Many thanks to several co-workers and collaborators

Frank Jenko

Capitalizing on a better understanding of plasma turbulence

Max Planck Institute for Plasma Physics, Garching Ulm University

> Wolfgang Pauli Institute, Vienna March 21, 2013

Towards a virtual fusion device?!

GENE simulation of ASDEX Upgrade

Coupling GENE and TRINITY

Dimensional reduction techniques

- Often, one is mainly interested in *large scale dynamics*. There, one finds an interesting interplay between linear (drive) and nonlinear (damping) physics. – Is it possible to remove the small scales?
- Yes: Large Eddy Simulation (LES), POD etc.

Turbulence in fluids and plasmas – Three basic scenarios

1.Hydrodynamic cascade 2.

2. Conventional μ -turbulence

3. Saturation by damped eigenmode

Inertial range

- → no dissipation
- →scale invariant dynamics
- →power law spectrum

Energy transfer to high *k* like hydro – no inertial range adjacent unstable, damping ranges Energy can go to high *k* but most of it is lost at low *k* in driving range

...in collaboration with P. W. Terry

Excitation of damped eigenmodes

Using GENE as a linear eigenvalue solver to analyze nonlinear ITG runs via projection methods, one finds...

Energetics in wavenumber space

Damped eigenmodes are responsible for significant dissipation in the drive range (!)

Hatch, Terry, Jenko, Merz & Nevins, PRL 2011

Resulting spectrum decays exponentially @lo k, asymptotes to power law @hi k

Spectrum from k space attenuation of T(k) by dissipation $\alpha E(k)$:

$$\frac{dT(k)}{dk} = \frac{d(v_k^3 k)}{dk} = aE(k)$$

nonlinear energy transfer rate

Corrsin closure procedure:

$$v_k^3 k = v_k^2 \cdot v_k k = E(k)k \cdot \varepsilon^{1/3} k^{-1/3} k$$

Solving attenuation ODE:

$$E(k) = \beta \varepsilon^{2/3} k^{-5/3} \exp\left[\frac{3}{2} \alpha \varepsilon^{-1/3} k^{-2/3}\right]$$

Spectrum becomes power law in range where eddy turnover rate exceeds constant dissipation rate

Hatch *et al.*, PRL 2011 Terry *et al.*, PoP 2012

Shell-to-shell transfer of free energy

$$\mathcal{E}_f = \sum_i \int d\Lambda \frac{T_{0j}}{F_{0j}} \frac{f_j^2}{2},$$

ITG turbulence (adiabatic electrons); logarithmically spaced shells

Entropy contribution dominates; exhibits very local, forward cascade

 $\mathcal{E}_{\phi} = \sum_{i} \int d\Lambda q_{j} \frac{\phi_{1} f_{j}}{2}.$

Bañón Navarro et al., PRL 2011

Application: Gyrokinetic LES models

LES filter in DNS domain: $\partial_t f_{ki} = L[f_{ki}] + N[\phi_k, f_{ki}] - D[f_{ki}]$ $\partial_t \overline{f_k} = L[\overline{f_k}] + N[\overline{\phi_k}, \overline{f_k}] + T_{\overline{\Delta} \Delta DNS} - D[\overline{f_k}]$

300

$$\mathcal{D}_{t}J_{k} = \mathcal{D}[J_{k}] + \mathcal{D}[\mathcal{D}_{k}, J_{k}] + \mathcal{D}_{\Delta,\Delta} \mathcal{D}_{NS} = \mathcal{D}[$$

Sub-grid term: $T_{\overline{\Delta},\Delta^{\text{DNS}}} = \overline{N}[\phi_k, f_k] - N[\overline{\phi_k}, \overline{f_k}] \approx c_{\perp} k_{\perp}^4 h_{ki}$

Free energy spectra vs c_{\perp} :

Cyclone Base Case (ITG)

- $\star c_{\perp}$ too small
 - \Rightarrow not enough dissipation
- ★ c_{\perp} too strong
 - \Rightarrow overestimates injection
- * $c_{\perp} = 0.375$ good agreement
 - → "plateau" for $c_{\perp} \in [0.25, 0.625]$ → holds for k_x

Substantial savings in computational cost: Here, a factor of 20 10

Self-adjustment of model parameters

Test filter in DNS domain: $\partial_t \widehat{f_k} = L[\widehat{f_k}] + N[\widehat{\phi_k}, \widehat{f_k}] - D[\widehat{f_k}] + T_{\widehat{\Delta}, \Delta^{\text{DNS}}}$

Test filter in LES domain:

$$\partial_t \widehat{f}_k = L[\widehat{f}_k] + \widehat{N}[\overline{\phi_k}, \overline{f_k}] - D[\widehat{f}_k] + \widehat{T}_{\overline{\Delta}, \Delta^{\text{DNS}}}$$

 $\widehat{\cdots} = \widehat{\cdots}$...for the Fourier cut-off filters used here

One thus obtains the (Germano) identity:

$$T_{\widehat{\Delta},\Delta^{\mathrm{DNS}}} = \widehat{T}_{\overline{\Delta},\Delta^{\mathrm{DNS}}} + \widehat{N}[\overline{\phi_k},\overline{f_k}] - N[\widehat{\phi_k},\widehat{f_k}] = \widehat{T}_{\overline{\Delta},\Delta^{\mathrm{DNS}}} + T_{\widehat{\Delta},\overline{\Delta}}$$

Approximate sub-grid terms and minimize error:

$$T_{\widehat{\Delta},\Delta^{\mathrm{DNS}}} \approx M_{\widehat{\Delta}} \quad ; \quad T_{\overline{\Delta},\Delta^{\mathrm{DNS}}} \approx M_{\overline{\Delta}} \qquad \qquad M_{\widehat{\Delta}} \approx \widehat{M}_{\overline{\Delta}} + T_{\widehat{\Delta},\overline{\Delta}}$$

$$d^{2} = \left\langle \left(T_{\widehat{\Delta}, \overline{\Delta}} + \widehat{M}_{\overline{\Delta}} - M_{\widehat{\Delta}} \right)^{2} \right\rangle_{\Lambda}$$

...this procedure yields explicit expressions for the model parameter(s)

The "dynamic procedure" in practice

LES techniques are likely to reduce the simulation effort substantially without introducing many free parameters. This offers an interesting perspective...

~~

Summary and perspectives

Trying to tackle plasma turbulence

Ab initio simulations will remain very challenging (although invaluable), despite continuing growth in computer power

Quasilinear models can be extremely useful but fail to capture important nonlinear effects; thus, they must sometimes be complemented (or replaced) by nonlinear simulations

This motivates the search for reliable but minimal models; Large Eddy Simulations represent one such line of research

In general, we are in need of a still better understanding of plasma turbulence in order to model it efficiently