
Around the quasilinear approximation of the Vlasov equation

Nicolas Besse
Observatoire de la Côte d’Azur, Nice, France. Nicolas.Besse@oca.eu

joint work with Claude Bardos

13th Plasma Kinetics Working Meeting

Wolfgang Pauli Institute, July 25th – August 5th 2022

Nicolas BESSE (03/08/22) Around the quasilinear approximation of the Vlasov equation Vienna 25/07-05/08 1 / 42



Contents

1 The selfconsistent deterministic case

2 The non-selfconsistent stochastic case

3 The quasilinear theory in a short time.

Nicolas BESSE (03/08/22) Around the quasilinear approximation of the Vlasov equation Vienna 25/07-05/08 2 / 42



1 The selfconsistent deterministic case

2 The non-selfconsistent stochastic case

3 The quasilinear theory in a short time.

Nicolas BESSE (03/08/22) Around the quasilinear approximation of the Vlasov equation Vienna 25/07-05/08 3 / 42



Vlasov–Poisson equation and weak turbulent scaling

Vlasov–Poisson:

∂t f + v · ∇x f +
q
m

E · ∇v f = 0, E = −∇Φ, −∆Φ =
q
ε0

(ˆ
Rd

dv f − 1
)
.

t ∈ R, x ∈ Td := (R/2πZ)d , v ∈ Rd , Q = Td × Rd = phase space

Weak turbulent regime:

I ε ∈ (0, 1) be a small dimensionless parameter
I τL = 1/γL = inverse of the instantaneous growth/damping rate of electric field.
I Eel = electric energy.
I Ekin = kinetic energy.

t̂ := τL, x̂ := λD, v̂ := vth,
Eel

Ekin
=
ε0|Ê|2

n̂mv̂2
= ε,

1

ωp t̂
= ε

2
.

Rescaled Vlasov–Poisson equation:

∂t f ε +
v
ε2
· ∇x f ε +

Eε

ε
· ∇v f ε = 0, (t , x , v) ∈ R+ × Td × Rd ,

Eε = −∇Φε, −∆Φε =

ˆ
Rd

dv f ε − 1.
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Necesseary condition for non-degenerate diffusion 1/2

Theorem (A)

Let {f ε0 }ε>0 be a sequence of non-negative initial data and C0 be a positive constant such that

‖fε0 ‖L1(Q)
+ ‖fε0 ‖L∞(Q) ≤ C0,

ˆ
Q

fε0 |v |
2 dxdv ≤ C0,

∥∥∥Eε0 := ∇∆−1
Ä ˆ

Rd
fε0 dv − 1

ä∥∥∥
L2(Td )

≤ C0.

Let (f ε,Eε)ε>0, be a sequence of weak solutions of the rescaled Vlasov–Poisson system with
initial data f ε|t=0

= f ε0 , whose existence is known or proved (Arsenev 75, Diperna–Lions 88, ...) for
all ε > 0.

Then:

i) There exists a function f = f (t , v), independent of x, such that f ∈ L∞(R+; L1 ∩ L∞(Rd )),
and up to subsequences one has,

f ε ⇀ f in L∞(R+; L∞(Q)) weak−∗, 
dx f ε ⇀ f in L∞(R+; L∞(Rd )) weak−∗.

ii) The electric field Eε converges weakly to zero as ε→ 0, more precisely,

Eε ⇀ 0 in L∞(R+; W 1,1+2/d (Td )) weak−∗.
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Necessary condition for non-degenerate diffusion 2/2

Theorem (A)

iii) The expression,
∇v ·

 
dx

Eεf ε

ε
,

is uniformly (with respect to ε) bounded in D′(R+ × Rd ). Hence, up to a subsequence, it
converges in D′(R+ × Rd ) and we obtain

∂t f +∇v ·
 

dx
Eεf ε

ε
= 0, in D′(R+ × Rd ), (1)

f|t=0
=

 
dx f0.

iv) Let d ≤ 4. Moreover, if we suppose that there exists a constant κ, independent of ε such that

‖Eε‖W s
loc(R+;L1(Td )) ≤ κ, with s > 0, and ‖∂t Φ

ε‖L1
loc(R+;L1(Td )) ≤ κ,

then,  
dx

Eεf ε

ε
⇀ 0 in D′([0,T ]× Rd ),

Eε → 0 in L1([0,T ]× Td ) strong,

as ε→ 0, and equation (1) degenerates into the following equations,

∂t f = 0 in D′([0,T ]× Rd ), f|t=0
=

 
dx f0.
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Remarks on the previous theorem

The proof is based on the ergodicity of the free-flow in a periodic torus, and on the
spatial strong compactness or regularity of the electric field given by the Poisson equation.

Point iv) of theorem (A) shows that the lack of time compactness or regularity is in fact a
necessary condition for obtaining a genuine or a non-degenerate diffusion equation in the
limit ε→ 0.
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Treatment of the flux term: Duhamel formula and Fick-type law

Now, we derive formally a Fick-type law for the flux term,

 
dx

Eεf ε

ε
,

appearing in (1).

Most of developments are formal.
They point out the difficulties for showing rigorously the diffusion limit.

This Fick-type law can be obtained from two ways.
The first way is a global-in-time approach, which involves the initial condition f ε0 , while
the second one, a local-in-time approach, does not.

Each approach has its advantages and drawbacks.

For both approaches, the absence of time decorrelation properties prevent us to determine
the structure and the properties of the diffusion matrix.

Nevertheless a formal WKB approximation allows us to obtain the structure of a non-negative
diffusion matrix in the non-selfconsistent case.
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Global-in-time approach for the flux term
Using Duhamel formula, the solution of the rescaled Vlasov–Poisson equation is

f ε(t) = Sεt f ε0 −
1
ε

ˆ t

0
ds Sεt−sEε(s) · ∇v f ε(s). (2)

where the map t 7→ Sεt is the group on Lq(Q), 1 ≤ q ≤ ∞, generated by the free-flow, i.e.

(Sεt g)(x , v) = exp
Ä
−

t
ε2

v · ∇x

ä
g(x , v) = g(x − vt/ε2, v), ∀g ∈ Lp(Q).

Substituting (2) into the weak formulation of the divergence of the flux term,

−
ˆ
R+

dt
ˆ
Rd

dv ϕ∇v ·
 

dx
Eεf ε

ε
=

1
ε

ˆ
R+

dt
ˆ
Rd

dv
 

dx ∇vϕ · Eεf ε, ∀ϕ ∈ D(R+ × Rd ),

we obtain

−
ˆ
R+

dt
ˆ
Rd

dv ϕ∇v ·
 

dx
Eεf ε

ε
= T ε1 (ϕ) + T ε2 (ϕ),

where
T ε1 (ϕ) :=

ˆ
R+

dt
ˆ
Rd

dv
1
ε
∇vϕ(t , v) ·

 
dx Eε(t , x)f ε0 (x − vt/ε2, v),

and

T ε2 (ϕ) := −
ˆ
R+

dt
ˆ
Rd

dv
1
ε2
∇vϕ(t , v)·

ˆ t

0
ds

 
dx Eε(t , x)Eε(s, x − v(t − s)/ε2) · (∇v f ε)(s, x − v(t − s)/ε2, v).
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Global-in-time approach for the flux term: term T ε1

For the term T ε1 we have

Lemma

Assume that f ε0 satisfies the hypotheses of Theorem (A). In addition we suppose that there exists
a constant C0, independent of ε, such that for |α| ≤ 1, the initial condition f ε0 satisfies∑

k∈Zd
∗

(
|k |−1‖∂αv f̂ ε0 (k)‖L1(Rd )

)2 ≤ C0, if d = 1, and,

∑
k∈Zd
∗

(
|k |−2‖∂αv f̂ ε0 (k)‖L1(Rd )

)1+2/d ≤ C0, if d ≥ 2.

Then
T ε1 ⇀ 0 in D′(R+ × Rd ).

Remark

In this lemma , the regularity assumption for f ε0 might be refined but with the presence of the
factor ε−1 in the term T ε1 , some mixing-type hypotheses seem compulsory.
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Global-in-time approach for the flux term: term T ε2
We now deal with the term Tε2 that we can rewrite as

Tε2 (ϕ) = Jε(ϕ) + Mε(ϕ),

where

Jε(ϕ) =

ˆ
R+

dt
ˆ
Rd

dv f (t, v)∇v ·
Ä ˆ

R+
dσ

 
dx χ

[0,t/ε2 ]
(σ)Eε(t − ε2

σ, x)⊗ Eε(t, x + vσ)∇vϕ(t, v)

ä
,

and

Mε(ϕ) :=

ˆ
R+

dt
ˆ
Rd

dv
ˆ
R+

dσ
 

dx χ
[0,t/ε2 ]

(σ)(
fε(t − ε2

σ, x, v)− f (t, v)
)
∇v ·

(
Eε(t − ε2

σ, x)⊗ Eε(t, x + vσ)∇vϕ(t, v)
)
.

If we assume that

lim
ε→0

Jε(ϕ) exists, and lim
ε→0

Mε(ϕ) = 0,

then we obtain

lim
ε→0

Tε2 (ϕ) =

ˆ
R+

dt
ˆ
Rd

dv f (t, v)∇v ·
(
D(t, v)T∇vϕ(t, v)

)
,

with
D(t, v) = lim

ε→0

ˆ
R+

dσ
 

dx χ
[0,t/ε2 ]

(σ)Eε(t, x)⊗ Eε(t − ε2
σ, x − vσ).

Finally, putting all pieces together, we obtain the following diffusion equation,

∂t f (t, v)−∇v ·
(
D(t, v)∇v f (t, v)

)
= 0, in D′([0, T ]× Rd ).
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Global-in-time approach for the flux term: open issues and remarks
1. All computations involving the term T ε2 are formal and must be justified in a convenient

functional framework.
I In order to show existence of the limit limε→0 Jε(ϕ) we have to show that the term

Rε(t, σ, x, v) := χ
[0,t/ε2 ]

(σ)∇v ·
(

Eε(t − ε2
σ, x)⊗ Eε(t, x + vσ)∇vϕ(t, v)

)
converges weakly in L1(R+

t × R+
σ × Q).

I In order to prove limε→0 Mε(ϕ) = 0, and justify the diffusion equation, we have to show that

Rε converges strongly in L1(R+
t × R+

σ × Q),

since fε(t − ε2σ, x, v)− f (t, v) ⇀ 0 in L∞(R+
t × R+

σ × Q) weak–∗.

I We observe that a crucial point is to obtain enough integrability with respect the time variable σ,
uniformly in ε.

2. Strong time compactness would help to justify the above formal computations for the term T ε2 .
However, lack of time compactness is in fact necessary if we do not want to obtain a trivial
equation, as stated in point iv) of Theorem (A).

3. Without time compactness, the electric field Eε always converges weakly to zero, but not the
quadratic electric tensor Eε ⊗ Eε (this is a property of weak convergence), which implies a
non-trivial diffusion matrix D . Therefore, weak convergence seems mandatory to obtain a
diffusion limit.

4. Fast oscillations in time should produce the diffusion, WKB expansion seems relevant for this.

5. Instead of time compactness, time decorrelation properties could help to justified rigorously
above computations (cf. the non-selfconsistent stochastic part).
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Global-in-time approach for the flux term: weak limit, fast-time oscillations, WKB ansatz
We can obtain an explicit form of the diffusion matrix in the non-selfconsistent deterministic case.

Using Fourier expasion,

Eε(t , x) =
∑
k∈Zd

e ik·x Êε(t , k),

we assume the formal WKB expansion for the Fourier mode Êε(t , k),

Êε(t , k) =
∑
j≥0

εj Êj (t , k ,Ω(t , k)/ε2), (3)

where complex vector-valued functions (k , τ) 7→ Êj (t , k , τ) are 2π-periodic with respect to the
variable τ . As a first approximation of (3), we obtain

Êε(t , k) = Ê0(t , k) exp
(
−i

Ω(t , k)

ε2

)
+O(ε), (4)

where the real vector-valued function k 7→ Ê0(t , k) is even with respect to the variable k .

Using (4) and time Taylor expansions, we obtain from the definition of the diffusion matrix D ,

D(t , v) = π
∑
k∈Zd

Ê0(t , k)⊗ Ê0(t , k)δ
(
∂t Ω(t , k)− k · v

)
.

If we assume Ω(t , k) =
´ t

0 dθ ω(θ, k), then we obtain

D(t , v) = π
∑
k∈Zd

Ê0(t , k)⊗ Ê0(t , k)δ
(
ω(t , k)− k · v

)
.
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Local-in-time approach for the flux term: term T ε1
Integrating in time the space-averaged Vlasov equation against a test function ϕ(t , v), we obtain〈

f ε(t + θ)− f ε(t)
θ

, ϕ

〉
=

1
εθ

ˆ
R+

dt
ˆ
Rd

dv
ˆ t+θ

t
ds

 
dx f ε(s)Eε(s) · ∇vϕ(t , v).

Using the Duhamel representation formula for f ε(s),

f ε(s) = Sε
s−t+θ̂

f ε(t − θ̂)−
1
ε

ˆ s

t−θ̂
dσ Sεs−σEε(σ) · ∇v f ε(σ),

with θ̂ an arbitrary non-negative time we obtain〈
f ε(t + θ)− f ε(t)

θ
, ϕ

〉
= T ε1 (ϕ) + T ε2 (ϕ),

where

T ε1 (ϕ) :=

ˆ
R+

dt
ˆ
Rd

dv
ˆ t+θ

t
ds

 
dx

1
εθ

Eε(s) · ∇vϕ(t , v)Sε
s−t+θ̂

f ε(t − θ̂),

and

T ε2 (ϕ) :=

ˆ
R+

dt
ˆ
Rd

dv

ˆ t+θ

t
ds

ˆ s

t−θ̂
dσ

 
dx

1
ε2θ

Sεs−σ f ε(σ)∇v ·
Ä

Sεs−σEε(σ, x)⊗ Eε(s, x)∇vϕ(t , v)
ä
.

For the term T ε1 , we assume that

T ε1 ⇀ 0 in D′(R+ × Rd ).
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Local-in-time approach for the flux term: term T ε2
We now deal with the term T ε2 , which can be recast as

T ε2 (ϕ) = J ε(ϕ) +Mε(ϕ),

where, using the change of variables θ = ε2τ and θ̂ = ε2η,

J ε(ϕ) =

ˆ
R+

dt
ˆ
Rd

dvf (t , v)∇v ·
(

1
τ

ˆ τ

0
ds

ˆ s

−η
dσ

 
dx

Eε(t + (s − η − σ)ε2, x)⊗ Eε(t + sε2, x + v(σ + η))∇vϕ(t , v)

)
,

and

Mε(ϕ) :=

ˆ
R+

dt
ˆ
Rd

dv
1
τ

ˆ τ

0
ds

ˆ s

−η
dσ

 
dx
(

f ε(t + (s − η − σ)ε2, x , v)− f (t , v)
)

∇v ·
Ä

Eε(t + (s − η − σ)ε2, x)⊗ Eε(t + sε2, x + v(σ + η))∇vϕ(t , v)
ä
.

The next lemma justifies that in the case where τ and η are finite, the term J ε(ϕ) has a limit
as ε→ 0. Defining

Dε(t , v) =
1
τ

ˆ τ

0
ds

ˆ s

−η
dσ

 
dx Eε(t + sε2, x)⊗ Eε(t + (s − η − σ)ε2, x − v(σ + η))

we have the following lemma,
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Local-in-time approach for the flux term: term T ε2

Lemma

Let τ and η be finite. Then, J ε has a limit in D′(R+ × Rd ) such that

lim
ε→0

J ε(ϕ) =

ˆ
R+

dt
ˆ
Rd

dv f∇v · (DT∇vϕ), ∀ϕ ∈ D(R+ × Rd ),

where D is the weak limit of Dε (up to a subsequence) in the following sense,

Dε ⇀ D in L1
loc(R+; W 1,1

loc (Rd )) weak,

and
Dε ⇀ D in L∞(R+; L∞(Rd )) weak−∗.

Finally, if we now assume

lim
ε→0

Mε(ϕ) = 0,

putting all pieces together, we obtain the following diffusion equation

∂t f (t , v)−∇v ·
(
D(t , v)∇v f (t , v)

)
= 0, in D′([0,T ]× Rd ).
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Local-in-time approach for the flux term: open issues and remarks

1. In order to justify limε→0 Mε(ϕ) = 0, we have to prove that the term

∇v ·
Ä

Eε(t + (s − η − σ)ε2, x)⊗ Eε(t + sε2, x + v(σ + η))∇vϕ(t , v)
ä
,

converges strongly in L1(R+
t × R+

s × R+
σ × Q) as ε→ 0.

2. Show that T ε1 ⇀ 0 in D′(R+ × Rd ) remains an open issue.
Nevertheless, we may expect that there exist some mixing-type hypotheses, which could
justify such limit.

4. The parameter τ is reminiscent of the autocorrelation time of particles τ, which will be
introduced in case of the non-selfconsistent stochastic electric field.

5. As before we can use a WKB expansion to obtain the structure of the diffusion matrix in the
non-selfconsistent deterministic case.
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Local-in-time approach for the flux term: weak limit, fast-time oscillations, WKB ansatz
Using the following WKB ansatz for the Fourier modes of the electric field,

Êε(t , k) = Ê0(t , k) exp
(
−i

Ω(t , k)

ε2

)
+O(ε),

in the definition of D , we obtain

D(t , v) =
∑
k∈Zd

sin(τ∆Ω/2)

τ∆Ω/2
sin((τ/2 + η)∆Ω)

∆Ω
Ê0(t , k)⊗ Ê0(t , k).

with

∆Ω := ∂t Ω(t , k)− k · v .
1. Limit η → +∞:

D(t , v) = π
∑
k∈Zd

Ê0(t , k)⊗ Ê0(t , k)δ
(
∂t Ω(t , k)− k · v

)
.

2. Limit η → 0:

D(t , v) =
τ

2

∑
k∈Zd

Ç
sin
(
τ
2

(
∂t Ω(t , k)− k · v

))
τ
2

(
∂t Ω(t , k)− k · v

) å2

Ê0(t , k)⊗ Ê0(t , k).

3. Limit τ→ +∞ with η fixed and finite:

D(t , v) = π
∑
k∈Zd

Ê0(t , k)⊗ Ê0(t , k)δ
(
∂t Ω(t , k)− k · v

)
.
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The turbulent electric field
Here, electrostatic turbulence is modeled through a given random vector field Eε.
Let (Ω,F ,P) be a probability space, with P being a σ-finite measure. A random vector F is real
vector-valued function defined on Ω. When F : Ω→ Rd is an integrable random vector, its
expectation is given by

E[F ] =

ˆ
Ω

dP(ω) F (ω).

The turbulent electric field Eε has two time scales, one slow and the other fast, and is given by

Eε(t , x) = E(t , t/ε2, x ;ω),

where, the integrable random vector field E satisfies the following “stochastic” assumptions:

(H1): The random vector field E is centered, i.e.

E[E(t , τ, x)] = 0, ∀(t , τ, x) ∈ R+ × R+ × Td .

(H2): There exists a constant τ > 0 such that for every x , y ∈ Rd and for every τ, σ ∈ R+ the
electric fields E(t , τ, x) and E(s, σ, y) are independent random vector fields as soon as
|τ − σ| ≥ τ.
The autocorrelation time τ is supposed fixed and finite, hence independent of ε.

(H3): There exists a matrix-valued function Rτ : R+ × R+ × R× Td → R2d , called the
autocorrelation matrix or the Reynolds electric stress tensor, such that

E[E(t , τ, x)⊗ E(s, σ, y)] = Rτ(t , s, τ − σ, x − y).

(H4): The regularity of E is such that

E ∈ L∞
(
R+ × R+; W 2,∞(Td )

)
, and E

î
‖E‖3

L∞(R+×R+;W 2,∞(Td ))

ó
=: CE <∞.
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Theorem (B)

• Let E be an integrable random vector field satisfying assumptions (H1)-(H4), and let Eε be
given by Eε(t , x) = E(t , t/ε2, x ;ω).

• Let {f ε0 }ε>0 be a sequence of independent random non-negative initial data and C0 be a
positive constant such that for a.e. ω ∈ Ω, ‖f ε0 ‖L1(Q) + ‖f ε0 ‖L∞(Q) ≤ C0 <∞.

• Let Dτ = Dτ(t , v) be the matrix-valued function defined by

Dτ(t , v) =

ˆ τ

0
dσRτ(t , t , σ, σv).

• Let f ε be the unique weak solution of the rescaled Vlasov equation with initial data f ε|t=0
= f ε0 .

Then up to extraction of a subsequence,

E[f ε0 ] ⇀ f0 ∈ L1 ∩ L∞(Q) in L∞(Q) weak–∗,

E[f ε] ⇀ f ∈ L∞(R+; L1 ∩ L∞(Rd )) in L∞(R+; L∞(Q)) weak–∗,

E
[  

dx f ε
]
⇀ f ∈ L∞(R+; L1 ∩ L∞(Rd )) in L∞(R+; L∞(Q)) weak–∗.

Moreover E[
ffl

dx f ε] converges in C (0,T ; Lp(Rd )− weak) to f , for 1 < p <∞ and for all T > 0.
The limit point f = f (t , v) is solution of the following diffusion equation in the sense of distributions:

∂t f −∇v · (Dτ∇v f ) = 0, in D′(R+ × Rd ),

f|t=0
=

 
dx f0.

Nicolas BESSE (03/08/22) Around the quasilinear approximation of the Vlasov equation Vienna 25/07-05/08 21 / 42



Properties of the diffusion matrix Dτ

Proposition (properties of the diffusion matrix Dτ)

Under assumptions (H1)-(H4), the matrix-valued function Rτ : R+ × R+ × R× Td → R2d , and
the diffusion matrix Dτ : R+ × Rd → R2d satisfy the following properties:

i) Rτ(t , t , τ, x) = RT
τ (t , t ,−τ,−x), and Rτ(t , t , τ, x + 2πk) = Rτ(t , t , τ, x), ∀k ∈ Z.

ii) Rτ ∈ L∞(R+ × R+ × R; W 2,∞(Td )), and supp(Rτ) ⊂ R+ × R+ × [−τ, τ]× Td .

iii) Dτ ∈ L∞(R+; W 2,∞(Rd )), and supp(Dτ) ⊂ R+ × Rd .

iv) The symmetric part of Dτ is non-negative, i.e. X T DτX ≥ 0, ∀ ∈ X ∈ Rd .
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Proof of Theorem (B): time decorrelation
Let us rewrite the rescaled Vlasov equation in the following form,

∂t f ε +
1
ε2
Lf ε = N εt f ε,

f ε|t=0
= f ε0 ,

where the linear operators L and N εt are defined by

L = v · ∇x , N εt = −
1
ε

Eε(t , x) · ∇v = −
1
ε

E(t , t/ε2, x) · ∇v .

The operators L and N εt are skew-adjoint for the scalar product of L2(Q).

The operator L and the deterministic group Sεt , generated by ε−2L commute with the
statistical average E.

The space and statistical averages commute.

From hypothesis (H2), the random operators N εt and N εs are independent as soon as
|t − s| > ε2τ.

The next useful proposition states that time decorrelation of the stochastic electric field also entails
time decorrelation between the distribution function and the electric field.

Proposition (time decorrelation property between f ε and Eε)

Assume (H2). Suppose that the random initial data f ε0 and the electric field Eε are independent.
Then N εs is independent of f ε(t) as soon as s ≥ t + ε2τ.
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Proposition (Existence of limits in the proof of Theorem (B))

Assume (H4) and consider a sequence {f ε0 }ε>0 of initial data such that

f ε0 ≥ 0, and for a.e. ω ∈ Ω, ‖f ε0 ‖L1(Q) + ‖f ε0 ‖L∞(Q) ≤ C0 <∞.

Then, for any ε > 0, the rescaled Vlasov equation has a unique non-negative solution
f ε ∈ C (R+, L1 ∩ L∞(Q)), which is given by

f ε(t , x , v) = f ε0 (Xε(0; t , x , v),V ε(0; t , x , v)),

where the characteristic curves (Xε,V ε) are solutions to the ODEs,

dXε

dt
(t) =

1
ε2

V ε(t),
dV ε

dt
(t) =

1
ε

Eε(t ,X(t)), Xε(0; 0, x , v) = x , V ε(0; 0, x , v) = v .

In addition, there exist a function f0 ∈ L1 ∩ L∞(Rd ), and a function f ∈ L∞(R+; L1 ∩ L∞(Rd )),
such as, up to subsequences,

E[f ε0 ] ⇀ f0 in L∞(Q) weak−∗, and E[f ε] ⇀ f in L∞(R+; L∞(Q)) weak−∗.

The limit point f is such that
ffl

dx f = f ∈ L∞(R+; L1 ∩ L∞(Rd )). The function E[
ffl

dx f ε] is
the solution of

∂tE
[ 

dx f ε
]

+∇v · E
[ 

dx
Eεf ε

ε

]
= 0, in D′(R+ × Rd ),

E
[ 

dx f ε
]
|t=0

= E
[ 

dx f ε0

]
.
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Proof of Theorem (B): double Duhamel iteration, and decomposition of the flux term
Using the group Sεt and the Duhamel formula, the formal solution to the rescaled Vlasov equation
is given by

f ε(t) = Sεt−s f ε(s) +

ˆ t

s
dτ Sεt−τN

ε
τ f ε(τ). (5)

Taking s = t − ε2τ in (5), and making the change of variable τ = t − σ , we obtain from (5),

f ε(t) = Sε
ε2τ

f ε(t − ε2τ) +

ˆ ε2τ

0
dσ SεσN εt−σ f ε(t − σ). (6)

In the integral term of (6), we observe that the electric field and the distribution function are
evaluated at the same time t − σ. As a consequence, if we substitute (6) to f ε in the flux term of
the space-averaged rescaled Vlasov equation we obtain a quadratic term with respect to the
electric field that we cannot decorrelate in time from the distribution function. For this reason we
iterate a second time the Duhamel formula. In the same way that we obtained (5), we obtain

f ε(t − σ) = Sε2ε2τ−σ f ε(t − 2ε2τ) +

ˆ 2ε2τ−σ

0
ds SεsN εt−σ−s f ε(t − σ − s). (7)

Substituting the right-hand side of (7) to f ε(t − σ) in the right-hand side of (6), and using the
properties of the group Sεt , we obtain

f ε(t) = Sε
ε2τ

f ε(t − ε2τ) +

ˆ ε2τ

0
dσ SεσN εt−σSε−σSε2ε2τ

f ε(t − 2ε2τ)

+

ˆ ε2τ

0
dσ

ˆ 2ε2τ−σ

0
ds SεσN εt−σSεsN εt−σ−s f ε(t − σ − s). (8)
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Applying the operator N εt to (8), and then applying successively the average in space and the
expectation value, we obtain

−∇v · E
[ 

dx
Eε(t)f ε(t)

ε

]
=

 
dx E

[
N εt Sε

ε2τ
f ε(t − ε2τ)

]
+

ˆ ε2τ

0
dσ

 
dx E

[
N εt SεσN εt−σSε−σSε2ε2τ

f ε(t − 2ε2τ)
]

+ µεt , (9)

with

µεt =

ˆ ε2τ

0
dσ

ˆ 2ε2τ−σ

0
ds

 
dx E

[
N εt SεσN εt−σSεsN εt−σ−s f ε(t − σ − s)

]
.

Using Proposition 2, we obtain that f ε(t) is independent of N εs as soon as s ≥ t + ε2τ. Then,
using hypothesis (H1), we obtain

E
[
N εt Sε

ε2τ
f ε(t − ε2τ)

]
= E
[
N εt
]
Sε
ε2τ

E
[
f ε(t − ε2τ)

]
= 0.

Since Proposition 2 implies that N εt and N εt−σ are independent of f ε(t − 2ε2τ), for
0 ≤ σ ≤ ε2τ, we obtain from (9),

−∇v · E
[ 

dx
Eε(t)f ε(t)

ε

]
=

ˆ ε2τ

0
dσ

 
dx E

[
N εt SεσN εt−σSε−σ

]
E
[
Sε2ε2τ

f ε(t − 2ε2τ)
]

+ µεt

=

ˆ ε2τ

0
dσ

 
dx E

[
N εt SεσN εt−σSε−σ

]
E [f ε(t)] + µεt

+

ˆ ε2τ

0
dσ

 
dx E

[
N εt SεσN εt−σSε−σ

]
E
[
Sε2ε2τ

f ε(t − 2ε2τ)− f ε(t)
]
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Proof of Theorem (B): limit of the flux term, the Fick-type law

Proposition

We define the differential operator Θεt as

Θεt ϕ =

ˆ τ

0
dσ (σ∇x ·+∇v · )E

[
Eε(t − ε2σ, x − σv)⊗ Eε(t , x)

]
∇vϕ, ϕ ∈ D(R+ × Rd ), (10)

and the bilinear form νεt as

νεt (ψ,ϕ) =

ˆ
R+

dt
ˆ
Rd

dv
 

dx ψΘεt ϕ, ∀ψ ∈ L∞(R+ × Q), ∀ϕ ∈ D(R+ × Rd ).

Then, the weak formulation of the flux term reads: ∀ϕ ∈ D(R+ × Rd ),

ˆ
R+

dt
ˆ
Rd

dv ∇vϕ · E
[ 

dx
f ε(t)Eε(t)

ε

]
= νεt (E[f ε(t)], ϕ) + νεt

(
E
[
Sε2ε2τ

f ε(t − 2ε2τ)− f ε(t)
]
, ϕ
)

+ µεt (ϕ),

where the remainder term µεt (ϕ) is given by

µεt (ϕ) = −ε4
ˆ
R+

dt
ˆ
Rd

dv
ˆ τ

0
dσ

ˆ 2τ−σ

0
ds

 
dx

E
î
f ε(t − ε2(σ + s))N εt−ε2(σ+s)

Sε−ε2sN
ε
t−ε2σ

Sε−ε2σ
N εt ϕ
ó
.
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Proof of Theorem (B): some lemmas

Lemma
Under hypothesis (H3), for all ϕ ∈ D(R+ × Rd ), the operator Θεt defined by (10) becomes

Θεt ϕ = ∇v ·
((ˆ τ

0
dσRτ(t − ε2σ, t ,−σ,−σv)

)
∇vϕ

)
,

and we obtain
Θεt ϕ −→ Θ0

t ϕ in L1(R+ × Rd ) strong,

where the operator Θ0
t is defined by

Θ0
t ϕ = ∇v ·

((ˆ τ

0
dσRτ(t , t ,−σ,−σv)

)
∇vϕ

)
.

Lemma
Under hypothesis (H3), for all ϕ ∈ D(R+ × Rd ), we obtain

lim
ε→0

νεt
(
E[Sε2ε2τ

f ε(t − 2ε2τ)− f ε(t)], ϕ
)

= 0.

Lemma
Under hypothesis (H4), for all ϕ ∈ D(R+ × Rd ), we obtain

|µεt (ϕ)| ≤ ετ4C0CE‖ϕ‖L∞(R+;W 3,1(Rd )) → 0, as ε→ 0.
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Proof of Theorem (B): the end.
We are now able to conclude the proof of Theorem (B). Indeed we have

ˆ
R+

dt
ˆ
Rd

dv E
[ 

dx f ε
]
∂tϕ−

ˆ
R+

dt
ˆ
Rd

dv ∇vϕ · E
[ 

dx
f εEε

ε

]
= 0, (11)

with
ˆ
R+

dt
ˆ
Rd

dv ∇vϕ · E
[ 

dx
f εEε

ε

]
= νεt (E[f ε], ϕ) + νεt

(
E
[
Sε2ε2τ

f ε(t − 2ε2τ)− f ε(t)
]
, ϕ
)

+ µεt (ϕ). (12)

From lemmas above we have

ˆ
R+

dt
ˆ
Rd

dv E
[ 

dx f ε
]
∂tϕ −→

ˆ
R+

dt
ˆ
Rd

dv f∂tϕ, as ε→ 0, (13)

νεt (E[f ε], ϕ) −→
ˆ
R+

dt
ˆ
Rd

dv f Θ0
t ϕ, as ε→ 0, (14)

and

νεt
(
E
[
Sε2ε2τ

f ε(t − 2ε2τ)− f ε(t)
]
, ϕ
)

⇀ 0 in D′(R+ × Rd ), as ε→ 0, (15)

µεt ⇀ 0 in D′(R+ × Rd ), as ε→ 0. (16)

Using (13)-(16) to pass to the limit ε→ 0 in (12) and (11), we obtain

∂t f −∇v ·
((ˆ τ

0
dσRτ(t , t , σ, σv)

)
∇v f
)

= 0, in D′(R+ × Rd ).
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Links with some kinetic turbulence theories of plasma physics
The diffusion matrix Dτ obtained in Theorem (B), can be recast as

Dτ(t , v) =

ˆ τ

0
dσ E[E(t , 0, x)⊗ E(t ,−σ, x − σv)]. (17)

Introducing the Fourier series decomposition of E ,

E(t , τ, x) =
∑
k∈Zd

e ik·x Ê(t , τ, k),

we can suppose without loss of generality that

Ê(t , τ, k) = e−iω(k)τ Ẽ(t , τ, k),

where the real-valued function Zd 3 k 7→ ω(k) ∈ R is odd, i.e. ω(−k) = −ω(k) for all k ∈ Zd .

In the same spirit as assumption (H3), we now make the following assumption:

(H3′) : There exist a non-negative real-valued function E(t , k) : R+ × Zd → R+, with
E(t , k) = E(t ,−k ) and |k |2|E(t , k)|1/2 ∈ L∞(R+; `1(Zd )), and a bounded function
Aτ(τ, k) : [−τ, τ]× Zd → R+, even and compactly supported in τ , such that

E
[
Ẽ(t , τ, k)⊗ Ẽ(t , σ, k ′)

]
= Aτ(τ − σ, k)E(t , k)

k ⊗ k
|k |2

δ(k + k ′).
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Links with some kinetic turbulence theories of plasma physics
Actually, the property (H3′) implies the property (H3), in other words the property (H3′) is less
general than the property (H3). Indeed, we obtain from (H3′),

E[E(t , τ, x)⊗ E(t , σ, y)] =
∑
k∈Zd

Aτ(τ − σ, k)E(t , k)
k ⊗ k
|k |2

e ik·(x−y)e−iω(k)(τ−σ),

from which we easily observe that the spatio-temporal autocorrelation function
E[E(t , τ, x)⊗ E(t , σ, y)] is invariant under time and space translations. In terms of the
autocorrelation matrix Rτ, hypothesis (H3′) is equivalent to

Rτ(t , t , σ, x) =
∑
k∈Zd

e−iω(k)σAτ(σ, k)E(t , k)
k ⊗ k
|k |2

e ik·x .

Using assumption (H3′) in definition (17) of Dτ, we obtain

Dτ(t , v) =
∑
k∈Zd

E(t , k)
k ⊗ k
|k |2

ˆ τ

0
dσ e−i(ω(k)−k·v)σAτ(σ, k). (18)

The diffusion matrix (18) can be rewritten as

Dτ(t , v) =
∑
k∈Zd

E(t , k)
k ⊗ k
|k |2

Rτ(ω(k)− k · v , k),

where the resonance function Rτ is given by

Rτ(ω(k)− k · v , k) = <e
ˆ τ

0
dσ e−i(ω(k)−k·v)σAτ(σ, k) =

1
2

ˆ +∞

−∞
dσ e−i(ω(k)−k·v)σ Aτ(σ, k).

Nicolas BESSE (03/08/22) Around the quasilinear approximation of the Vlasov equation Vienna 25/07-05/08 31 / 42



Corollary

• Let E be an integrable random vector field satisfying the assumptions (H1)-(H2) and (H3′)-(H4).

• Let Eε be given by Eε(t , x) = E(t , t/ε2, x ;ω).

• Let {f ε0 }ε>0 be a sequence of independent random non-negative initial data and C0 be a
positive constant such that for a.e. ω ∈ Ω, ‖f ε0 ‖L1(Q) + ‖f ε0 ‖L∞(Q) ≤ C0 <∞.

• Let Dτ be the matrix-valued function defined by (18).

• Let f ε be the unique weak solution of the rescaled Vlasov equation , with initial data f ε|t=0
= f ε0 .

Then

1. Up to extraction of a subsequence,

E[f ε0 ] ⇀ f0 ∈ L1 ∩ L∞(Q) in L∞(Q) weak–∗,

E[f ε] ⇀ f ∈ L∞(R+; L1 ∩ L∞(Rd )) in L∞(R+; L∞(Q)) weak–∗,

E
[  

dx f ε
]
⇀ f ∈ L∞(R+; L1 ∩ L∞(Rd )) in L∞(R+; L∞(Q)) weak–∗.

The limit point f = f (t , v) is solution of the following diffusion equation in the sense of
distributions:

∂t f −∇v · (Dτ∇v f ) = 0, in D′(R+ × Rd ),

f|t=0
=

 
dx f0.

2. The diffusion matrix Dτ is symmetric, non-negative and analytic in the velocity variables.
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Remarks
Our diffusion matrix Dτ is reminiscent of the diffusion matrix Drb of the resonance
broadening theory (RBT).

RBT: finite τ. The important difference is that in the resonance broadening theory, τ
depends on the quasilinear diffusion matrix itself (through a nonlinear integral functionnal),
whereas in our derivation τ is a free parameter. Indeed for the RBT we have,

Aτ(σ, k) = exp(−(σ/τ)3/3), with τ = (k ⊗ k : Drb(σ, v))−1/3, i.e.

Aτ(σ, k) = Arb(σ, k ,Drb(σ, v)) := exp
(
− 1

3 k ⊗ k : Drb(σ, v)σ3
)
.

and

Drb(t , v) =
∑
k∈Zd

E(t , k)
k ⊗ k
|k |2

<e
ˆ ∞

0
dσ e−i(ω(k)−k·v)σArb(σ, k ,Drb(σ, v))

=
∑
k∈Zd

E(t , k)
k ⊗ k
|k |2

Rrb(ω(k)− k · v , k ,Drb).

QLT: infinite τ. By taking the formal limit τ→ +∞, for an autocorrelation function Aτ, such
that Aτ → 1 a.e. as τ→ +∞ (e.g. Aτ(σ, k) = 1[−τ,τ](σ)), and using Plemelj formula, we
obtain

lim
τ→+∞

Rτ(ω(k)− k · v , k) = πδ(ω(k)− k · v), (19)

for the resonance function. Then, we recover the QL diffusion matrix of plasma physics
literature

D∞(t , v) = π
∑
k∈Zd

E(t , k)
k ⊗ k
|k |2

δ(ω(k)− k · v).

Nicolas BESSE (03/08/22) Around the quasilinear approximation of the Vlasov equation Vienna 25/07-05/08 33 / 42



Remarks

The limit τ→ +∞ is a singular limit from different points of view:

1. When τ→∞, the autocorrelation matrix Rτ is no nore integrable with respect to correlation time
σ, but only locally integrable.

This loss of integrability entails a loss of regularity in the velocity variables for the diffusion matrix.
This loss of regularity in velocity variables is even more striking when we observe the singular limit
(19) for a smooth resonance function Rτ.

2. When τ→∞, hypothesis (H2) does not hold anymore. Indeed the stochastic electric field Eε no
longer satisfies a time decorrelation property since its decorrelation time tends to infinity. It is like
falling back to the deterministic case.

When τ→∞, the autocorrelation time of particles tends to infinity and the time decorrelation of the
stochastic electric field Eε occurs at infinite time. This can be interpreted as follows. The electric field
becomes deterministic and particles trajectories are almost straight lines. This seems consistent with
the original deterministic derivation of the QL theory performed by physicists.

Finally, we note that the RBT is actually a statistical (probabilistic) theory of the Vlasov
equation and does not have a deterministic counterpart in the plasma physics literature.
Nevertheless, for the deterministic case above, we have been able to introduce a finite
autocorrelation time of particles τ, and to derive formally a diffusion matrix that is consistent
with the quasilinear one in the limit τ→∞.
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1 The selfconsistent deterministic case

2 The non-selfconsistent stochastic case

3 The quasilinear theory in a short time.
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Well-prepared initial data

Our main theorem relies on well-prepared initial data, which roughly speaking are solutions of
the linearized Vlasov–Poisson system around an unstable velocity profile.

Initial distributions f ε0 are of the form

f ε0 (x , v) = F0(v) + εh0(x , v), x ∈ Td , v ∈ Rd ,

where ε > 0 is a small real parameter, and the functions (F0, h0) satisfy the following
constraints ˆ

Rd
F0(v) dv = 1,

 
h0 dx = 0.

F0 ≥ 0 is a stationary solution of the Vlasov–Poisson system, which is unstable, i.e. giving
birth to an electrostatic instability when it is perturbed by the initial small perturbation εh0.

For the regularity of F0, we suppose

F0 ∈ A
r0,µ
m , r0 > 0, µ > d , m > d/2.

where the space Ar,µ
m is defined below.

Ar,µ
m is the space of analytic functions on the phase space T

d × Rd , with radius of
analyticity r , a Sobolev correction (weight) of order µ, and a velocity (moment) weight of
order m.
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Well-prepared initial data

From the spectral analysis of the linearized Vlasov–Poisson system around a velocity profile
F0 satisfying the Penrose criterion for instability, the real wavenumber k ∈ Zd

∗ and the
complex frequency λ = γ − iω (with γ, ω ∈ R) of an unstable electric wave satisfy the
dispersion equation

D0(k , λ) = 0, (20)

where the dielectric function (k , λ) 7→ D0(k , λ) is given by

D0(k , λ) := 1−
i
|k |2

ˆ
Rd

dv
k · ∇F0(v)

λ+ ik · v
. (21)

It can be shown that the number of solutions, called roots or zeroes, to equation (20) with
<eλ > δ0 > 0 is finite. Let N be this finite number of roots. Without loss of generality for our
purpose, we suppose that these N roots are simple, i.e. with multiplicity one. Therefore we
denote by

{(k0n, λ0n)}n=1,...,N , the simple roots of D0(k , λ) = 0, such that <eλ0n > δ0 > 0. (22)

Moreover it can be shown that there exist two positive real numbers δ0 < Λ0 <∞ and
1 ≤ κ0 <∞, such that

0 < δ0 < <eλ0n < Λ0, and 1 ≤ |k0n| < κ0, ∀n ∈ {1, . . . ,N}.
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Well-prepared initial data
From the dielectric function (21), if there exists λ ∈ C and k ∈ Zd

∗ such that the dispersion
equation (20) is satisfied then

D0(−k , λ̄) = 0.

The spectrum is symmetric with respect to the real axis and the number N is always even.
Physically this corresponds to the fact that an unstable plasma wave (k , λ) propagates in
similar way in both directions k and −k . Therefore there is N/2 simple roots
{(k0n, λ0n)}n=1,...,N/2 going hand-in-hand with their complex conjugate
{(−k0n, λ̄0n)}n=1,...,N/2.

We now precise the choice for h0. Let Eλ0n be the one-dimensional eigenspace associated
with the eigenvalue λ0n, i.e. a simple root of the set (22). We have

Eλ0n := Span
{

k0n · ∇F0(v)

λ0n + ik0n · v
exp(ik0n · x)

}
.

We choose h0 as an element of the space ⊕N
n=1Eλ0n , i.e.

h0 :=

N∑
n=1

iΦ̂0(k0n)
k0n · ∇F0(v)

λ0n + ik0n · v
exp(ik0n · x),

where the given complex-valued function k 7→ Φ̂0(k) is hermitian, i.e. Φ̂0(k) = Φ̂0(−k).

h0 enjoys the following regularity

h0 ∈ A
%0,µ
m , %0 ≥ min

{
δ0

κ0
, r−0

}
, µ > d , m > d/2.
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Theorem (C)

• Let (d ,m,N) be some integers such that d ≥ 1, m > d/2 and N ≥ 1.
• Let µ > d be a positive real constant.
• Let (δ0,Λ0, κ0, r0, %0, ε) be some positive real constants such that

0 < δ0 < Λ0 <∞, 1 ≤ κ0 <∞, 0 < r0 <∞, 0 < ε� 1, %0 ≥ min
{
δ0

κ0
, r−0

}
.

• Let f ε0 := F0 + εh0 be an initial data for the Vlasov–Poisson system posed on T
d × Rd , such

that F0 and h0 are designed as above. In particular we have f ε0 ∈ A
%0,µ
m , and there exist{

(k0n, λ0n) ∈ (Zd
∗ × C)

}
n=1,...,N

, simple roots of D0(k , λ) = 0,

such that 0 < δ0 < <eλ0n < Λ0, and 1 ≤ |k0n| < κ0, ∀n ∈ {1, . . . ,N},

where

D0(k , λ) := 1−
i
|k |2

ˆ
Rd

dv
k · ∇F0(v)

λ+ ik · v
.

• Recall that, by well-known results, there exists a time T0 > 0 such that for any time T , with

0 < T < T0, there exists a unique solution f ε(t) ∈ A%(t),µ
m to the Vlasov–Poisson system for all

t ∈ [0,T ], with %(0) = %0.

We define Fε = Fε(t , v) by

Fε(t , v) :=

 
dx f ε(t , x , v).
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Theorem (C)

Then,

(i) There exist a time T1 > 0 such that T1 < T0, and N distinct complex-valued functions
t 7→ λn(t), analytic on [0,T1] with λn(0) = λ0n, and such that

λn(t) = γn(t)− iωn(t), ωn ∈ R, 0 < δ0 < γn = <eλn < Λ0, ∀n ∈ {1, . . . ,N}.

Moreover these N distinct functions λn ∈ A([0,T1];C) are simple roots of the following
dielectric function,

Dt (k , λ) := 1−
i
|k |2

ˆ
Rd

dv
k · ∇v Fε(t , v)

λ+ ik · v
,

namely
Dt (k0n, λn(t)) = 0, ∀t ∈ [0,T1], ∀n ∈ {1, . . . ,N}.
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Theorem (C)

(ii) Let s0 be a positive real constant such that 0 < s0 ≤ %1 with %1 ≥ min{r−1 , δ0/κ0}, and
r1 := inft∈[0,T1] %(t) > 0.

For any s ∈ (0, s0) there exist a small parameter ε = ε(s) > 0 and a time T∗ = T∗(s) > 0
such that for all t ∈ [0,T∗], the function Fε ∈ L∞([0,T∗];A

%T∗ ,µ
m ) with

%T∗ = inft∈[0,T∗] %(t) > 0, satisfies, in the classical sense, the following diffusion equation
with remainder,

∂t Fε(t , v)−∇v ·
(
D(t , v)∇v Fε(t , v)

)
= R(t , x , v),

where the positive-definite-symmetric diffusion matrix D , of order O(ε2), is given by

D(t , v) = 2ε2
N∑

n=1

∣∣Φ̂0(k0n)
∣∣2γn(t) e2

´ t
0 γn(τ)dτ

γ2
n (t) + (ωn(t)− k0n · v)2

k0n ⊗ k0n,

and where the remainder R(t , x , v) satisfies the following estimate,

sup
t∈[0,T∗]

‖R(t)‖As,µ
m

= O(ε3), 0 < s < s0.

More precisely, the time T∗ is such that 0 < T∗ ≤ min{(s0 − s)/ν,T1}, where ν is a
positive real constant depending on T1, ε, and Fε ∈ L∞([0,T1];As0,µ

m ).

Proof. The proof is based on the same spirit as Nash–Moser-type implicit-function
problems. �
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