## Microphysically modified magnetosonic modes in collisionless, high- $\beta$ plasmas Stephen Majeski, M. Kunz, J. Squire

Some motivation...

Density, pressure, and B fluctuations measured by WIND spacecraft at 1 AU

*Some motivation...* 

Density, pressure, and B fluctuations measured by WIND spacecraft at 1 AU

Verscharen, Chen, Wicks, '17:

→Measured eigenmode relationships suggest most compressive modes are MHD-like as opposed to kinetic Some motivation...

Density, pressure, and B fluctuations measured by WIND spacecraft at 1 AU

Verscharen, Chen, Wicks, '17:

→Measured eigenmode relationships suggest most compressive modes are MHD-like as opposed to kinetic

Coburn, Chen, Squire, '22:

 $\rightarrow$  Matched fluctuations from SW to linear KMHD with Krook collisions, finding  $\lambda_{mfp,eff}$  (measured) ~  $10^{-3}\lambda_{mfp,coll}$  (calculated) for protons

Collisionless waves conserve adiabatic invariants ( $\mu$ , J)



Shear Alfvén waves:

 $\delta B$  oscillation generates  $\Delta (= p_{\perp}/p_{\parallel} - 1)$ 

*Mirror* ( $\Delta\beta > 1$ ) *and firehose* ( $\Delta\beta < -2$ ) *instabilities* 

\*Squire et al 2017, PRL

Pitch-angle scattering, Braginskii-like behavior

*δB rapidly decays until below instability thresholds* 



Non-propagating (NP) modes:

 $\delta B$  pressure near balances  $\delta p_{\perp,i} \to \Delta$ 

Fast modes:

 $\delta B$ ,  $\delta n$  oscillation generates  $\Delta$ 

Non-propagating (NP) modes:

Fast modes:

 $\delta B$  pressure near balances  $\delta p_{\perp,i} \rightarrow \Delta$ 

 $\delta B$ ,  $\delta n$  oscillation generates  $\Delta$ 



Kinetic microinstabilities, pitch-angle scattering



## Non-propagating modes



*Linear/Nonlinear behavior:* 

 $\delta B \text{ and } \delta n \text{ perturbations},$  Non-propagating, $\omega \approx -ik_{\parallel}v_{\text{th,i}}/\beta\sqrt{\pi}$ 

Transit time damping flattens distribution near  $\omega/k_{\parallel}$ (nonlinear plateau) after ~  $\Omega_{h}^{-1}$ 

Plateau eliminates  $\partial f / \partial v_{\parallel}$ , reduces decay rate to ~ 0



 $\Omega_b = \gamma_{NP} \text{ when } \delta B_{||} \sim \beta_i^{-2}$ 

### *Linear/Nonlinear behavior:*

 $\delta B \text{ and } \delta n \text{ perturbations},$  Non-propagating, $\omega \approx -ik_{\parallel}v_{\text{th,i}}/\beta\sqrt{\pi}$ 

Transit time damping flattens distribution near  $\omega/k_{\parallel}$ (nonlinear plateau) after  $\sim \Omega_b^{-1}$ 

Plateau eliminates  $\partial f / \partial v_{\parallel}$ , reduces decay rate to ~ 0 *Hybrid-kinetic simulations:* Pegasus++  $\beta = 16, k_{\perp}/k_{\parallel} = 4, \lambda_{\parallel} = 1000\rho_i$ 



*(perturbation at the box wavenumber vs time, with dotted bounce times)* 

### *Linear/Nonlinear behavior:*

 $\delta B \text{ and } \delta n \text{ perturbations},$  Non-propagating, $\omega \approx -ik_{\parallel}v_{\text{th,i}}/\beta\sqrt{\pi}$ 

Transit time damping flattens distribution near  $\omega/k_{\parallel}$ (nonlinear plateau) after ~  $\Omega_b^{-1}$ 

*Hybrid-kinetic simulations:* Pegasus++  $\beta = 16, k_{\perp}/k_{\parallel} = 4, \lambda_{\parallel} = 1000\rho_i$ 



Plateau eliminates  $\partial f / \partial v_{\parallel}$ , reduces decay rate to ~ 0

*(perturbation at the box wavenumber vs time, with dotted bounce times)* 

Amplitude dependence?

Perpendicular pressure balanced form of polarization:





Mirror unstable regions coincide with resonant particle locations

*High positive anisotropy*  $\longrightarrow$  *Mirror instability*  $\longrightarrow$  *Kinked field lines/scattering* 



Simulation parameters:

 $\beta = 16, k_{\perp}/k_{\parallel} = 4, \lambda_{\parallel} = 2000\rho_i, \delta B_{\parallel} = 0.8B_0$ 



Simulation parameters:

 $\beta = 16, k_{\perp}/k_{\parallel} = 4, \lambda_{\parallel} = 2000\rho_i, \delta B_{\parallel} = 0.8B_0$ 



Simulation parameters:

 $\beta = 16, k_{\perp}/k_{\parallel} = 4, \lambda_{\parallel} = 2000\rho_i, \delta B_{\parallel} = 0.8B_0$ 

## Threshold to induce these collisions: $\delta B_{||} = 0.5B_0$



## Threshold to induce these collisions: $\delta B_{||} = 0.5B_0$



Eroding the plateau faster than it is generated re-establishes linear damping!

Amplitude dependence!



Amplitude dependence!

But linear decay only happens if  $\nu$ not so large that we shut off damping...

So what  $\nu$  is too high?



## Asymptotically long wavelengths? CGL dispersion relation with arbitrary $\nu$ :



where conversion to an isotropic entropy mode occurs, and mode amplitude is reduced:

## Asymptotically long wavelengths? CGL dispersion relation with arbitrary $\nu$ :



where conversion to an isotropic entropy mode occurs, and mode amplitude is reduced:



CGL simulation parameters:  $\beta = 18$ ,  $k_{\perp}/k_{\parallel} = 8$ ,  $\delta B_{\parallel} = 0.8B_0$ ,  $\nu = 10^3 k_{\parallel} v_A$ 

Non-propagating (NP) modes:

#### Fast modes:



 $\delta B$ ,  $\delta n$  oscillation generates  $\Delta$ 



Kinetic microinstabilities, pitch-angle scattering



*Moderate*  $\lambda_{||}$  :



*Erosion of nonlinear plateau* 

Resumed damping, saturation below  $0.5B_0$ 

Interruption of transit time damping

Long  $\lambda_{||}$  :

 $\frac{\nu}{k_{||}v_{\text{th,i}}} \gg \sqrt{\beta}, \sqrt{\frac{\delta B_{||}}{B_0}}$ 

MHD-like entropy mode, amplitude limited



## Fast modes



Important fast mode characteristics for  $k_{||} = 0$ :

• *No transit time damping* 

Important fast mode characteristics for  $k_{||} = 0$ :

• *No transit time damping* 

• 
$$\Delta \propto \delta B_{||} \propto -\delta \beta$$
 when large amplitude

Important fast mode characteristics for  $k_{||} = 0$ :

- *No transit time damping*
- $\Delta \propto \delta B_{||} \propto -\delta \beta$  when large amplitude
- Wave steepening!



Shock time can be found through generalized Riemann \*approximately\*

invariants

*Double adiabatic*  $(p_{\perp}/nB = const)$ 

$$t_s^{da} \approx \left[ k \frac{\delta B_{||}}{B_0} \left( V_f^{da} + \frac{1+\beta}{2V_f^{da}} \right) \right]^{-1}$$

Single adiabatic ( $p\rho^{-\gamma} = const$ )

$$t_s^{sa} \approx \left[ k \frac{\delta B_{||}}{B_0} \left( V_f^{sa} + \frac{1 + (\gamma^2 - \gamma)\beta/2}{2V_f^{sa}} \right) \right]^{-1}$$



invariants



# Double adiabatic model's direct connection between $p_{\perp}$ and *B* facilitates decrease in shock time by 23% from MHD

$$V_f^{da} = v_A \sqrt{\beta \left(1 + \frac{T_e}{2T_i}\right) + 1}$$

$$V_f^{sa} = v_A \sqrt{\beta \frac{\gamma}{2} + 1}$$

Shock time can be found through generalized Riemann \*approximately\* invariants

*Double adiabatic*  $(p_{\perp}/nB = const)$ 

$$t_s^{da} \approx \left[ k \frac{\delta B_{||}}{B_0} \left( V_f^{da} + \frac{1+\beta}{2V_f^{da}} \right) \right]^{-1}$$



Perpendicular propagation is entirely described within double adiabatic theory:

$$\frac{\delta p_{\perp}}{p_0} = 2 \frac{\delta B_{\parallel}}{B_0} \qquad and \qquad \frac{\delta p_{\parallel}}{p_0} = \frac{\delta n}{n_0} = \frac{\delta B_{\parallel}}{B_0}$$

Perpendicular propagation is entirely described within double adiabatic theory:



Perpendicular propagation is entirely described within double adiabatic theory:



Much smaller threshold for microinstabilities than NP, linear at high  $\beta$ !

Compression-generated collisions:

$$\frac{dp_{\perp}}{dt} = p_{\perp} \frac{d}{dt} \ln(Bn) - \nu(p_{\perp} - p) \qquad \longrightarrow \qquad \frac{d\Delta p}{dt} = p \frac{d}{dt} 3\ln(B/n^{2/3}) - \nu\Delta p$$
$$\frac{dp_{\parallel}}{dt} = p_{\parallel} \frac{d}{dt} \ln(n^3/B^2) - \nu(p_{\parallel} - p)$$







Balance anisotropy production with scattering, knowing marginal stability is  $\Delta\beta \sim \mathcal{O}(1)$ 

$$\nabla \cdot \overrightarrow{u} \sim kV_f \frac{\delta B_{||}}{B_0} \longrightarrow kV_f \frac{\delta B_{||}}{B_0} \sim \nu \Delta \longrightarrow \nu \sim \beta kV_f \frac{\delta B_{||}}{B_0}$$

For  $\beta = 25$ ,  $\delta B_{||} = 0.1B_0$ ,  $T_e/T_i = 1$ , expect scattering rate of  $\nu \sim \beta k V_f \delta B_{||}/B_0 \sim 15.5 k v_A$ 

For  $\beta = 25$ ,  $\delta B_{||} = 0.1B_0$ ,  $T_e/T_i = 1$ , expect scattering rate of  $\nu \sim \beta k V_f \delta B_{||}/B_0 \sim 15.5 k v_A$ 



At sufficiently long wavelengths, both mirrors and firehoses generate this collision frequency from mode compression. For arbitrary pitch-angle scattering:

$$\omega^3 - i\nu\omega^2 - \omega k^2 V_{f,da}^2 + i\nu k^2 V_{f,sa}^2 = 0$$

 $\rightarrow$ *Transition from collisionless to MHD occurs where*  $\nu \sim \omega \sim kv_{\text{th,i}}$ 

For arbitrary pitch-angle scattering:

$$\omega^{3} - i\nu\omega^{2} - \omega k^{2}V_{f,da}^{2} + i\nu k^{2}V_{f,sa}^{2} = 0$$

 $\rightarrow$  Transition from collisionless to MHD occurs where  $\nu \sim \omega \sim k v_{\text{th,i}}$ 











 $\nu \sim \beta k V_f \frac{\delta B_{||}}{B_0}$ 

 $\delta B_{||,0} \sim \beta^{-1}$  near threshold yields decay until  $\delta B_{||} \leq 3B_0/2\beta$ 

 $\delta B_{||,0} \gg \beta^{-1}$  generates strong scattering, MHDlike weaker decay

Also shocks in SA not DA time!







## Bonus-ish: Oblique acoustic modes



 $\rightarrow Rapidly \ decaying \ mode \ with \\ \gamma \sim \omega \sim k_{||} v_{\rm th,i}$ 

 $\rightarrow Rapidly \ decaying \ mode \ with \\ \gamma \sim \omega \sim k_{||} v_{\text{th},i}$ 

→*Can have both strong positive and negative anisotropy* 

 $\rightarrow Rapidly \ decaying \ mode \ with \\ \gamma \sim \omega \sim k_{||} v_{\text{th},i}$ 

→*Can have both strong positive and negative anisotropy* 

 $\rightarrow$  Has small  $\delta B_{\perp}$ , but mainly propagates through pressure

 $\rightarrow Rapidly \ decaying \ mode \ with \\ \gamma \sim \omega \sim k_{||} v_{\text{th},i}$ 

→*Can have both strong positive and negative anisotropy* 

 $\rightarrow$ Has small  $\delta B_{\perp}$ , but mainly propagates through pressure

→Meets up with NP mode to become MHD slow mode



We don't study them in detail here for 2 reasons:

We don't study them in detail here for 2 reasons:

1. Very difficult to initialize in Pegasus++

 $\rightarrow$ Requires going past heat flux moments, initializing exact perturbed distribution function (difficult with current Peg++ set up)

We don't study them in detail here for 2 reasons:

1. Very difficult to initialize in Pegasus++

 $\rightarrow$ Requires going past heat flux moments, initializing exact perturbed distribution function (difficult with current Peg++ set up)

2. Behavior is expected to overlap dramatically with parallel ion acoustic modes.

 $\overrightarrow{\delta B}_{\perp}$  is quite small and plays essentially no role in the mode other than  $\overrightarrow{k} \cdot \overrightarrow{\delta B} = 0$  (no interruption like Alfvén wave)

 $\rightarrow$ No asymmetric anisotropy generation occurs for this mode at or near the amplitude threshold (both mirrors and firehoses occur)





Shear Alfvén waves:



Ion acoustic waves:

 $\delta B$  oscillation generates  $\Delta (= p_{\perp}/p_{\parallel} - 1)$ 

 $\delta n, \delta B$  oscillation generates  $\Delta$ 

*Mirror* ( $\Delta\beta > 1$ ) *and firehose* ( $\Delta\beta < -2$ ) *instabilities* 

\*Squire et al 2017, PRL

Pitch-angle scattering, Braginskii-like behavior \*Kunz et al 2020, JPP

δ*B* rapidly decays until below instability thresholds Landau damping interrupted, wave propagates undamped



## **Actual Bonus**











Linear decay with scale separation:



## Adjustment from isothermal pressure balanced ICs



$$\Delta_{\rm NP}(t) \simeq 2 \left( 1 + \frac{T_{\rm e}}{T_{\rm i0}} \right) \left[ \operatorname{erf}(\tau) + \left( \tau^2 - \frac{\tau}{\sqrt{\pi}} \right) \operatorname{e}^{-\tau^2} \right] \frac{\delta n(t)}{n_0}; \quad \tau \doteq \frac{k_{\parallel} v_{\rm th,i} t}{2}.$$

#### Eigenmode relationship:



 $\delta B = 0.8B_0 \text{ for } \lambda_{||} = 1000\rho_i$ 

#### Scattering rate:

Define  $\nu$  as rate of anisotropy reduction:

$$\frac{\Delta A}{\Delta t} = -\chi N_{\rm m} \Omega_{\rm b} A \approx -\nu_{\rm eff} A$$
where  $A = \langle v_{||}^2 \rangle - \langle v_{\perp}^2 \rangle /2$ 

Width of mirror region defined by where  $\Delta \beta_{\perp,i} = 1$ :  $B_0^2 + 4B_0 \delta B_{\parallel}(x) + \delta B_{\parallel}(x)^2 \approx 0$ 

$$\rightarrow w_{\text{mirror}} \approx \frac{\lambda_{\parallel}}{\pi} \cos^{-1} \left( \frac{B_0}{\delta B} (\sqrt{3} - 2) \right) \doteq \lambda_{\parallel} \chi$$

Lastly  $N_m = \chi \lambda_{\parallel} / \lambda_{\text{mirror},\parallel}$  where  $k_{\text{mirror},\parallel} \rho_{0,i} \sim \Lambda_m$ 

$$\rightarrow$$
  $\nu_{\rm eff} \sim \sqrt{\delta \widetilde{B}} \Omega_{\rm c,i} \Lambda_{\rm m} \chi$