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We begin with the Vlasov equation
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We begin with the Vlasov equation
Ofa Ofa

0 Ve — (V).

ot M v =0

This conserves phase volume:

= [[aravt (fur0) - )

where, H(z) is the Heaviside function
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Declare that P(r,v,n) is the probability density (in 7) of finding
the exact phase-space density to be n at position (r,v).
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Declare that P(r,v,n) is the probability density (in 7) of finding
the exact phase-space density to be n at position (r,v).
Maximise the Entropy

S = —%//dvang('v,n)lnPO(U,n)a f(v) :/d7777P0('U777)

Must be maximised subject to the constraints

/anO(van) — ]-a
1 2
dvdn o nPo(v,n) = Eo,

/dv Py(v,n) = p(n).

This gives the equilibrium

e~ BATn(5mv®—pu(n))
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Pick your favourite method quasilinear method

At some point during the calculation, you’ll make some
assumption about correlations (the microgranulation ansatz)

<5fa(7'» V)0 for (17, 'U/)> ~ AT 4daard(r —1')0(v — v’)<5f§>(v)

This gives a ‘Proto-collision integral’
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The microgranulation ansatz partially resolves the closure
problem, but it is still present:

(5£2)() = (f2)() = (fa)’(v)

= /dnnzP()a(v,n) - (/dTZTIPOa(van)>2
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The microgranulation ansatz partially resolves the closure
problem, but it is still present:

(5£2)() = (f2)() = (fa)’(v)

= /dnnzP()a(v,n) - (/dTZTIPOa(%’?)>2

In general, the second moment isn’t determined by the first, but
we could ask what the maximum entropy assignment of P, (v,n)
should be, subject to knowing the only the first moment.
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I maximise that entropy subject to those constraints and I get
the expression for the probability Py(v,n)
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I maximise that entropy subject to those constraints and I get
the expression for the probability Py(v,n)

e~ Ya(v)n—7a(n) " "
Poolv.1) = Tresemray JEM0) = [ ann Roato. o)

Note that now 1, (v) and ~,(n) must be computed at each point
in time... by solving a set of coupled integral equations
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It would be better if we could just write an evolution equation for
P(r,v,n)
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It would be better if we could just write an evolution equation for

P(r,v,n)
Pa(’r7v7n) = (S(fa('l",’U> — 77)7
P, 0Py
W‘i‘ VP ma(V(p)%—O

One plays all the same games
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This collision integral has the right conservation laws, steady
states, H-theorem. What now?
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states, H-theorem. What now?

If this collision integral is valid, is the previous closure ever a
valid limit to take (i.e., do waterbags reach local equilibrium
before reaching a global equilibrium)

When could this collision integral be valid? It has a collision rate
like

Ype

nAd,

This has to be much slower than a plasma frequency for the
timescale separation (Bogoliubov hypothesis) to be valid

What must it be quicker than:

Veff ~ Arneff
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Consider the electron-ion hyperkinetic collision operator
(Landauified) and compare with the Landau collision operator
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Consider the electron-ion hyperkinetic collision operator
(Landauified) and compare with the Landau collision operator
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For the purpose of electron-ion collisions (to lowest order) we can
port over a great deal of intuition from collisional theory with the
simple change

ﬁ(HAr/dn[n (@) Pi(w, )
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For the purpose of electron-ion collisions (to lowest order) we can
port over a great deal of intuition from collisional theory with the
simple change

f1<HAr/dn[n (@) Pi(w, )

m = [ dv i) nt = [ [ dvay by~ ()P A
ui:nl dvvfi(v) :—//dvdnvn A(@) P(v,n)

i
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Strange relaxation # 3




Back to the (forced) Vlasov-Poisson equation

Ofe

2 fk: K’
Bt + ik - 'Ufk—z—gokk: Zgo .

M e zk
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Ok = Xk + Ok = Xk + q /d Jr(v
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Back to the (forced) Vlasov-Poisson equation

0 0 /
é’;k—l-zk 'Ufk—z—gokk: q k%:kgo k- fk &

7Ta
Vk = Xk + Ok = Xk + q /d Jr(v

For maximum simplicity (hopefully) let me take xg to be a
Gaussian white-noise forcing

2m?
(i) =0, (xe)xp()) = q—5kk'Dk5(t —t')
The evolution of the mean distribution function is
9 fo 47rq 0
g} = ZkIm Xifu (@)= Z » /dv Tu(©)fie(v"))
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I need to know how to handle <Xk f§> and

Cr(v,v) = (fr(v) fr(v'))

Gaussian white-noise forcing is easy to handle via the
Furutsu-Novikov theorem

9{fo)
o'’

(X fe) = z‘%Dkk
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I need to know how to handle <Xk f§> and
Cr(v, ') = (fi(v) fi(v'))

Gaussian white-noise forcing is easy to handle via the
Furutsu-Novikov theorem

. : { fi
(X&Sr) = Z%Dkk §U?>
3<f0> -~ 62<f0> drg® 0O
ot~ P o m ov Zk?/d”c’“””

We will try to compute Cg (v, v’) by writing down its evolution
equation and looking for steady states
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%—l—zk (v—'v )Cr = Sk(v,v") + Ni(v,v")
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% + ik- (v—v )Cx = Sk(v,v") + Ng(v,v")
/d'v”Ckv v )k - %fo Cr (v, )k.%
Sk(v,v") = 2Dykk : %fogfj

For now, I’'m going to aim to solve this within the Bogoliubov
hypothesis
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16 /19



Solve the lowest order correlation function in steady state and
plug it into the evolution equation for fo(v)

)
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{fo) 8<fo> drg® 0 OF

o ~ P hw m ov Zk2/d”c W)

17 /19



Solve the lowest order correlation function in steady state and
plug it into the evolution equation for fo(v)

)
ag,; +ik- (v —0)C = Sp(v,v') + (.) @

{fo) 8 <fo> drg® 0 OF

o ~ P hw m ov Zk2/d”c W)

Use this expression to fake the long time evolution of C’,g ), plug

that back in to the next order to find the short time evolution of

oLy
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Use this expression to fake the long time evolution of C’,i ), plug

that back in to the next order to find the short time evolution of

oLy

o
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Iterate until satisfied

9(fo) _ 32<f0> dmq® O ) )
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