step, we select

$$
\begin{equation*}
R:=\inf \left\{\left|t_{\star 1}\right|,\left|t_{\star 2}\right|,\left|t_{\star 3}\right|,\left|t_{\star 4}\right|\right\}, \tag{38b}
\end{equation*}
$$

which is the physically relevant radius of convergence R for fixed phase $\Theta=\theta$. This methodology is not only valid for the

[^0]: ... and so on. At each iteration, and for single- or multi-mode ICs, number of non-zero Fourier modes is roughly doubled

