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Cornelius Rampf (U. Vienna)

Context and overview (1 of 2)

* Burgers’ equation occurs in various areas of applied mathematics, such as
fluid mechanics (reduced model for turbulence), gas dynamics, etc.

e |n one-space dimension with non-zero viscosity v, Burgers’ equation is

ou—+uV u=vViu u(x,0) = u,

e solutions exist
- for v # () at all times, obtained from exploiting the Hopf-Cole transformation

- for v — () at all times, via convex-hull construction / Legendre transformation
- for v = () until the first real singularity (= pre-shock),
through the method of characteristics, a.k.a. Lagrangian coordinates a

» In today’s talk, | focus exclusively on the v = () case, and work mostly in Eulerian coordinates x
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Context and overview (2 of 2)

Why focus “only” on v = 0 and until pre-shock time ?

 Numerical simulations (of Burgers, incompressible Euler, Navier-Stokes, ...)
very often employ Eulerian coordinates

« Eulerian coordinates are in general not optimal for resolving advection (the term u V , u);
thus, one may be forced to live with the consequences, such as tygers in Burgers or incompressible Euler

 Many considerations, such as the blow-up problem, require high accuracy in the temporal regime
until the first real singularity (if existent)
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Outline of today’s talk

* we detect so far unknown complex-time singularities in the 1D inviscid Burgers equation

e analysed by two complementary and independent means:
1. asymptotic analysis by means of a Taylor-series representation for the velocity in Eulerian coordinates

2. singularity theory in Lagrangian coordinates (which may be transferred to other fluids)

« for certain implementations, such as for the Taylor-series of u,
loss of convergence is accompanied by initially localised resonant behaviour

* these resonances are highly related to the tyger phenomena reported in Galerkin-truncated implementations
of inviscid fluids

o finally, we apply two methods that reduce the amplitude of early-time tygers.
One removes Fourier modes near the Galerkin truncation, the other attempts an iterative UV completion for the Taylor series
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Basic setup

* 1D inviscid Burgers equation ou+uV u=0, u(x,0) = u, (1)

* one way to investigate the analytic structure is by considering a time-Taylor series representation for the velocity;

o0
plug the Ansatz u = Z u, 1" into Burgers’ equation and identifying the involved powers in ¢, one easily finds (n > 0)
n=0
—1 5
Upr1 = o] Z U; O, lU; (2)
I+]=n
» let’s focus first on the simple single-mode model with initial data u, = — sin x. Using (2) one finds
u; = (—1/2) sin(2x)
u, = (1/8)[sin x — 3 sin(3x)] In Fourier space, the Nth-order
iy = 1/6[sin(2x) — 2 sin(4x)] * time-Taylor coefficient has maximum Fourier mode k = = (N + 1)
. and thus, u,, is band limited.
Uy = -« + ¢y sin[(N + 1)x] Such truncations play an important role for triggering tygers

N\

coefficient 5
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And here are some tygers

(see next slides for asymptotic analysis) truncated velocity Py
of —~_ | 1=0.60:
N 0.5}
shown results for Taylor-truncated velocity Pyu := Z u, t" 0.0f
[ N=0 ] exact solution obtained in
_ o . n=0 —0.5:- N=1 Lagrangian coordinates
with initial data 1, = — sin x, - N =170 -
—10F == exact
for which pre-shock occurs at t = 1 ol o | (=070
* ot
o.ofv
axu |x=0 — &0 —05-
_1of
‘” Il nyl =075
Loss of convergence at seemingly boring locations, 0'5; | ’ l
and at times well before the pre-shock. 00| ‘ -- IH
—0.5- '
These tyger resonances occur at much earlier times than | (it |
. . . . N It
those observed in Galerkin-truncated implementations. B S — - vyl l ......
(but origin is the same: non-analyticity; see later) 3 2 -1 o0 1 2 3
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Asymptotic analysis of the time-Taylor series

o0
e initial attempt (too naive but constructive): determine the radius of convergence R of the series u = Z u, (r—0)"

n=0
1 , u
by numerical extrapolation of the ratio test — = Iim « (if the limit exists)
R n—oo U, 1

e Domb & Sykes (1957) suggest to draw subsequent ratios of u,/u, _ against 1/n.
For many problems, these ratios settle into a regular behaviour for n > 1,
thereby allowing (linear) extrapolationto 1/n = 0 (i.e., n = 00)

Im(?)

disc of convergence: <

Re(?)
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Asymptotic analysis of the time-Taylor series

o0
e jnitial attempt (too naive but constructive): determine the radius of convergence R of the series u = Z u, 1"

n=0
1 , u
by numerical extrapolation of the ratio test — = Iim < (if the limit exists)
R n—oo U, 1

e Domb & Sykes (1957) suggest to draw subsequent ratios of u,/u, _ against 1/n.
For many problems, these ratios settle into a regular behaviour for n > 1,
thereby allowing (linear) extrapolationto 1/n = 0 (i.e., n = 00)

1.20}

e toy example: consider the unrelated problem 1155_
f) = 1/(1 =1 ol
and its time-Taylor series around =0 : O
% 1.05}
—_— n 1 _— [
f(t)_ant with £ = n+ 1 1 0]
n=0 [
0.95}

0800 0.05 0.10 0.15 0.20

1/n 8
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Asymptotic analysis of the time-Taylor series

- for the present problem, the Domb-Sykes (DS) is however not suitable as the ratio u,/u, _; can swap sign.

Thus, the limit in the ratio test does not exist, i.e., Iim u,/u, ; # 1/R
n— oo

e sign swap since the convergence-limiting singularity(ies) are at complex location(s)

 Mercer & Roberts (1990) have generalised the DS method to allow for a pair complex singularity (applied to Poisseuille flow),
for which the asymptotic behaviour of i/ is modelled by

| t\" | t\" ” U ..... singularity exponent
u(t) = | 1 - —) + (1 — ——> ,  t, = Re". | | | | iIn generally x-dependent!
x L, ty ... complex-time location of singularity

* By considering the Taylor expansion of the model function, one finds

B2 _ Up 1 Up—1 — u,“), n— oo B, = 1 (1 — (v + 1)l>

n 5 ; N
UpUp—-2 — U, 4 # R n

(D 1
« 11 4 v+ 1sin(2n — 1)0

2 sin @ n2

... and a similar estimator for the phase 6. Thus, all unknowns in model function can be obtained by graphical extrapolation (see next)
9
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Mercer-Roberts extrapolation at three exemplary points x

Ll ] L] L] L] I Ll Ll Ll "[ Ll Ll L) I Ll

] L} L) L) ] L L) L ] L) L]

15] [CR, Frisch & Hahn '22] -

14f

1.3 only input needed: the time-Taylor coefficients u,,
to sufficient high order (here up to N = 70)

12}

1.1}

10f
000 002 004 006 008 010 012 0.14
1/n
2 Up+41Un—1 — ?1'2 n— oo 1 1
B,”: ' ' 5 L B'n:E 1_(V+1)_
C UpUp—9 — U q L

v+1sin(2n—1)0 1 ~_3
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Mercer-Roberts (MR) extrapolation over whole space

vV vV
CR, Frisch & Hahn 22 t t :
[ rSC ann ] U(t) — (1 - _) + (1 - __) ’ t* C— Re‘e.
—Tr—Tr —Tr—Tr —Tr—Tr —Tr—Tr —r—r— —r—r— - * t*
1.0_] LUNN S S B RN SR S T T T T T T T
- [agrangian theory - = = MR extrapolation

= | _agrangian theory

OR:

= = = MR extrapolation

A(x)

[ ] 10, . . s 2 . . « 2 2
T N -1.0 -0.5 00 0.5 1.0

X Re(t,)

of course, same analysis can be done for multi-mode initial data; see CR+ ‘22 iy
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Lagrangian singularity theory in a nutshell (1 of 2)

» Introduce direct Lagrangian map a — x from initial position a at time ¢ = 0, to current position x at time ¢,

defined through characteristic equation u(x(a, t), t) = Xx(a, t) where the dot denotes Lagrangian (total) time derivative

» Inviscid Burgers’ equation becomes X = () which has well-known pre-shock solution x(a, 1) = a + t uy(a)

» Pre-shock occurs at real time ¢ = ¢, when Jacobian determinant J := d_x vanishes

* Now we complexify both time and space, and

search for complex Lagrangian locations a

for which J =0

e.g. for the case t =|¢|

(i.e., for vanishing phase) :

single-mode case for which pre-shockis atr = 1

a.(|¢)

.....................
—  Im(a_)
a,

- - = Re(a,)

..................

12



Lagrangian singularity theory in a nutshell (2 of 2)

» Necessary condition for the complex Lagrangian roots of J = 0

to become relevant at the real-valued Eulerian position:

the imaginary part of x(a, ) has to vanish!

0.0

-0.5}

1

0.0

(0.2

Im[x(a.)]

complex current location of pre-shock singularity

-0.1

-0.2

£| = 0.66

Cornelius Rampf (U. Vienna)
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color hue is phase ® of complex time
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Re[x(a.)]



Two ways to suppress the growth of tygers
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Tyger purging (an adapted technique of Murugan+ ’20)

[CR, Frisch & Hahn ’22]

 main idea, remove Fourier modes below the (Galerkin/Taylor) truncation

o define v :=Pyu = > iy, ek and purging operator P, ()
k=0,41,42,...,£(N+1) '
S
=: K removes Fourier modes for Kp < |k

—+7T
 integrated error o(t, Kp) ::/ Pr.v(x(a,t),t)

— 7T
2R A BN I BN S S BN BN S BN NN EEL NN B T T T T —rrrTrT T T T T T T T T T T
; ......00000000002: 1 OF -
- ...?... . ] R— t=0.4, KP =48 .
- .0 - -.,.
105 ; o... 1 : \
: . : : 05t \ e [ =0.7, Kp =42
. ’gggm‘mm.o““m o : . - \
: * DDDDUDDD “........ - DDDDDDDDDDDDDDDDD‘ .
—~ 10_5 - .’0’ DDDDDDDDDD Jan"" . | — =O9, Kp =34
o . 0.. DDDDDDDDDD DDD : s < -~
X z o i S 00
ol [ %o, - - - -y ~
Q 10—15 o ’0.. ) . s ..
. ® .
[ | : -
coee 1 =04 e, | 3 ”o-‘ e o o o exact
- - .
. ’0” N e : ] -05F
10—_5 " EEER — 0 ] ’.. . . -
0.. . . s
*s . ! —
eeoee [ — 0 9 ””MW{ s KG 70
10_35 - 1 1 ] ] PR PP 1 _1°O; . . .
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Tyger purging (an adopted technique of Murugan+ '20)

» works also well for multi-mode initial conditions, e.g. for uy = — sin x — 4 cos(2x):

10| -

r=0.81, ~0.092 -

2
RS,
S 0
O
>
r— onlxl
-5 | P401/l -
— P40u, Kp=39 ]
_10-_ = = = cxact |
-3 -2 —1 0 | 2 3
X

16



Finally, the “opposite” idea: iterative UV completion
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Iterative UV completion

* basic idea: add efficiently Fourier modes instead of discarding modes, as in purging

» integrating Burgers equation d.u = — (1/2)6xu2 in time, one obtains in the smooth case

| t
u:uo—§8x/ w? (1) dr
0
N

. Now let's approximate on the RHS u* = (Pyu)* where Pyu = Z u, "
n=0

* the resulting approximation on the velocity is called v;yand is governed by
1 t ,
7}{1} — 7}0 — §6x [PNU(T)] d7-’ 7}0 = UqQ . note: depends on truncation order N
0
e perform an iterative bootstrapping (a la Duhamel's principle)

t
1 o | .
_ T 2 ... and so on. At each iteration, and for single- or multi-mode ICs,
7}{2} = 9 Oy 7}{1} (T) dr number of non-zero Fourier modes is roughly doubled
0

18
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Iterative UV completion single-mode case \

.« — n
recall Pyu := Z u,!t

n=0
1.0}  —070 - ~ - 4th iteration in the bootstrapping, with I’,, i as input
_ P20 u T

0.5] — Pu_A -
> — Y '
§ 0.0 = = = exact
P
>

\_ J

—05F

_10k i * bootstrapping reduces the tyger amplitude
0.06F : once convergence is lost (here: ¢t > (0.66)

0.04}
002}
0.004
_0.02f
_0.04}
_0.06}

difference

[CR, Frisch & Hahn '22] X 19



Iterative UV Completion single-mode case

violation on energy conservation, once convergence of the Taylor series is lost

% +7 742
SE(U) = —/ UL 4y
T 2

—Tr

0E(U) is exactly zero if energy is conserved

Time

(5E(P7Ou) 5E(P20u) 5E(7/{1}) 5E(7/{2}) (SE(TJ{P)}) (5E(71{4})

0.70
0.75
0.80
0.85

6.14e-4 2.03e-4 5.52¢-5 1.49e-5 4.06e-6 1.10e-6
8.93e+0 3.00e-3 9.09e-4 2.77e-4 8.56e-5 2.65e-5
6.97e+4 3.70e-2 1.25e¢-2 4.26e-3 1.47e-3 5.12¢-4
3.14e+8 3.90e-1 1.56e-1 6.09e-2 2.15e-2 8.24e-3

[CR, Frisch & Hahn '22]

* energy conservation iteratively restored via bootstrapping

Cornelius Rampf (U. Vienna)

N
.« — n
recall Pyu := Z u,!t

20
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Conclusions & Outlook

05¢F

0.0

Im(z,)

* main cause for early-time tygers to appear: non-analyticity

[cf. Bardos & Tadmor '13 on the “old” tygers in (pseudo)-spectral methods] _O_Si

-10k . . . =

e | agrangian singularity theory in complex space and time:
origin of the singular landscape is the pre-shock, which is in Lagrangian coordinates a localised complex-time singularity

* both tyger purging or iterative UV completion work well for taming tygers

» precise mechanism of UV completion not yet understood; also, is there a resummation of the iterative method? (cf. Dyson series)

* UV completion for sub-grid scale modelling in general fluids?
Method does not require specifically Taylor-series input; also weak formulations of the method may be feasible

* Apply methods to other fluids, such as incompressible Euler, cosmological Euler-Poisson, etc.

Cornelius Rampf (U. Vienna) see arXiv:2207.12416 for more details 21



Backup slide 1

10k

t=0.87, ~ 0.092

velocity
-
e
SN
e
—
—————

: — Pyu
= Pyou
| = P, Kp=39
_10-_ = = = ¢cXact
2 EE Y

Cornelius Rampf (U. Vienna)

R(x)

A (x)

0.14}
0.12¢
0.10¢
0.08}
0.06}

3.0F
2.5F
2.0F

05t
00!
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acsCriocd DY da UICOLy uldl at IS Nncdit Ciploys uic 1mcuiod ol
characteristics (see section IV for the theory applied to multi-
mode 1nitial conditions).

For this we employ the direct Lagrangian map a — x from
initial (¢ = 0) position a to the current/Eulerian position x
at time t. The velocity 1s defined through the characteris-
tic equation u(z(a,t),a) = x(a,t), where the overdot de-
notes the Lagrangian (convective) time derivative. Employing
Lagrangian coordinates, the inviscid Burgers equation (1) re-
duces to Z(a,t) = 0, which has the well-known solution

z(a,t) = a+ tup(a) = a —tsina (15)

(see e.g. [2, 18]). The Jacobian of the transformation

J(a,t) :=g—z=1—tcosa (16)
vanishes at pre-shock time ¢ = t, = 1 at location a = a, =
0 = x, (modulo 27-periodic repetitions).

In section II B we have seen that singularities appear in Eu-
lerian space at times well before £, = 1. To assess this sce-
nario within the present description, we must allow the fluid
variables to also take complex values. Thus, we complexify
the Lagrangian and Eulerian locations and denote them re-
spectively with a and x. Additionally, as in section II B, we
employ the complexified time denoted with £.

Cornelius Rampf (U. Vienna)

Now, let us consider complex times £ with [t| < ¢, = 1,
and search for the complex Lagrangian roots, dubbed a, for
which the Jacobian of the Lagrangian map vanishes, 1.e.,

9
a=ay: j:a—fzo. (17)

One easily finds the two exact roots
1
a4+ = ® arccos (Z) : (18)

which imply the current/Eulerian locations

1 1
X(a=as,t) ==+ |arccos (Z>—t\/1—t—2 . (19)

In the upper panel of Fig. 4, we show the evolution of the com-
plex roots as a function of ¢ = |t|. For t = [t| < 1, these
roots are purely imaginary, but if £ is not aligned along the
real time axis, the roots are in general complex (not shown).
Could these complex roots of 7 = 0, evaluated at complex
locations in time and space, lead to singularities in Eulerian
coordinates before the pre-shock?

To address this question, we show in the lower panel of
Fig. 4 the evolution of +£Im (X (a4, t)) as a function of |¢| for

—

t=1¢t,: Iml|arccos| — | —t,

23



Backup slide 3

Here we apply the Lagrangian singularity theory of sec-
tion IIC to the two-mode 1nitial data (32); the generaliza-
tion to the multi-mode case 1s straightforward and discussed at
the end of the section. Employing the direct Lagrangian map
a — x, one finds

z(a,t) = a—t[sina + 4 cos(2a)]| , (34)
which implies the Jacobian determinant

J(a,t) =1+ t|8sin(2a) — cosal . (35)

Physically, the most relevant singularity 1s the one that 1s
closest to the origin in time (for a Taylor expansion around
t =0, this 1s the singularity that sets the radius of conver-
gence). Thus, within a two-step process, we first define the

critical times £, 2 3 4 corresponding to the roots a; 2 3 4, for
which

t=1t,;: Im [?((a: i, t:t*i] =0 (38a)

1s satisfied. Then, as a second and final step, we select

R = inf{lt*ll,lt*gl, t*3|,|t*4|} ) (38b)

which 1s the physically relevant radius of convergence R for
Cornelius Rampf (U. Vv fixed phase © = ¢. This methodology is not only valid for the

Im(x (a,t)) Im (a;(|t)))

Im( ?C(a,-, t))

10}

0.5

10}

-

-
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