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“UPPPL Protest & Outline: QL theory redux is not useless!
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USEFUL PLASMA PHYSICS: JOURNAL OF

PLASMA PHYSICS

Electromagnetic turbulence in tokamaks/high beta
ICM turbulence/really high beta

Sheared, bistable turbulence in tokamaks

Imbalanced turbulence in the solar wind

USELESS PLASMA PHYSICS:

Collisionless relaxation and phase-space turbulence
¢ Quasilinear theory redux

e What's wrong with the textbook theory?

Fails to conserve the wave action, misses inhomogeneities and collisions.

e How do we fix this?
Hmm... Weyl calculus?! Duh!

o Examples: grand unification

Electrostatic turbulence, electromagnetic turbulence, relativistic gravity
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.~ Quasilinear theory: the textbook version
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LABORATORY

WAVES N o For simplicity, consider 1D Langmuir turbulence:
Bl PLASMAS

‘ Ouf +v0uf + (¢fm) B0, f =0, f=F+f, [f«F
TN e QL approximation: keep the nonlinearity in o.f but
N linearize the equation for f

.L_. ]

LA B ST
<m @v> 0 v &ermE@v

o Use global mode decomposition E E = D> Eke' , where k = 2mn/L. Solve for

=D f e’*® to the zeroth order in J;, neglect the initial conditions:

~ ’I:emE 5_ dlnE
fie = —(/>kf, Wi =1 dtk

Vedenov et al. (1961); Drummond and Pines (1962) 3/22



~= — Quasilinear theory: the textbook version (continued)

PLASMA

e The average distribution satisfies a diffusion equation:

of @ Of(t, ) e [ dk o |E(t))?
ot ov (D(t,v) v )’ b= mQ/LQWLi (kv — wi ()]

e To close the system, one assumes that the local “frequency” wi = 7d; lnEk
satisfies the linear dispersion relation (with v = im wy):

— 2’7kz|Ekz|2

4re? o f E,|?
1 — e /d @f(t,’l}) 0 d| k|
L

v —
mk? v—wr(t)/k dt
e This closed model conserves particles, momentum and energy, and accurately

describes effects like broadband bump-on-tail instability... right?

f f
(a) (b)

Vedenov et al. (1961); Drummond and Pines (1962) 4/22



- Quasilinear theory: the textbook version (continued)

e The average distribution satisfies a diffusion equation:
of (t,v) 5 € / dk  |Ek(t)]?
’ - m2 J 2nLi[kv — wi(t)]

ot oOv
e To close the system, one assumes that the local “frequency” wi = 7d; lnEk

of 0
/ (D(t, V) E.

satisfies the linear dispersion relation (with v = im wy):
@v? t, U d Ek 2 ~
) ’dt - 25| By |?

4%62/01
v — Y,
L v —wi(t)/k

1 —
mk?
e This closed model conserves particles, momentum and energy, and accurately

describes effects like broadband bump-on-tail instability... right? Not so much.

f
(b)

(a)
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Vedenov et al. (1961); Drummond and Pines (1962)



-~ The traditional QL theory is conservative only accidentally.
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e First error: the correct equation for the linear-wave amplitude is the action-
conservation law (introduced after the original QL theory,” ignored in the canon):

= 2 dZ ~ o Op(w?ep)
E — =2I T = |E|?
% dr ~ R T

o The equations for Z and for |E|? agree only in the cold limit.

(wkak)

e But then, why is the QL theory exactly conservative? Answer:
it contains a second error that partly compensates the first one!

i(¢/m)Ey, Of

wi — kv ov

fk = 9K — + O(0f) + (may as well include 0,

—
non-negligible

o The ‘ponderomotive’ effects due to O(dy,0,) determine the conservation laws.
Those critically affect, for example, RF current drive and turbulence saturation.

* Whitham (1965); Bretherton and Garrett (1968); Dewar (1972); Dodin et al. (2019). . . 6/22



®UPPPL ‘Kind-of-known’ approach: oscillation-center (OC) QL theory
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o With O(0;, 0,) retained, the only known approach is heuristic: PO Ve
- ignore O(0d;, 0,) near resonances separated out arbitrarily L

- OC coordinate transformation for non-resonant particles

- assume the proper action equation to connect the dots

9Fy 0(K) 0Fy (K) oF, _ 0 -(D--‘?f?-)

ot dgp dx 9x dp dp op
ongt dwit Onyt dwit Ony! de, k2 I o’ |2
’ — ' == Dare Ly o l=
o Tk oz oz ok M ES ot BalP

A2 k2 | @it |2 @ 1 (we!—k-p/m)
D=4rxe? L%/ 8w LS l—k. =y —
;% (I P |/ wLO) kK276 (wi'—k p/m): (K) H, i~ m 8wl5 Jwyl wkl._k.p/m

e Oscillation-center QL theory is not actually proven, not expressed in terms of
measurable quantities, not extendable to off-shell waves and collisional plasmas.

Dewar (1973),; McDonald et al. (1985) Image: adapted from xkcd.com


https://xkcd.com/2194/

éj NNNNNNNNN _ A first-principle approach

PLASMA PHYSIC
AAAAAAAAAA

o Usedif = {FJrfI, £} split f = f+ f and linearize the equation for fluctuations f:
of —{H,f} ={H, T}, of—{H[}={H [}

e Define phase-space velocities in general canonical coordinates z, with J = (_01 é):
v (t,z) = I OsH(tZ)  ut(t,z) = J ggﬁ(t, z)

' '

O(1) O(e)

e In terms of the Green's operator G and unperturbed microscopic fluctuations g:

f — 97 @aaaaf’ u® = u® (t7 2)7 é = lim, o4 fOOO dr G_VT_T(at'H’aaa)

o Define D = 72G4f and §* = u®g/f. Then,

oof — {H, T} = 0,(DP05F — 3°F)

- macroscopic part of u¢ — generalized QLT

- microscopic part of u® — collision operator”

Dodin (2022) “No need to consider two-particle distributions!



- 10 approximate an operator, approximate its Weyl symbol.

e Any operator ,&w(x) = [dx A(x,x)9(x) on “any” space x

11
can be expressed through its symbol using X = x and k = —i0,: S o x
—1k-s I(\(:) k
A(x, k) = [ ds A(x + s/2,x —5/2) e .
AT < Al
k AB < A« B

A = kg [ X dK dx dk" AX, k) e miK

o D acts on functions of 7D X = (t,x,p), so our X operator is X. Correspondingly,

our k operator is K = (i0;, —i0z, —10p), it induces a 7D space K = (—w, k,r).

DX, K)= [dK'W,(X,K'YG(X,K—-K'), Wy~ symb |u){u|

Image: adapted from xkcd.com

nﬂmwscmeia? wsiounse | o The following approximation will be enough (tough to prove!):
Wi D(X,K)~ D(X,0)+ (K - 0x)D(X,0)

Y Y
usual QLT non-negligible correction

G(X,K) %W(S(Q)%—ilim,,aog%w, Q~w—k- v


https://xkcd.com/1544/

% I‘”L To a

PLASMA PHYSICS
AAAAAAAAAA

pproximate an operator, approximate its Weyl symbol.

o Any operator Aw = [ dX A(x,x) ¥(x) on "any” space x 11
can be expressed through its symbol using X = x and k = —i0,: S o
—1k-s /|; = I8
A(x, k) = [ds A(x + s/2,x — s/2) e R
Al = A
A = o [ X dK dx" dK" A(x, k) €K 0 R0 AB < AxB

o D acts on functions of 7D X = (t,x,p), so our X operator is X Correspondingly,
our k operator is K = (i0;, —i0z, —10p), it induces a 7D space K = (—w, k,r).

DX, K)= [dK'W,(X,K'G(X,K-K'), Wy~ symb |u){u|

o The following approximation will be enough (tough to prove!):

D(X,K)~ D(X,0)+ (K - 0x)D(X,0)
usual QLT non—negligiI;re correction

G(X,K) %W&(Q)%—ilimyaoﬁ, Q~w—k- v

Inspiration for doing the Weyl calculus on phase space: Michael's talk at Vienna-2019 v =0JpH



. Collisionless equation for the OC distribution, €2 « ML « € « 1
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= iJG|H) to express W, ~ symb |u) {u| through W= ~ symb HY{(H|:

W = (2m)~" "t [dr dselwm— SH(t + 7/2, @ + 8/2,p) H(t — 7/2, 2 — 3/2,p)

o For the OC distribution F' = f+ 0, (® 0, f), we get an equation that is applicable

both to on-shell and off-shell waves and captures ponderomotive effects:

OF 0 OF AT THIS PONT, YOU'RE PROBABLY
{7—[ F } +—- | D— THINKING, “T LOVE THIS EQUATION
ot p op AND WISH IT IOULD NEVER ENDI
_ WELL, GOOD NEWS!
% kW ~
H+ — dw dk H )
W f by J )

e

e

o B

D = w/dk kk'W(t, 2,k - v, k; p)

o a][d ” kk'W
0] T 2w—k v+,

e No coordinate transformations — no singularities. Also, when averaging over

phase-space volume Ax Ak = 1, D is proven positive-semidefinite — H-theorem.

*In the z-representation, § = —i0x. Image: adapted from xkcd.com


https://xkcd.com/2605/

TTTL Let's make the fields self-consistent (but not necessarily on-shell)

PRI I\CFT
PLASMA F‘ lY%\C‘S

/ERTF\‘

e Use a generic linear-wave action for vacuum and a generic particle Hamiltonian
Then W satisfies a linear equation with initial conditions g, as sources

1 [ ~in ~ N~ A~ ~
:5/\Iﬁagqldtdm, H,~ Hy, + 60 + = (L I(RE) — EWzZ/dp&SQS

= ~ B 'R s(w, k;p)ad(w, k;p) . OFs(p)
S(w, k) ~ Eo(w, k) Z/dpL i(w, ks p) F +2][ 2 Epoufukip) ), O
: ‘ : .~ ~ (macro) ~ (micro)
ST e e The general solution is ¥ = W + P  The
\".\ \. ;" correspondingng Wigner tensors are U and S/(2m)" "1,
\-‘.‘\ f;,-" .'--. é\i(macrO) _ O, (micro) _ Z/dpé

(macro) "t —71/2, — 5/2)) et Fs

Ulw, k) — / g—; (2i“")n &N 2, x4 8)2) @

S(w, k) = 27 Y / Ap'6(w — k - v, Fy (p) B (w, k) (@yal,) (w, ki p) = (w, k)

Fluctuation-dissipation theorem: S., = —2T/w (E_l)A

12/22

Image: adapted from Kakad et al. (2014)



6 JPPPL Equation for the OC distribution with self-consistent fields
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e In a self-consistent field, a collision operator emerges:

oF, 5 oF,
— {HsaF} ( s )+Cs

ot op op

e C, has a Balescu—Lenard form, satisfies H-theorem,
conserves particles and energy—momentum.

C, = @pz

dk (k-ve—k-v.)|al(k v, k;p)E  (w, k)ay(k-v,, k;p)|?

x kk - (az;z() )st(p’) — Fy(p) aF@; )>

YOU SHOULD PROBABLY o K —x theorem” for the ponderomotive energy A, = H,— Hys:

JUST GET OUT OF HERE.

10

% A = >3, Eh: Udwdk
10 (alUa) 1
;:: ;% 2% ][kw—k-vdedk+2/U (LLRs)ndwdk

“e.g. in Kaufman (1987) Photos: Radu Balescu and Andrew Lenard. Image: xkcd.com



http://theor.jinr.ru/~kuzemsky/balescbio.html
https://www.heraldtimesonline.com/obituaries/story-obituaries-2020-03-22-andrew-lenard-92-43829163
https://xkcd.com/2487/

Special case: on-shell waves and the associated conservation laws

PRINCETON
PLASMA PHYSICS
LABORATORY

/ o Wave kinetic equation (WKE) for a complexified wave field:”

ZTo=00 — ZE[T)(FT|=0 — tr[dwE+U.=0

k

o On-shell waves have U, ~ §(A) J (¢, z, k) nn'. —
: : , [dp H,F, | OC energy density
In terms of the action density J, the WKE is .
[dppFs | OC momentum density
00T + Vg - O — O - O] = 29 [dkwJ | wave energy density
" * [ dkkJ | wave momentum density

conserves the sign of J

o Combined together, the equations for Fs and J conserve the energy—momentum:
0H
t

0 _ 0 — i ) _
0 0 i i i 0t
= Z dppiFs + [ dkkid | + = Z dp (prvg + Ao Fs + | dkkogJ | = —g dp =7 b

e F and J are fundamental objects, the oscillating fields per se are not needed.

sFS

“cf. McDonald and Kaufman (1985) 14/22



.~ 50 how does one apply all this stuff?

e Need to represent the vacuum-field action and the particle Hamiltonians in the form

1 [(~in ~ PR BN PN
So = 5 /\IITEOIII dt d, H,~ Hys + aLlIf + 5 (L, %) (R, W)
e Non-relativistic electrostatic interactions: Dewar's theory, Balescu—Lenard
theory, and the formulas for electrostatic fluctuations are subsumed (see paper).

~N\ 9 1 2 2
SO:/(V@ dtdm:_/&( v )@dtda:, H, = P + esp + esp
87T 2 47T 2ms

Zo(w, k) = ¥/an,  as(w, k) =es,  Ls(w,k) = Rs(w, k) =0

- The ‘dressing’ F'—f = 0,,-(© 0, f) carries energy—momentum:
I LOVE MOMENTUM

Z/deOSFS+/dka:Z/deos?SJrSiﬂﬁ J?)
Z/dpst+ /dkkJ ZZ/dPPﬂ 5‘?”%

non-negligible

Image: adapted from xkcd.com 15/22


https://xkcd.com/442/

Relativistic electromagnetic interactions

o Let's adopt E = i A/c as the interaction field (Weyl gauge) and B = (ck/&) x E:
E? - B? 1 [~ 1 2 oy o] s

SOZ/ dtdm:—/ET— 1+ = (k&' — 1%%) | E dtdz,

2 A7 w2

8T

=g
o Relativistic-particle Hamiltonian can be Taylor-expanded and expressed through E:

Hs = \/m§c4 + (pc— es A — e, A)? + e, + e,p

ie ~ l/7e2\/1—-v0l/?21 ~

:H08+7868E+—(7‘9E)( Vs ;E)
w 2\ w MsVs w
\_\/_/ \_\/_/ " ~ W
6 L.E R E

(6 ]

“(p) = fo(p+ e, Afe):

o Energy—momentum conservation, with fs(

S
16,22



.~ Relativistic electromagnetic interactions: the formulas you were dying to see

o Relativistic nonlinear potentials (U is the average Wigner tensor of E)

viU(k - v, kv,
(k- vg)?

% kk (viUwv,)
O, =e¢-— 1 dwdk g
65@19][ “ ww—k-vs+9|,_,

e? 0 E (vilv,) €2 tr(Up; 1)
Ay =-=— F dwdk s ° =2 [ dwdk >
2 Op ][w w2w—k-v3+2/w w2

D, = me /dkkk

o Fluctuation spectrum and collision operator® (€ is the dielectric tensor):

S(e ) = 2r (42%)2 [ bt~ kv ) Fup)e ! (@ k) vl e w. )

dk / |’UL€_1(k " Vs, k)’U;,|2 /
Cs 2/26 / 2m)? dp kv, Ok -vs—k-vy)

< kk - (a P;;m Fy(p') ~ Fu(p) aﬁ;;;ﬁ,p /))

“cf. Hizanidis et al. (1983); Silin (1961) 17/22
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e The same formalism can be readily applied to particle
interactions with gravitational waves.

H(x,p) = m* + ¢*° (X)pabs:  Gap = Gap + Jap
(tot)
9ap =Y9ap*+ haﬁ

e The QL coefficients are explicitly found in terms of
¢ = pap5p7p5Uo‘575. QL diffusion is gauge-invariant.

-
D= 1po dk kk€ (K p,)
' 1 ¢ kk¢
©=——-— 7 dk——;
4PY o VP? — kPpylo_q
PaPp a 3 1 0 7[ ]{)\Qf
A = dk U*, 7P — — _— + dk
2PY / ! 8PV dpa kPp
0157 o ©® Vacuum GWs:" effective ‘ponderomotive’ metric
e e e M =mP 4 g paps, 9o =77+ [dkUY P,

Garg and Dodin (2020, 2021a, 2021b, 2022) *Lorenz gauge assumed, Vaﬁaﬁ =0



...~ Local quasilinear theory for magnetized plasma

o The canonical W4 cannot be expanded in L' because A (as opposed to B)
depends on @ rapidly. In non-canonical variables, the derivation is too cumbersome.

o Fix #1 (boring): find global angle—action coordinates (¢, J), Fourier-expand in ¢,
treat each f,, as a separate f. Since f,, are ¢-independent, there is no problem left.

fNZ Z fn("')ein.Qb
o Fix #2 (fun): find local canonical coordinates in which the theory works.

Homogeneous field: (Q3, Ps) = (6, i), (QQ,PQ).Z (z,.pz), (Q1, P1) = (x,y)
Inhomogeneous field: similar coordinates with P; « (1 = vgrie and P « ()2."

Fourier-expand in 6 but retain weak dependence on the local ()1 and )s:
f - Z fn<Q17 Q27 P17 P27 M)eine

D, ©, and A are needed only to the zeroth order. Thus, they are the same as
in a homogeneous field except v includes vyyif:.

This agrees with and generalizes the findings of Catto et al. (2017).

* Wong (2000); cf. Kennel and Engelmann (1966) 19/22



e~ Summary
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e Result: QL theory is corrected and derived from first principles as a local theory.
Wigner tensors vs. global-mode decomposition

- general Hamiltonian, any interaction field;

- inhomogeneity, collisions and off-shell waves;

- H-theorem for inhomogeneous plasma;

- generalized conservative Balescu—Lenard collision operator;

- conservation of the action, energy, and momentum for on-shell fields;

- many known results are subsumed as special cases.

o Take-home message: O(0;,0,) is non-negligible on t » w™! and £ » kL.
Calculations ignoring this are unreliable. Weyl calculus is the way to get things right.
7= i(efm)Ey, Of = 5 5 o ( of

k o — o o T O0tfs x ), —f= p p

) O(E?)

e Potential applications: RF current drive, models of turbulence saturation
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