David R. Hatch⁽¹⁾⁽²⁾ **Contributors:** M. J. Pueschel⁽³⁾, H. Doerk⁽¹⁾, F. Jenko⁽¹⁾, W. M. Nevins⁽⁴⁾, P. W. Terry⁽³⁾

Electromagnetic Effects— Recent GENE Results

⁽¹⁾Max-Planck-Institut für Plasmaphysik, Garching
 ⁽²⁾Institute for Fusion Studies, UT-Austin
 ⁽³⁾University of Wisconsin - Madison
 ⁽⁴⁾Lawrence Livermore National Laboratory

Electromagnetic effects on Turbulent Transport

- Electromagnetic effects enter equations proportional to: **plasma beta**: $\beta = \frac{n_{0e}T_{0e}}{B_0^2/2\mu_0}$
- As β increases, plasma has enough energy to produce significant magnetic fluctuations

 \rightarrow Fluctuating $\delta \vec{B}$

Electromagnetic Effects - Motivation

IPP

Stochastic Magnetic Transport

Electrostatic transport: **ExB advection of heat**:

$$Q = \left\langle v_{Er} \delta T \right\rangle \propto \left\langle \phi \delta T \right\rangle$$

Electromagnetic effects: self-consistently evolving δB

Additional transport channel: electrons streaming along perturbed

magnetic field lines.

$$Q = \left\langle q_{e\parallel} \delta B_x / B_0 \right\rangle$$

Outline

- 1. Microtearing Turbulence
- 2. Subdominant microtearing modes in electromagnetic ITG/TEM turbulence
- 3. New β limit non-zonal transition
- 4. Conclusions

Outline

- 1. Microtearing Turbulence
- 2. Subdominant microtearing modes in electromagnetic ITG/TEM turbulence
- 3. New β limit non-zonal transition
- 4. Conclusions

IPP

Microtearing--Very Extended Mode Structures

Resonant component extracted by integral along field line. \rightarrow ITG has no resonant component (at kx=0), microtearing is resonant.

$$A_{||}^{res} = \int A_{||}(x = x_{res}(k_y), k_y, z) dz$$

First Successful Nonlinear Microtearing Simulations

Diffusivity model:

$$\chi_e = 1.37 q R v_{Te} \left(\frac{\delta B_x}{B_0}\right)^2$$

H. Doerk et al., PRL '11.

- Experimentally relevant levels of electron heat transport
- Effective threshold for onset of strong transport (A to B)
- In stochastic cases (**B**), GENE results confirm diffusivity model.

First Successful Nonlinear Microtearing Simulations

Preliminary results (pending convergence tests, etc.)

^{0.25} Suggests microtearing likely to be important in outer core

Preliminary results (pending convergence tests, etc.)

r/a=0.6 and a shear of s=1.3 (still need s scan in this case)

No contribution from microtearing.

→microtearing can be robustly unstable without producing transport.

Outline

- 1. Microtearing Turbulence
- Subdominant microtearing modes in electromagnetic
 ITG/TEM turbulence
- 3. New β limit non-zonal transition
- 4. Conclusions

Before nonlinear GK microtearing was tackled . . .

→basic question

What are electromagnetic effects on ITG/ TEM turbulence?

Several interesting and puzzling results over past decade:

Specifically ITG (CBC): Parker PoP '04, Candy PoP '05, Pueschel PoP '08, Waltz PoP '10, Nevins PRL '11, Wang PoP '11

Significant Electromagnetic Transport

ITG driven turbulence [Candy PoP '05, Pueschel PoP '08]:

- Suppression of ES transport greater than expected from decreasing growth rates.
- Levels of electron electromagnetic heat transport that approach electrostatic transport as beta increases.

Introduction – Recent Results

ITG driven turbulence:

Near-ubiquitous magnetic stochasticity – even at low values of beta [Nevins PRL11, Wang PoP '11]

Beta scaling inconsistent with ITG expectation [Pueschel '08]

ITG mode (at kx=0) has ballooning, not tearing parity.

What is the cause?

Observations of electromagnetic effects inconsistent with properties of the driving ITG modes.

- What is the explanation for the observed stochasticity and transport
- (Hatch et al. PRL '12, Hatch et al. PoP '13)

Candidates:

- --|kx|>0 ITG modes
- --Some other mode with tearing parity

Perfect ballooning parity no longer enforced at |kx|>0

Even / Odd symmetry is no longer enforced at $k_x \neq 0$. But modes are still "predominantly even" or "predominantly odd". ➔ Distinguish with Parity Factor

$$P = \frac{\left|\int dz A_{\parallel k_x, k_y}(z, t)\right|}{\int dz \left|A_{\parallel k_x, k_y}(z, t)\right|}$$

IDΠ

Perfect ballooning parity no longer enforced at |kx|>0

⇒Distinguish with Parity
Factor $P = \frac{\left|\int dz A_{\parallel k_x, k_y}(z, t)\right|}{\int dz \left|A_{\parallel k_x, k_y}(z, t)\right|}$

Construct a "tearing-ballooning" decomposition:

$$A_{\parallel k_x, k_y}(z, t) = A_{\parallel k_x, k_y}^{(ball)}(z, t) + A_{\parallel k_x, k_y}^{(tear)}(z, t) + A_{\parallel k_x, k_y}^{(res)}(z, t)$$

IDD

Stochasticity caused by tearing component

 $A_{\parallel k_x, k_y}(z, t) = A_{\parallel k_x, k_y}^{(ball)}(z, t) + A_{\parallel k_x, k_y}^{(tear)}(z, t) + A_{\parallel k_x, k_y}^{(res)}(z, t)$

$$A^{(ball)}_{{}_{||k_x,k_y}}(z,t)$$

18

Magnetic transport – superposition of ITG and tearing

What Kind of Tearing Mode?

Stochasticity and transport due to *some* kind of tearing mode

What are the candidates?

Tearing ITG (TITG) Tearing ETG (TETG) Microtearing

Linear spectrum – many modes with tearing parity

Note: similar mode identified just inside pedestal top in DIIID (Wang, 2012) 21

Subdominant Microtearing Mode Deep in the Spectrum

Microtearing mode deep in the spectrum (need full eigenvalue solver)

Microtearing—Intrinsically Electromagnetic

Using GENE eigenmode solver.

	ITG	TITG	ETG	TETG	Micro Tearing ⁽¹⁾
Tearing Parity		Х		Х	Х
Frequency	+	+	-	-	-
R/Lti Threshold	Х	Х			
R/Lte Threshold			Х	Х	Х
Low-β Threshold					Х
A ² / φ ²	<<1	<<1	<<1	<<1	~1
QeEM/ QeES	<<1	<<1	<<1	<<1	>1

TITG, TETG: Note electromagnetic

Microtearing intrinsically electromagnetic

Stochasticity and Transport Due to Actual Microtearing Mode

Summary, stochasticity and transport:

- --not due to finite kx ITG
- --due to tearing parity fluctuations
- --not associated with TITG/TETG modes
- --definitively linked to microtearing

Stable Mode -> Nonlinear Excitation

Time trace of electromagnetic component: Nonlinear time scales.

What is the excitation mechanism?

Free energy evolution equation for tearing mode

$$\frac{\partial E_k^{(tear)}}{\partial t} = L[g_k^{(tear)}, g_k] + \sum_{k_\perp} N[g_k^{(tear)}, g_{k'}, g_{k-k'}] + c.c.$$

➔zonal modes excite microtearing

Microtearing Considerations

EM transport suppressed at high collisionality.

IPP

Simple model captures β-dependence

$$Q_{e}^{EM(tear)}(\beta) = \sigma_{0}(\beta / \beta_{crit})^{2} Q_{i}^{ES}$$
 Stochastic tearing transport

$$Q_{e}^{EM} = Q_{i}^{ES} \left(\sigma_{0}(\beta / \beta_{crit})^{2} + \left\{ \frac{Q_{e}^{EM}}{Q_{i}^{ES}} \right\}_{ITG-lin} \right)$$
 ITG/TEM
- quasilinear
contribution

$$Q_{e}^{EM} = Q_{i}^{eE} \left(\sigma_{0}(\beta / \beta_{crit})^{2} + \left\{ \frac{Q_{e}^{EM}}{Q_{i}^{ES}} \right\}_{ITG-lin} \right)$$

 β Database of ~30 EM simulations covering typical core parameters: σ_0 =1 appears to be an upper bound (rarely exceeded, excluding microtearing). →Large EM transport not expected from ITG/TEM drive.

Outline

- 1. Microtearing Turbulence
- 2. Subdominant microtearing modes in electromagnetic ITG/TEM turbulence
- 3. New β limit non-zonal transition
- 4. Conclusions

High Beta 'Runaway' → Non-Zonal Transition

250

200

150

100

50

0

0

 $/ (c_{s} \rho_{s}^{2} p_{0} / R_{0})$

Q

High beta runaway above $\beta \sim 0.8\%$ Reproducible by many codes.

Runaway after long 'semisaturated' phase.

100

 $t / (L_{ref}/c_s)$

150

50

200

High Beta 'Runaway' → Non-Zonal Transition

If half-turn displacement exceeds correlation length → non-resonant perturbations can contribute to stochasticity.

Effect of Magnetic Fluctuations on Zonal Flows

$$\Phi_{\rm R} = \frac{\Phi(t=0)}{1+1.6q_0^2/\epsilon_{\rm t}^{1/2}}$$

Rosenbluth-Hinton residual

 $A_{||}$ included after GAM decay → decay proportional to t²

Agrees with analytic calculation (P. Terry)

$$\Phi(t) = \Phi_{\rm R} - \left(S_{\alpha^2} - \frac{T_{\rm i0}}{T_{\rm e0}} \frac{2\alpha^2 (\Phi_{\rm R} - 3S_{\alpha^2}/\alpha^2)}{k_x^2 \rho_{\rm s}^2 (1 + 1.6q_0^2/\epsilon_{\rm t}^{1/2})} \right) t^2 + \mathcal{O}(\alpha^4 t^4)$$

IPP

IPP

Fundamental Change in ZF Dynamics

During runaway \rightarrow zonal coupling *drives* kx=0 modes.

Pre-runaway \rightarrow standard picture: ZF transfers energy to higher k_x.

Critical NZT beta usually expected to exceed KBM critical beta

Lower gradients -> critical KBM beta probably reached before critical NZT beta.

Outline

- 1. Microtearing Turbulence
- 2. Subdominant microtearing modes in electromagnetic ITG/TEM turbulence
- 3. New β limit non-zonal transition
- 4. Conclusions

Summary / Conclusions

- Microtearing modes can be unstable and **produce significant levels of transport** in standard tokamaks
 - Most likely active at **higher shear**.
- **However,** there are cases where EM transport is very low despite microtearing linearly unstable.
- ITG driven turbulence excites linearly stable microtearing modes
 - Magnetic transport is superposition of outward stochastic contribution from nonlinearly excited microtearing modes and inward contribution from ITG.
 - Database of EM simulations: Q_{EM} rarely exceeds $(\beta / \beta_{crit})^2 Q_i^{ES}$
- High β runaway \rightarrow non-zonal transition
 - Zonal flows suppressed when non-resonant fluctuations become important
- Microtearing is **challenging** and often **unintuitive**
 - Difficult to resolve numerically
 - Can be insignificant even when linearly unstable
 - Can be active even when linearly stable

Backup slides

Contributions to EM Transport

Nonlinear transfer functions - identify excitation mechanism.

Gyrokinetic free energy:

$$E_{k} = \sum_{j} \pi B_{0} n_{0j} T_{0j} \int dz dv_{\parallel} d\mu J(z) \frac{f_{j}^{2}}{F_{0j}} + D(k_{\perp}) \phi^{2} + \frac{k_{\perp}^{2}}{\beta} A_{\parallel}^{2}$$

Energy evolution equation:

$$\frac{\partial E_k}{\partial t} = L[g_k, g_k] + \sum_{k_\perp} N[g_k, g_{k'}, g_{k-k'}] + c.c.$$

Nonlinear Transfer function:

$$N_{k,k'} = \int dz dv_{\parallel} d\mu (k_x' k_y - k_x k_y') \left[\frac{q_j F_{oj}}{T_{0j}} \chi_j^*(k) \chi(k') g(k-k') - g_j^*(k) \chi(k-k') g(k') \right]$$

Energy transferred between k and k'

$$N_{k,k'} = -N_{k',k}$$

Excitation mechanism: coupling with k_v=0

$$\frac{\partial E_{k}^{(tear)}}{\partial t} = L[g_{k}^{(tear)}, g_{k}] + \sum_{k} N[g_{k}^{(tear)}, g_{k'}, g_{k-k'}] + c.c.$$

Free energy evolution equation for tearing mode

Nonlinear mechanism which stabilizes ITG in turn drives microtearing and produces additional transport channel.

POD of distribution function: Self consistent $A_{||}$, ϕ

Construct POD of distribution function:

$$g_{kx,ky}(z,v_{\parallel},\mu,t) = \sum_{n} f_{kx,ky}^{(n)}(z,v_{\parallel},\mu)h_{kx,ky}^{(n)}(t)$$

→ Tearing parity mode with large EM heat flux (POD n~2-5)

