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Hermite representation in GK 

èHermite polynomials—natural 
representation of parallel 
velocity in GK 

Higher order singular value 
decomposition (HOSVD) 
applied to 6D gyrokinetics (5D 
plus time)—extracts mode 
structures for each coordinate. 

Hatch et al. JCP ‘12 



Hermites-Effective for resolving linear 
eigenmodes 

Bratanov et al. PoP ’13 
(see also Skiff et al. PRL ’98, Ng et al. PRL ’99—also use Hermites)  

Collisionless Landau roots (analytical) 

Numerical Landau roots 

Collisional Landau roots (analytical) 

Finite Differences Hermite Polynomials 



Spectral Representation in v-space 

Spectra v-space: possible application of LES* techniques. 
 In k-space separately for different Hermite n 
 Or in Hermite space. 

*P. Morel, A. Bañón Navarro, M. 
Albrecht-Marc, D. Carati, F. Merz, T. 
Görler, and F. Jenko, Physics of 
Plasmas 19, 012311 (2012)  
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Model--reduced gyrokinetics 
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The gyroaverage operator in the Poisson equation is approximated by assuming that the v⊥ dependence of the perturbed

distribution function is Maxwellian (i.e., of the form e
−µ

), in which case the Poisson equation is modified only by an exponential

factor e
−k2

⊥/2
as follows,

φkx,ky =

�
e
−k2

⊥/2
fdv|| + τ�φ�FS

τ + 1− Γ0(k2⊥)
. (6)

This is the same assumption used in Ref. [? ]. For a discussion of the limitations of this approximation, see Ref. [? ]. For our

purposes, these limitations are not of critical importance as we only need some reasonable mechanism to provide stabilization

of high-k⊥ modes, and wish to leave effects such as nonlinear perpendicular phase mixing for future work.

The resulting gyrokinetic equation is,
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where φ̄ ≡ e
−k2

⊥/2
φ, v ≡ v||, f(v) now has only parallel velocity dependence, and the background distribution function becomes

F0 ≡ π
− 1

2 e
−v2

.

B. Hermite Representation

In order to transform into a Hermite representation, we use basis functions Hn(v)e−v2
, where Hn are the Hermite polynomi-

als,

Hn(x) ≡
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(2nn!
√
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1
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d
n

dxn
e
−x2

, (8)

so that the expansion of the distribution function is,

f(v) =
∞�

n=0

f̂nHn(v)e
−v2

. (9)

In order to transform the equations to the Hermite basis, we exploit the orthogonality relation
�∞
−∞ Hn(x)Hm(x)e−x2

dx = δn,m

and operate on Eq. ?? (see Appendix B). This produces the reduced Hermite gyrokinetic equation
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Here we have used the Lenard-Bernstein collision operator, C[f ] = ν∂v [1/2∂v + v] f , for which the Hermite polynomials

are eigenfunctions C[f̂n] = −νnf̂n (see Appendix B).

In the Hermite representation, the electrostatic potential is proportional to f̂0,

φkx,ky =
π

1
4 e

−k2
⊥/2

f̂0 +∆τ�φ�FS

τ + 1− Γ0(k2⊥)
, (11)

where the flux-surface-averaged potential is,

�φ�FS =
π

1
4 e

−k2
⊥/2

f̂0δky,0δkz,0

[1− Γ0(k2x)]
. (12)
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Model (Very similar to Watanabe PoP ‘04): 
μ-averaged gyrokinetic equations* 

 FLR effects:  gyroaverageè 
Slab geometry  
Adiabatic electrons 
 
Hermite representation: 

Final Equations: 

*planned extension to 5D 



Free Energy 

3

D(k⊥) ≡
1 + δky,0δkz,0∆/(1− Γ0(k2x))

τ + 1− Γ0(k2⊥)
(13)
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For derivations of Eqs. (xxx) see Appendix B.

III. FREE ENERGY CONSERVATION AND EVOLUTION

The nonlinearly conserved free energy equation [? ] for this system can be derived by operating on Eq. ?? with,
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The free energy is,

εk,n = ε(f)k,n + ε(φ)k δn,0, (17)

where the entropy part is defined as,
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and the electrostatic part is,

ε(φ)k ≡ 1
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ε(φ)k /ε(f)k,0 = e−k2
⊥D(k⊥). (20)

The k- and n-resolved free energy evolution equation is produced by operating on the RHS of Eq. ??, and produces equations

for both the electrostatic and entropy parts of the free energy. The evolution equation for the electrostatic free energy is
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with the nonlinear transfer function for the electrostatic energy defined as,
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ηiQ = �
�
−π1/4

√
2
ηiikye

−k2
⊥/2f̂∗

2φ

�
, (26)

The second term on the RHS represents collisional dissipation, the phase mixing terms are defined as

Jk,n−1/2 ≡ �
�
−π

1
2 ikz

√
nf̂∗

k,nf̂k,n−1

�
, (27)

and

Jk,n+1/2 ≡ �
�
π

1
2 ikz

√
n+ 1f̂∗

k,nf̂k,n+1

�
, (28)

and the nonlinear transfer term is,

N (f)
k,n ≡ �

�
�

k�
T (f)

k,k’,n

�
, (29)

where the nonlinear entropy transfer function is defined as

T (f)
k,k�,n = −π1/2(k�xky − kxk

�
y)f̂

∗
k,nφ̄k−k� f̂k�,n. (30)

Discuss conservation.

A. Second subsection

IV. LANDAU DAMPING IN THE PRESENCE OF NONLINEARITY

γL ≡
J (φ)

k − Jk,1/2

2εk,0
(31)

ωnl ∼ kzvTi (32)

ωnl ∼ kyvTiρi/Ln (33)

ωnl�
φ(t)∗φ(t+ τ)dt

γlin
γL,lin

γL,nl

kzvTi



Schematic Energy Transfer 

Landau damping:  
Transfer between 
       and  
 

3

D(k⊥) ≡
1 + δky,0δkz,0∆/(1− Γ0(k2x))

τ + 1− Γ0(k2⊥)
(13)

φ = π
1
4 e−k2

⊥/2D(k⊥)f̂0 (14)

The heat flux Q ≡ �p∂yφ̄� becomes

Q = −π1/4

√
2

�

kx,ky,kz

ikyφ̄f̂
∗
2 . (15)

For derivations of Eqs. (xxx) see Appendix B.

III. FREE ENERGY CONSERVATION AND EVOLUTION

The nonlinearly conserved free energy equation [? ] for this system can be derived by operating on Eq. ?? with,

εn[Xn] ≡ Re
��

π
1
2 f̂n + π

1
4 φ̄δn,0

�∗
Xn

�
. (16)

The free energy is,

εk,n = ε(f)k,n + ε(φ)k δn,0, (17)

where the entropy part is defined as,

ε(f)k,n ≡ 1

2
π

1
2 |f̂k,n|2, (18)

and the electrostatic part is,

ε(φ)k ≡ 1

2D(k⊥)
|φk|2 (19)

ε(φ)k /ε(f)k,0 = e−k2
⊥D(k⊥). (20)

The k- and n-resolved free energy evolution equation is produced by operating on the RHS of Eq. ??, and produces equations

for both the electrostatic and entropy parts of the free energy. The evolution equation for the electrostatic free energy is

∂ε(φ)k
∂t

= J (φ)
k +N (φ)

k , (21)

where

J (φ)
k ≡ �

�
−ikzπ

1
4 φ̄∗f̂k,1

�
, (22)

and

N (φ)
k ≡ �

�
�

k�
T (φ)

k,k’

�
, (23)

with the nonlinear transfer function for the electrostatic energy defined as,

T (φ)
k,k’ = π1/4(k�xky − kxk

�
y)φ̄

∗
k φ̄k� f̂0,k−k� . (24)
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D(k⊥) ≡
1 + δky,0δkz,0∆/(1− Γ0(k2x))

τ + 1− Γ0(k2⊥)
(13)

φ = π
1
4 e−k2

⊥/2D(k⊥)f̂0 (14)

The heat flux Q ≡ �p∂yφ̄� becomes

Q = −π1/4

√
2

�

kx,ky,kz

ikyφ̄f̂
∗
2 . (15)

For derivations of Eqs. (xxx) see Appendix B.

III. FREE ENERGY CONSERVATION AND EVOLUTION

The nonlinearly conserved free energy equation [? ] for this system can be derived by operating on Eq. ?? with,

εn[Xn] ≡ Re
��

π
1
2 f̂n + π

1
4 φ̄δn,0

�∗
Xn

�
. (16)

The free energy is,

εk,n = ε(f)k,n + ε(φ)k δn,0, (17)

where the entropy part is defined as,

ε(f)k,n ≡ 1

2
π

1
2 |f̂k,n|2, (18)

and the electrostatic part is,

ε(φ)k ≡ 1

2D(k⊥)
|φk|2 (19)

ε(φ)k /ε(f)k,0 = e−k2
⊥D(k⊥). (20)

The k- and n-resolved free energy evolution equation is produced by operating on the RHS of Eq. ??, and produces equations

for both the electrostatic and entropy parts of the free energy. The evolution equation for the electrostatic free energy is

∂ε(φ)k
∂t

= J (φ)
k +N (φ)

k , (21)

where

J (φ)
k ≡ �

�
−ikzπ

1
4 φ̄∗f̂k,1

�
, (22)

and

N (φ)
k ≡ �

�
�

k�
T (φ)

k,k’

�
, (23)

with the nonlinear transfer function for the electrostatic energy defined as,

T (φ)
k,k’ = π1/4(k�xky − kxk

�
y)φ̄

∗
k φ̄k� f̂0,k−k� . (24)

Phase mixing: 
Conservative linear local 
cascade in Hermite 
space 

4

The entropy evolution equation is

∂ε(f)k,n

∂t
= ηiQkδn,2 − νnε(f)k,n − J (φ)

k δn,1 + Jk,n−1/2 − Jk,n+1/2 +N (f)
k . (25)

The energy drive term acts only on the second order Hermite polynomial and is proportional to the heat flux,

ηiQ = �
�
−π1/4

√
2
ηiikye

−k2
⊥/2f̂∗

2φ

�
, (26)

The second term on the RHS represents collisional dissipation, the phase mixing terms are defined as

Jk,n−1/2 ≡ �
�
−π

1
2 ikz

√
nf̂∗

k,nf̂k,n−1

�
, (27)

and

Jk,n+1/2 ≡ �
�
π

1
2 ikz

√
n+ 1f̂∗

k,nf̂k,n+1

�
, (28)

and the nonlinear transfer term is,

N (f)
k,n ≡ �

�
�

k�
T (f)

k,k’,n

�
, (29)

where the nonlinear entropy transfer function is defined as

T (f)
k,k�,n = −π1/2(k�xky − kxk

�
y)f̂

∗
k,nφ̄k−k� f̂k�,n. (30)

Discuss conservation.

A. Second subsection

IV. LANDAU DAMPING IN THE PRESENCE OF NONLINEARITY

γL ≡
J (φ)

k − Jk,1/2

2εk,0
(31)

ωnl ∼ kzvTi (32)

ωnl ∼ kyvTiρi/Ln (33)

ωnl�
φ(t)∗φ(t+ τ)dt

γlin
γL,lin

γL,nl

kzvTi

4

The entropy evolution equation is

∂ε(f)k,n

∂t
= ηiQkδn,2 − νnε(f)k,n − J (φ)

k δn,1 + Jk,n−1/2 − Jk,n+1/2 +N (f)
k . (25)

The energy drive term acts only on the second order Hermite polynomial and is proportional to the heat flux,

ηiQ = �
�
−π1/4

√
2
ηiikye

−k2
⊥/2f̂∗

2φ

�
, (26)

The second term on the RHS represents collisional dissipation, the phase mixing terms are defined as

Jk,n−1/2 ≡ �
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−π

1
2 ikz
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, (27)

and

Jk,n+1/2 ≡ �
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2 ikz
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�
, (28)

and the nonlinear transfer term is,

N (f)
k,n ≡ �
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�
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T (f)

k,k’,n

�
, (29)

where the nonlinear entropy transfer function is defined as

T (f)
k,k�,n = −π1/2(k�xky − kxk

�
y)f̂

∗
k,nφ̄k−k� f̂k�,n. (30)

Discuss conservation.

A. Second subsection

IV. LANDAU DAMPING IN THE PRESENCE OF NONLINEARITY

γL ≡
J (φ)

k − Jk,1/2

2εk,0
(31)

ωnl ∼ kzvTi (32)

ωnl ∼ kyvTiρi/Ln (33)

ωnl�
φ(t)∗φ(t+ τ)dt

γlin
γL,lin

γL,nl

kzvTi



DNA Code 

DNA code: 
Direct Numerical Analysis  
of Fundamental Gyrokinetic Turbulence Dynamics 
 
Fully Spectral:  
Fourier in three spatial dimensions 
Hermite in parallel velocity 
 
Developed from scratch, but much of the structure 
and many algorithms inspired and informed by 
GENE. 



Outline 

¤  Motivation – Hermite Polynomials 

¤  Model – reduced gyrokinetics 
¤  Energetics 
¤  DNA code 

¤  Hermite spectra 

¤  Studying Damped Eigenmodes 
¤  Linear Spectra 
¤  Pseudo-spectra 
¤  Nonlinear spectra 



Hermite Spectra 

Watanabe, Sugama ‘04: 
Collisionality-dependent 
Hermite spectra (note: model 
has kz=fixed). 

DNA: kz-dependent Hermite 
spectra (summed over kx,ky)
—independent of (or weakly 
dependent on) collisionality. 

α=-1.98 

α=-1.54 

α=-1.33 

α=-1.55 



Hermite Spectra 

DNA: kz-dependent Hermite 
spectra—independent of (or 
weakly dependent on) 
collisionality. 

Watanabe and Sugama 
--predict  n-1/2 or n-1 

Zocco et al. PoP ‘11: 
 
 
 
 
 
 
 

α=-1.98 

α=-1.54 

α=-1.33 

α=-1.55 



Nonlinear Energy Transfer 

n=8 

n=16 

Inverse cascade in kz for high n: 



Outline 

¤  Motivation – Hermite Polynomials 

¤  Model – reduced gyrokinetics 
¤  Energetics 
¤  DNA code 

¤  Hermite spectra 

¤  Studying Damped Eigenmodes 
¤  Linear Spectra 
¤  Pseudo-spectra 
¤  Nonlinear spectra 



Saturation Through Damped 
Eigenmodes 

there also exist stable eigenmodes that can provide a means
of energy dissipation provided they are driven to finite
amplitude by nonlinear interactions. For each wave vector,
numerical discretization allows for N ¼ nz " nvk " n!
degrees of freedom, where the n’s denote the number of
grid points in each coordinate. The unstable eigenmode
defines only one of these degrees of freedom; the remain-
ing degrees of freedom provide an energy sink at large
spatial scales.

We seek to characterize the nonlinear state by decom-
posing the gyrokinetic distribution function for selected
wave vectors (kx and ky) as a superposition of modes:

gkx;kyðz; vk;!; tÞ ¼
X

n

fðnÞkx;ky
ðz; vk;!ÞhðnÞkx;ky

ðtÞ: (1)

The structure fð1Þðz; vk;!Þ corresponds to the unstable

eigenmode, but its time amplitude hð1ÞðtÞ, rather than ex-
hibiting its linear behavior e%ið!þi"Þt, fluctuates as deter-
mined by a balance between the linear drive and the
stabilizing influence of nonlinear interactions. The other
modes are also defined by fixed mode structures
fðnÞðz; vk;!Þ and fluctuate according to their respective

time amplitudes hðnÞðtÞ in such a way that a superposition
of all the modes exactly reproduces the total distribution
function at each moment in time. In contrast with the
unstable mode, the time amplitudes hðnÞðtÞ of damped
modes fluctuate according to a balance between nonlinear
drive and linear damping, the latter of which dissipates
energy from the system, thereby facilitating saturation of
the turbulence. This decomposition is constructed by per-
forming a proper orthogonal decomposition (POD) [7,8]
on data from a standard nonlinear gyrokinetic simulation.
This provides a means to examine separately the contribu-
tion of individual modes, stable or unstable, to the satura-
tion of the turbulence.

To study the role of damped modes in saturation, we
track energy injected into or removed from the turbulence
by using diagnostics related to the conserved (in the ab-
sence of drive and dissipation) energylike quantity [9] E ¼R
dvkd!dzB0#n0T0jgj2=F0 þ

R
dzDðk?; zÞj$j2, where

B0 is the equilibrium magnetic field, $ is the electrostatic
potential, n0 and T0 are the background density and
temperature, respectively, and D is a function of z and
the perpendicular wave numbers. The energy evolves
according to

@Ek

@t

!!!!!!!!N:C:
¼ Qk þ Ck; (2)

where Q ¼ R
dvkd!dz#n0T0B0=LTðv2

k þ!B0Þg'iky !$ is

a term proportional to the heat flux and includes the
turbulent drive ( !$ is the gyro-averaged potential, and LT

is the temperature gradient scale length), C represents
collisional dissipation, and, in a simulation, whatever
artificial dissipation (e.g., hyperdiffusive terms) is included

in the code. The subscript N.C. indicates that this equation
describes only the nonconservative energy evolution,
i.e., processes that inject or dissipate net energy from the
fluctuations (as opposed to processes like the E" B non-
linearity that move energy from one scale to another in a
conservative fashion).
The GENE code [10] is used to simulate ITG driven

turbulence defined by the cyclone base case parameters
[11] of safety factor q ¼ 1:4, magnetic shear ŝ ¼ 0:8,
inverse aspect ratio % ¼ r=R ¼ 0:18, equilibrium ratios
of density and temperature ni=ne ¼ Ti=Te ¼ 1:0, and
background gradients R=LT ¼ 6:9 and R=Ln ¼ 2:2, where
R is the major radius. The perpendicular box size is
ðLx; LyÞ ¼ ð126&i; 126&iÞ, and the number of grid points

is 32" 48" 8 for the ðz; vk;!Þ coordinates, respectively.
The perpendicular spatial resolution consists of 128 grid
points in the x direction giving kx;max&i ¼ 3:12 and 64 ky
Fourier modes for ky;max&i ¼ 3:15. We deviate from the
cyclone base case by using a linearized Landau-Boltzmann
collision operator rather than exclusively artificial dissipa-
tion. The collision frequency is 'ðR=vTÞ ¼ 3:0" 10%3,
which is much less than the dynamic time scales of the
system [e.g., the most unstable mode at ky&i ¼ 0:3 has a
growth rate "ðR=vTÞ ¼ 0:267 and frequency !ðR=vTÞ ¼
0:783 so that '=!( 10%2]. In these runs, Ck consists
mostly of collisional dissipation but also includes contri-
butions from fourth-order hyperdiffusive dissipation in the
z and vk coordinates.
To illustrate the spatial scale dependence of the energy

balance, we first consider separately the drive term Qk and
the dissipation term Ck in Eq. (2). Figure 1 shows Qk and
Ck from the saturated state of a simulation, averaged over
the parallel coordinate and time. In Fig. 1(a), kx depen-
dence is shown and ky is summed; in Fig. 1(b), ky depen-
dence is shown and kx is summed. There is a significant
amount of dissipation at all scales, including ky ¼ 0:0 and
high k?. However, the largest range of peak dissipation
corresponds with the same scales where the energy drive
peaks. As described in detail below, the drive Qk is

FIG. 1 (color online). Energy drive Qk and dissipation Ck time
averaged over the nonlinear state and averaged over the z
direction, as a function of (a) kx summed over ky and (b) ky
summed over kx.

PRL 106, 115003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 MARCH 2011

115003-2

Cyclone Base Case ITG (and everything else we’ve looked at): 
Significant dissipation in region of instability (Hatch et al. PRL 2011). 
èWhat modes are responsible? 



Linear Operator – Matrix 
Representation 
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Linear Eigenmodes - Properties 

kx=0.0
ky=0.24
kz=0.3

ITG mode: 
Relation between f0 and f2 ==> large drive
smooth velocity space structure (low order 
Hermites):
low collisionality

4

The entropy evolution equation is

∂ε(f)k,n

∂t
= ηiQkδn,2 − νnε(f)k,n − J (φ)

k δn,1 + Jk,n−1/2 − Jk,n+1/2 +N (f)
k . (25)

The energy drive term acts only on the second order Hermite polynomial and is proportional to the heat flux,

ηiQ = �
�
−π1/4

√
2
ηiikye

−k2
⊥/2f̂∗

2φ

�
, (26)

The second term on the RHS represents collisional dissipation, the phase mixing terms are defined as

Jk,n−1/2 ≡ �
�
−π

1
2 ikz

√
nf̂∗

k,nf̂k,n−1

�
, (27)

and

Jk,n+1/2 ≡ �
�
π

1
2 ikz

√
n+ 1f̂∗

k,nf̂k,n+1

�
, (28)

and the nonlinear transfer term is,

N (f)
k,n ≡ �

�
�

k�
T (f)

k,k’,n

�
, (29)

where the nonlinear entropy transfer function is defined as

T (f)
k,k�,n = −π1/2(k�xky − kxk

�
y)f̂

∗
k,nφ̄k−k� f̂k�,n. (30)

Discuss conservation.

A. Second subsection

IV. LANDAU DAMPING IN THE PRESENCE OF NONLINEARITY

γL ≡
J (φ)

k − Jk,1/2

2εk,0
(31)

ωnl ∼ kzvTi (32)

ωnl ∼ kyvTiρi/Ln (33)

ωnl�
φ(t)∗φ(t+ τ)dt

γlin
γL,lin

γL,nl

kzvTi

4

The entropy evolution equation is

∂ε(f)k,n

∂t
= ηiQkδn,2 − νnε(f)k,n − J (φ)

k δn,1 + Jk,n−1/2 − Jk,n+1/2 +N (f)
k . (25)

The energy drive term acts only on the second order Hermite polynomial and is proportional to the heat flux,

ηiQ = �
�
−π1/4

√
2
ηiikye

−k2
⊥/2f̂∗

2φ

�
, (26)

The second term on the RHS represents collisional dissipation, the phase mixing terms are defined as

Jk,n−1/2 ≡ �
�
−π

1
2 ikz

√
nf̂∗

k,nf̂k,n−1

�
, (27)

and

Jk,n+1/2 ≡ �
�
π

1
2 ikz

√
n+ 1f̂∗

k,nf̂k,n+1

�
, (28)

and the nonlinear transfer term is,

N (f)
k,n ≡ �

�
�

k�
T (f)

k,k’,n

�
, (29)

where the nonlinear entropy transfer function is defined as

T (f)
k,k�,n = −π1/2(k�xky − kxk

�
y)f̂

∗
k,nφ̄k−k� f̂k�,n. (30)

Discuss conservation.

A. Second subsection

IV. LANDAU DAMPING IN THE PRESENCE OF NONLINEARITY

γL ≡
J (φ)

k − Jk,1/2

2εk,0
(31)

ωnl ∼ kzvTi (32)

ωnl ∼ kyvTiρi/Ln (33)

ωnl�
φ(t)∗φ(t+ τ)dt

γlin
γL,lin

γL,nl

kzvTi



Linear Eigenmodes - Properties 

kx=0.0
ky=0.24
kz=0.3

Drift Wave:
Relation between f0 and f2 ==> moderate 
drive
smooth velocity space structure (low order 
Hermites):
low collisionality

4

The entropy evolution equation is

∂ε(f)k,n

∂t
= ηiQkδn,2 − νnε(f)k,n − J (φ)

k δn,1 + Jk,n−1/2 − Jk,n+1/2 +N (f)
k . (25)

The energy drive term acts only on the second order Hermite polynomial and is proportional to the heat flux,

ηiQ = �
�
−π1/4

√
2
ηiikye

−k2
⊥/2f̂∗

2φ

�
, (26)

The second term on the RHS represents collisional dissipation, the phase mixing terms are defined as

Jk,n−1/2 ≡ �
�
−π

1
2 ikz

√
nf̂∗

k,nf̂k,n−1

�
, (27)

and

Jk,n+1/2 ≡ �
�
π

1
2 ikz

√
n+ 1f̂∗

k,nf̂k,n+1

�
, (28)

and the nonlinear transfer term is,

N (f)
k,n ≡ �

�
�

k�
T (f)

k,k’,n

�
, (29)

where the nonlinear entropy transfer function is defined as

T (f)
k,k�,n = −π1/2(k�xky − kxk

�
y)f̂

∗
k,nφ̄k−k� f̂k�,n. (30)

Discuss conservation.

A. Second subsection

IV. LANDAU DAMPING IN THE PRESENCE OF NONLINEARITY

γL ≡
J (φ)

k − Jk,1/2

2εk,0
(31)

ωnl ∼ kzvTi (32)

ωnl ∼ kyvTiρi/Ln (33)

ωnl�
φ(t)∗φ(t+ τ)dt

γlin
γL,lin

γL,nl

kzvTi

4

The entropy evolution equation is

∂ε(f)k,n

∂t
= ηiQkδn,2 − νnε(f)k,n − J (φ)

k δn,1 + Jk,n−1/2 − Jk,n+1/2 +N (f)
k . (25)

The energy drive term acts only on the second order Hermite polynomial and is proportional to the heat flux,

ηiQ = �
�
−π1/4

√
2
ηiikye

−k2
⊥/2f̂∗

2φ

�
, (26)

The second term on the RHS represents collisional dissipation, the phase mixing terms are defined as

Jk,n−1/2 ≡ �
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−π

1
2 ikz

√
nf̂∗

k,nf̂k,n−1

�
, (27)

and

Jk,n+1/2 ≡ �
�
π

1
2 ikz

√
n+ 1f̂∗

k,nf̂k,n+1

�
, (28)

and the nonlinear transfer term is,

N (f)
k,n ≡ �

�
�

k�
T (f)

k,k’,n

�
, (29)

where the nonlinear entropy transfer function is defined as

T (f)
k,k�,n = −π1/2(k�xky − kxk

�
y)f̂

∗
k,nφ̄k−k� f̂k�,n. (30)

Discuss conservation.

A. Second subsection

IV. LANDAU DAMPING IN THE PRESENCE OF NONLINEARITY

γL ≡
J (φ)

k − Jk,1/2

2εk,0
(31)

ωnl ∼ kzvTi (32)

ωnl ∼ kyvTiρi/Ln (33)

ωnl�
φ(t)∗φ(t+ τ)dt

γlin
γL,lin

γL,nl

kzvTi



Linear Eigenmodes - Properties 

kx=0.0
ky=0.24
kz=0.3

Landau roots:
Relation between f0 and f2 ==> virtually 0
smooth velocity space structure (low order 
Hermites):
high collisionality

4

The entropy evolution equation is

∂ε(f)k,n

∂t
= ηiQkδn,2 − νnε(f)k,n − J (φ)

k δn,1 + Jk,n−1/2 − Jk,n+1/2 +N (f)
k . (25)

The energy drive term acts only on the second order Hermite polynomial and is proportional to the heat flux,

ηiQ = �
�
−π1/4

√
2
ηiikye

−k2
⊥/2f̂∗

2φ

�
, (26)

The second term on the RHS represents collisional dissipation, the phase mixing terms are defined as

Jk,n−1/2 ≡ �
�
−π

1
2 ikz

√
nf̂∗

k,nf̂k,n−1

�
, (27)

and

Jk,n+1/2 ≡ �
�
π

1
2 ikz

√
n+ 1f̂∗

k,nf̂k,n+1

�
, (28)

and the nonlinear transfer term is,

N (f)
k,n ≡ �

�
�

k�
T (f)

k,k’,n

�
, (29)

where the nonlinear entropy transfer function is defined as

T (f)
k,k�,n = −π1/2(k�xky − kxk

�
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Discuss conservation.

A. Second subsection
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Pseudospectra 

Trefethen-Science, New Series, Vol. 261, No. 5121. (Jul. 30, 1993), pp. 578-584.
Trefethen-SIAM REV. Vol. 39, No. 3, pp. 383–406, September 1997

“. . . even if all of the eigenvalues of a linear system are 
distinct and lie well inside the lower half plane, inputs to 

that system may be amplified by arbitrarily large factors if 
the eigenfunctions are not orthogonal to one another.”

Classic Example:



Pseudospectrum – Slab ITG 

ITG (and to a lesser degree ISW):
Closely nested contours

Closely nested surfaces 
around ITG mode (and 
to a lesser extent around 
DW.  



Pseudospectrum – Slab ITG 

Highly non-orthogonal in this region

All frequencies in this region are highly 
resonant

Would not expect fluctuations to match 
eigenvalues here. 



Direct Eigenmode Decompostion 
Infeasible 

•Case-Van Kampen emphasized that 
eigenmodes form complete basis (even 
though they are nonorthogonal)

•Eigenvectors of adjoint operator serve as 
projection operators

•In practice nonorthogonality is too 
extreme==>cannot associate any quadratic 
quantity (e.g. free energy or heat flux) 
uniquely with individual eigenmodes.



Use SVD to Extract Optimal Modes 

Take distribution (for certain kx,ky,kz) 
from nonlinear dataset, and construct 
SVD:  
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The free energy equation [? ] for this system can be derived
for the gyrokinetic equations by operating with,

ε[X] ≡ Re
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This can be applied in the Hermite representation by noting
that,

� ∞

−∞

�
f

F0
+ e−k2

⊥/2φ

�∗
hdv =

�

n

�
π1/2f̂n + π1/4e−k2

⊥/2φδn,0
�∗

hn, (53)

where h is any function with a Hermite expansion of the form
of Eq. ??. Operating on the distribution function produces the
free energy,

εn = ε(f)n + ε(φ)δn,0, (54)

where the entropy part is defined as,

ε(f)n ≡ 1

2
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1
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and the electrostatic part is,
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where D(k2⊥) = 1
τ+1−Γ0(b)

. The energy evolution equation
is produced by operating on each term on the RHS of Eq. 38
as will be outlined below. By summing over all k, one can
extract the non-vanishing terms which define the sources and
sinks of the system.

The density gradient, ωn, term in the energy equation is
proportional to iky ĝ0φ. Since ĝ0 is proportional to φ, this term
drops out when summed over k due to the reality constraint.

The temperature gradient term produces the energy drive,
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The parallel electric field has two terms–one proportional
to ikz|φ|2 which vanishes when summed over k and another
term,
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which will be shown to cancel with quantities in the phase-
mixing term.

The phase mixing term produces two results,
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⊥/2φ∗f̂1, which cancels with the term in
expression 59, and additional terms,
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which cancel in the sum over n. This cancellation can be seen,
e.g., by considering the expressions in 60 for n = m− 1 and
n = m. The

√
n+ 1ĝ∗nĝn+1 term for n = m − 1 cancels

exactly with the ĝ∗nĝn−1 term for n = m. In other words, the
phase-mixing term transfers energy in a conservative linear
cascade through velocity space. Numerically this is violated
only at n = nmax where the Hermite representation is trun-
cated and thus well-behaved energetics is only expected with
sufficient velocity space resolution.

Finally, the collision term provides the energy sink of the
system,
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The final energy equation is,
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A. Nonlinear Energy Transfer

Fill in some explanation:
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n,kφ̄k−k� f̂n,k� (63)
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f̂n(t) =
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σs (66)

ĝ(s)n (67)

h(s)(t) (68)

||Aĝn − zĝn|| (69)
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n+ 1ĝ∗nĝn+1 term for n = m − 1 cancels
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=singular value--average amplitude

and are orthonormal and ‘optimal’ (rigorously more 
efficient than any other decomposition)



Already Noted: direct projection onto linear eigenmodes is 
meaningless 
 
Go backwards from SVD: 
 
Get ‘pseudo-eigenvalues’ by minimizing                          over the 
complex plane for a given SVD mode gn 
 
This is zero for an exact eigenvector 
 
pseudo-eigenvalue is the location in the complex plane where                                               
is minimized  

Pseudo-eigenvalues From SVD Modes 



Nonlinear spectra 

•Typically one mode near ITG
•One near ISW
•One or more with negative Q
•Typically 3-5 modes contribute to 
energy balance.
•Landau-like roots not a significant 
player

Combine information 
    -linear 
    -pseudospectra 
    -nonlinear 

Mode growth/damping rates for Q and C 

Net damping rate (including amplitude) 

How close to being an eigenvalue 



Nonlinear spectra 

•Typically one mode near ITG
•One near ISW
•One or more with negative Q
•Typically 3-5 modes contribute to 
energy balance.
•Landau-like roots not a significant 
player

ITG 
 
 
 
DW  
 

ITG and DW clearly identified. 

ITG and DW clearly identified. 



Nonlinear spectra 

•Typically one mode near ITG
•One near ISW
•One or more with negative Q
•Typically 3-5 modes contribute to 
energy balance.
•Landau-like roots not a significant 
player

Typically one or more 
modes with negative 
Q—i.e., inward heat 
flux.  Significant 
energy sink. 
 
Dissimilar to anything 
in the linear spectrum. 
 
Landau-like roots 
don’t play big role (at 
low k). 



Negative Q is still observed in pseudo spectrum
Same region as mirror mode in collisionless linear spectrum!



Damped Modes – Significant Net 
Energy Sink 

Q
+

C

Q
+

C

Q
+

C

Q
+

C

Significant 
energy sink 
from damped 
modes
==>associated 
with small 
scales in 
neither k-
space nor v-
space



High k Spectra 

•Ion sound wave and ITG are significantly less damped (sometimes destabilized)

•Damping rate does not match Landau damping rate.

•Also manifest in deformation of pseudospectra

ITG and DW significantly less damped than linear 
Also manifest in deformation of pseudospectra 
Relevance for cascades in presence of Landau damping 
May be connection with G. Plunk--Phys. Plasmas 20, 032304 (2013). 



Summary / Conclusions 

¤  DNA code solves reduced gyrokinetics in Hermite 
representation 

¤  Hermite spectra—independent of collisionality, 
dependent on kz 

¤  Damped eigenmodes 
¤  ITG mode and marginal DW identifiable in nonlinear 

spectrum 

¤  Also a mode with negative heat flux—large energy sink 

¤  Many features of nonlinear spectrum can be interpreted in 
light of pseudospectrum 

¤  High ky, kzèsignificantly less damping than linear 



Landau Damping w/ Nonlinearity 

Landau damping can be suppressed by nonlinearity




