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Coburn, Chen, Squire, ’22:

Verscharen, Chen, Wicks, ’17:

Measured eigenmode relationships suggest most compressive modes   
    are MHD-like as opposed to kinetic
→

Matched fluctuations from SW to linear KMHD with Krook collisions,    
    finding  for protons
→

λmfp,eff (measured) ∼ 10−3λmfp,coll (calculated)

Some motivation…

Density, pressure, and B fluctuations measured by WIND spacecraft at 1 AU



Shear Alfvén waves:

 oscillation generates  δB Δ ( = p⊥/p∥ − 1)

Mirror ( ) and firehose ( ) instabilitiesΔβ > 1 Δβ < − 2

*Squire et al 
2017, PRL Pitch-angle scattering, 

Braginskii-like 
behavior

𝛿B rapidly decays until below 
instability thresholds
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Collisionless waves conserve adiabatic invariants ( )μ, J

Shear Alfvén waves:

 oscillation generates  δB Δ ( = p⊥/p∥ − 1) 𝛿n oscillation generates  Δ

Ion acoustic waves:

Mirror ( ) and firehose ( ) instabilitiesΔβ > 1 Δβ < − 2

*Squire et al 
2017, PRL

*Kunz et al 
2020, JPPPitch-angle scattering, 

Braginskii-like 
behavior

𝛿B rapidly decays until below 
instability thresholds

Landau damping 
interrupted, wave 

propagates undamped



Non-propagating (NP) modes:

 oscillation generates  δB, δn Δ

Fast modes:

 pressure near balances  δB δp⊥,i → Δ



Non-propagating (NP) modes:

 pressure near balances  δB δp⊥,i → Δ  oscillation generates  δB, δn Δ

Fast modes:

Kinetic microinstabilities, pitch-angle scattering

?



Non-propagating modes



Linear/Nonlinear behavior:

𝛿B and 𝛿n perturbations,
Non-propagating,

Transit time damping flattens 
distribution near (nonlinear 

plateau) after 

Plateau eliminates ,
reduces decay rate to ~ 0

ω ≈ − ik∥vth,i /β π

ω/k∥
∼ Ω−1

b

∂f /∂v∥

δt ∼ Ω−1
b ≐ (k∥vth,i

δB||

4B0 )
−1

 when Ωb = γNP δB|| ∼ β−2
i



Hybrid-kinetic simulations: Pegasus++

β = 16, k⊥/k∥ = 4, λ∥ = 1000ρi

(perturbation at the box wavenumber vs 

time, with dotted bounce times)
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Linear/Nonlinear behavior:

𝛿B and 𝛿n perturbations,
Non-propagating,

Transit time damping flattens 
distribution near (nonlinear 

plateau) after 

Plateau eliminates ,
reduces decay rate to ~ 0

ω ≈ − ik∥vth,i /β π

ω/k∥
∼ Ω−1

b

∂f /∂v∥

Hybrid-kinetic simulations: Pegasus++

β = 16, k⊥/k∥ = 4, λ∥ = 1000ρi

(perturbation at the box wavenumber vs 

time, with dotted bounce times)

Amplitude dependence?



Perpendicular pressure balanced form of polarization: 

Mirror unstable regions coincide with resonant particle locations

Δ ∝ δn ∝ − δB|| Δ ∝ δβ

β ∝ (B0 − δB||)−2



Simulation parameters:

β = 16, k⊥/k∥ = 4, λ∥ = 2000ρi, δB|| = 0.8B0

Mirror instabilityHigh positive anisotropy Kinked field lines/scattering



ν
k||vth,i

∼ λ|| → ν ∼ constant

Simulation parameters:

β = 16, k⊥/k∥ = 4, λ∥ = 2000ρi, δB|| = 0.8B0

Mirror instabilityHigh positive anisotropy Kinked field lines/scattering



*For the familiar:  this anisotropy is not 

being driven, there’s no source of shear*

Simulation parameters:

β = 16, k⊥/k∥ = 4, λ∥ = 2000ρi, δB|| = 0.8B0

Mirror instabilityHigh positive anisotropy Kinked field lines/scattering



Below threshold Above threshold

Threshold to induce these collisions: δB|| = 0.5B0



Below threshold Above threshold

Threshold to induce these collisions: δB|| = 0.5B0

Eroding the plateau faster than it is generated re-establishes linear damping!

ν > Ωb



Amplitude dependence!



But linear decay only happens if  
not so large that we shut off 

damping…

So what  is too high?

ν

ν

Amplitude dependence!



Asymptotically long wavelengths? CGL dispersion relation with arbitrary : ν

Collisionless  MHD transition occurs at 

where conversion to an isotropic entropy mode occurs, and mode amplitude is reduced:

→ ν ∼
3
4

βk||vth,i (β ≫ 1)

ν/k||vA

−ωi /k||vA

 β = 104

Kinetic MHD



ν/k||vA

−ωi /k||vA

CGL simulation parameters: β = 18, k⊥/k∥ = 8, δB|| = 0.8B0, ν = 103k||vA

 β = 104

Kinetic MHD

Asymptotically long wavelengths? CGL dispersion relation with arbitrary : ν

Collisionless  MHD transition occurs at 

where conversion to an isotropic entropy mode occurs, and mode amplitude is reduced:

→ ν ∼
3
4

βk||vth,i (β ≫ 1)



Non-propagating (NP) modes:

 pressure near balances  δB δp⊥,i → Δ  oscillation generates  δB, δn Δ

Fast modes:

Kinetic microinstabilities, pitch-angle scattering

?Moderate λ|| : Long λ|| :

ν
k||vth,i

≫ β,
δB||

B0
β >

ν
k||vth,i

>
δB||

B0

Interruption of transit 
time damping

Erosion of 
nonlinear plateau

MHD-like entropy mode, 
amplitude limited

Resumed damping, 
saturation below 0.5B0



Fast modes



Important fast mode characteristics for :k|| = 0

• No transit time damping

•

• Wave steepening!

Δ ∝ δB|| ∝ − δβ
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Shock time can be found through 
generalized Riemann *approximately* 

invariants

Single adiabatic ( )pρ−γ = constDouble adiabatic ( )p⊥/nB = const

tda
s ≈ [k

δB||

B0 (Vda
f +

1 + β
2Vda

f )]
−1

tsa
s ≈ [k

δB||

B0 (Vsa
f +

1 + (γ2 − γ)β/2
2Vsa

f )]
−1



High :βtda
s ≈

2B0

3δB||k βi
tsa
s ≈

3B0

4δB||k 5βi /6

Vsa
f = vA β

γ
2

+ 1Vda
f = vA β(1 +

Te

2Ti ) + 1

Double adiabatic model’s direct connection between  and 
 facilitates decrease in shock time by 23% from MHD

p⊥
B
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tda
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f +

1 + β
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Shock time can be found through 
generalized Riemann *approximately* 

invariants

Double adiabatic ( )p⊥/nB = const



Perpendicular propagation is entirely described within 
double adiabatic theory:

δp⊥

p0
= 2

δB||

B0
and

δp||

p0
=

δn
n0

=
δB||

B0



Δ = δB||/B0

Perpendicular propagation is entirely described within 
double adiabatic theory:

δp⊥

p0
= 2

δB||

B0
and

δp||

p0
=

δn
n0

=
δB||

B0



δB||

B0
>

2
β

Much smaller threshold for microinstabilities than NP, linear at 
high !β

marginal 
firehose stability 

Δβ = − 2

Δ = δB||/B0

Perpendicular propagation is entirely described within 
double adiabatic theory:

δp⊥

p0
= 2

δB||

B0
and

δp||

p0
=

δn
n0

=
δB||

B0



Compression-generated collisions:

dp⊥

dt
= p⊥

d
dt

ln(Bn) − ν(p⊥ − p)

dp∥

dt
= p∥

d
dt

ln(n3/B2) − ν(p∥ − p)

dΔp
dt

= p
d
dt

3ln(B/n2/3) − νΔp



Braginskii:                      𝒪(ϵ2) 𝒪(ϵ) 𝒪(ϵ)
dp⊥

dt
= p⊥

d
dt
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d
dt

ln(n3/B2) − ν(p∥ − p)

dΔp
dt

= p
d
dt

3ln(B/n2/3) − νΔp



(no shear, just 
compression)

Braginskii:                      𝒪(ϵ2) 𝒪(ϵ) 𝒪(ϵ)

−∇ ⋅ ⃗u

dp⊥

dt
= p⊥

d
dt

ln(Bn) − ν(p⊥ − p)

dp∥

dt
= p∥

d
dt

ln(n3/B2) − ν(p∥ − p)

dΔp
dt

= p
d
dt

3ln(B/n2/3) − νΔp



∇ ⋅ ⃗u ∼ kVf
δB||

B0
kVf

δB||

B0
∼ νΔ ν ∼ βkVf

δB||

B0

Balance anisotropy production with scattering, knowing marginal 
stability is Δβ ∼ 𝒪(1)

(no shear, just 
compression)−∇ ⋅ ⃗u

Braginskii:                      𝒪(ϵ2) 𝒪(ϵ) 𝒪(ϵ)
dp⊥

dt
= p⊥

d
dt

ln(Bn) − ν(p⊥ − p)

dp∥

dt
= p∥

d
dt

ln(n3/B2) − ν(p∥ − p)

dΔp
dt

= p
d
dt

3ln(B/n2/3) − νΔp



For  expect scattering rate of β = 25, δB|| = 0.1B0, Te/Ti = 1,
ν ∼ βkVf δB||/B0 ∼ 15.5kvA



At sufficiently long wavelengths, both mirrors and firehoses generate 
this collision frequency from mode compression.

For  expect scattering rate of β = 25, δB|| = 0.1B0, Te/Ti = 1,
ν ∼ βkVf δB||/B0 ∼ 15.5kvA



For arbitrary pitch-angle scattering:

ω3 − iνω2 − ωk2V2
f,da + iνk2V2

f,sa = 0

Transition from collisionless to MHD occurs where → ν ∼ ω ∼ kvth,i



ν/kvA

−
ω i

/k
v A

(β = 100,Te /Ti = 1)

ω r
/k

v A

Kinetic MHD
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ω r
/k

v A

Kinetic MHD

ν ∼ βkVf
δB||

B0
∼ kvth,i near threshold



ν/kvA

−
ω i

/k
v A

(β = 100,Te /Ti = 1)

ω r
/k

v A

Kinetic MHD

Satisfies 
Braginskii

ν ∼ βkVf
δB||

B0
∼ kvth,i near threshold



 near 
threshold yields decay 
until 

δB||,0 ∼ β−1

δB|| ≤ 3B0/2β

 generates 
strong scattering, MHD-
like weaker decay 

δB||,0 ≫ β−1

ν ∼ βkVf
δB||

B0

ν/kvA

−
ω i

/k
v A

(β = 100,Te /Ti = 1)

ω r
/k

v A

Kinetic MHD



But  fast for ts
δB||,0 ≳ β−1/2

β = 400

 near 
threshold yields decay 
until 

δB||,0 ∼ β−1

δB|| ≤ 3B0/2β

 generates 
strong scattering, MHD-
like weaker decay 

δB||,0 ≫ β−1

ν ∼ βkVf
δB||

B0



β = 400

ν ∼ βkVf
δB||

B0

Also shocks in SA not DA time!

But  fast for ts
δB||,0 ≳ β−1/2

 near 
threshold yields decay 
until 

δB||,0 ∼ β−1

δB|| ≤ 3B0/2β

 generates 
strong scattering, MHD-
like weaker decay 

δB||,0 ≫ β−1

ν ∼ βkVf
δB||

B0



Non-propagating (NP) modes:

 pressure balances  δB δp⊥,i → Δ  oscillation generates  δB, δn Δ

Fast modes:

Kinetic microinstabilities, pitch-angle scattering

Moderate λ|| : Long λ|| :

ν
k||vth,i

≫ β,
δB||

B0
β >

ν
k||vth,i

>
δB||

B0

Interruption of transit 
time damping

Erosion of 
nonlinear plateau

MHD-like entropy mode, 
amplitude limited

Resumed damping, 
saturation below 0.5B0

Fast induced collisions:
ν ≥ kvth,i

Braginskii to MHD 
like propagation 
(weak damping)

Eventual shock 
formation



Bonus-ish: Oblique acoustic modes



Oblique ion acoustic modes

Rapidly decaying mode with     
    
→

γ ∼ ω ∼ k||vth,i



Rapidly decaying mode with     
    
→
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Oblique ion acoustic modes

Has small , but mainly 
    propagates through pressure
→ δB⊥

Can have both strong positive      
    and negative anisotropy
→

Rapidly decaying mode with     
    
→

γ ∼ ω ∼ k||vth,i



Oblique ion acoustic modes

Has small , but mainly 
    propagates through pressure
→ δB⊥

Meets up with NP mode to   
    become MHD slow mode
→

ν/k||vA

−
ω i

/k
||
v A

ν/k||vA
ω r

/k
||
v A

OIA
MHD Entropy

NP MHD Slow

Can have both strong positive      
    and negative anisotropy
→

Rapidly decaying mode with     
    
→

γ ∼ ω ∼ k||vth,i



We don’t study them in detail here for 2 reasons:
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distribution function (difficult with current Peg++ set up)
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We don’t study them in detail here for 2 reasons:

1. Very difficult to initialize in Pegasus++

2. Behavior is expected to overlap dramatically with parallel ion acoustic modes.

 is quite small and plays essentially no role in the mode other than 
 (no interruption like Alfvén wave)

→δB⊥⃗k ⋅ δ ⃗B = 0

Requires going past heat flux moments, initializing exact perturbed 
distribution function (difficult with current Peg++ set up)
→

No asymmetric anisotropy generation occurs for this mode at or near the 
amplitude threshold (both mirrors and firehoses occur)
→



Collisionless waves conserve adiabatic invariants ( )μ, J

Shear Alfvén waves:

 oscillation generates  δB Δ ( = p⊥/p∥ − 1) 𝛿n,  oscillation generates  δB Δ

Ion acoustic waves:

Mirror ( ) and firehose ( ) instabilitiesΔβ > 1 Δβ < − 2

*Squire et al 
2017, PRL

*Kunz et al 
2020, JPPPitch-angle scattering, 

Braginskii-like 
behavior

𝛿B rapidly decays until below 
instability thresholds

Landau damping 
interrupted, wave 

propagates undamped



Actual Bonus



Em/B0
Em/(B0 − δB∥)





Linear decay with scale separation:



Adjustment from isothermal pressure balanced ICs



Eigenmode relationship:

  for δB = 0.8B0 λ|| = 1000ρi



Scattering rate:

Define  as rate of anisotropy reduction:ν

A = ⟨v2
||⟩ − ⟨v2

⊥⟩/2

kmirror,||ρ0,i ∼ Λmwhere

Width of mirror region defined by where :Δβ⊥,i = 1

→

where

Lastly

→→


