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Abstract

Fast magnetic reconnection [1,2] is a fundamental process in astrophysical and
laboratory plasmas whereby vast amounts of magnetic energy are released as thermal
and kinetic energy in a relatively short period of time. Despite years of study, however,
to-date there is no accepted theory able to satisfactorily explain all relevant aspects of
this phenomenon. In this talk, after introducing basic concepts in magnetic
reconnection, we will present the problematics related to two-fluid effects in collisional,
semi collisional and collisionless regimes. Then we introduce a novel approach to attack
the full nonlinear 2D problem, which reduces the fluid equations to a low-dimensional
dynamical system [4]. In this way, we can analyze all reconnection regimes of interest
[3.5.6], as well as predict and numerically validate their transitions. In particular, the
achievement of a fast collisionless regime, followed by current collapses, will be shown.
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Introduction

@ The term magnetic field like reconnection arose in physics of high
conductivity plasmas

@ Magpnetic flux is “frozen” into the plasma for “small” resistivities

@ In “real” plasmas magnetic field lines can split and reconnect across a
current sheet

@ Experiments and observations shows that reconnection looks like a
relaxation process

@ Sing: violent energy release

@ Magnetic energy in converted suddenly into kinetic and thermal plasma
energy

’\\/ and
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Introduction

@ First major motivation = Physics of Solar Flares, magnetotail (Dungey, Giovanelli,
Parker, Coppi, Laval, Pellat)

First Idea: Reconnection as a global diffusion

Slow reconnection rates

o Il = o 11

@ Since: Magnetic Field is stirred into motion by fluid and Steep gradients are
present

Sheet-like structures = Shorter Diffusive Times

Early '60s: Resistive Sweet-Parker mechanism

Does not work...anything!

Toier ~ 10 sec, Tgp ~ 107 sec, Texp ~ 103sec
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Introduction

The problem of fast reconnection
Reconnection independent of the dissipative details
y~9°

Y measure of growth rate of the reconnection instability
2 diffusion coefficient

Attempts =-magnetic turbulence, anomalous resistivity
One can

@ Look at strictly collisionless limit of spontaneous instabilities (collisionless tearing
modes)

@ Look an ideal driver and study the nonlinear stages

Basic Idea
U

Two-fluid nonideal corrections to Ohm'’s law can be effective impedance for electric fields
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Frozen-in law
Induction equation in the ideal-MHD limit (plasma perfect conductor)

%—? =Vx(vxB)
v fluid velocity

@ For the magnetic flux ¥ s.t. B=zx V¥, (V-B=0)

N =0 ideal N # 0 resistive
E+lvxB=0 E+lvxB=nJ
I I
W4y V=0 W 1V VP =AY
Magnetic flux is frozen in the Magnetic flux can reconnect
plasma across a neutral line

Advection equation = Advection-diffusion equation

and E = 9;'¥ measures how the flux changes (eventually reconnects)
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Phenomenology

2D Flow (Strong guide fields) 10 ‘

Inflow

0 20 40 60 80 100 120

What we need

Neutral line B(x = xs) =0 (sheared magnetic
field)

Resistive Ohm's law

Current sheet

Nonlinear saturation of the reconnecting
flux

Current layer separates two regions of opposite magnetic field

Magnetic Reconnection can take place & =
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Driven Reconnection

2D Steady Flow

‘L/}/ One fluid plasma, finite resistivity
2
\ Alfvén speed V3 = 4,,,,

Magnetic Reynolds R, = W@—VA

Magnetic diffusivity Zn, = 42”
Continuity dv, = w vy

ZKJA
vy By ~NJy = ‘V/—: ~ Ry? /2

Sweet-Parker reconnection rate: solar flares Tsp ~ 107 sec, Tesp ~ 103sec.

There is one piece more of the puzzle!
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Laboratory Plasmas

e Sawtooth oscillations: regular period reorganization of the core plasma

surrounding the magnetic axis

Three stages

@ Ramp phase
@ Precursor oscillation phase

@ Collapse phase
JET high temperature discharges

@ n.~1019m3

Early discharges in JET

/ 3602
@ T.~b5keV R R
-
€ .
e 3ams T
33
TIMEs
From Hastie (APSS, 1998)
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Laboratory Plasmas

Theoretical Explanations

@ 1973, long time evolution of the m =1 MHD (internal kink) saturates
at small amplitudes (Rosenbluth Dagazian Rutherford)

@ 1976, with finite resistivity and geometrical properties of the field

Reconnection = Temperature Collapse

TRee = Tk ~ n1/2 Kadomtzev time scale

@ 1980-83: Kadomtzev model still survives until, g-profile flattening
g ~ 1 not observed!

o Furthermore: early 90’s, high temperatures = shorter time-scales then
resistive (inertial effects, Wesson, 1990)

exp

%
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Two-fluid effects

@ Generalized Ohm'’s law

2
E+vixB=nJ+%d

1 resistivity;

de = c/wp; ¢ electron skin depth = finite electron inertia
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Two-fluid effects

@ Generalized Ohm's law

E+vixB=nJ+%d A

1 resistivity;
de = c/wp; ¢ electron skin depth = finite electron inertia

Ny perpendicular electron viscosity = nongyrotropic effects
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Two-fluid effects

@ Generalized Ohm'’s law

E+vixB=nJ+%9 1 nyA)t 9% (JxB-Vp)

M resistivity;
de = c/®p; ¢ electron skin depth = finite electron inertia
Ny perpendicular electron viscosity = nongyrotropic effects

d; = ¢/ apy ; ionic skin depth = ion inertia (kinetic waves)
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Two-fluid effects

@ Generalized Ohm'’s law

E+vixB=nJ+%% 1 nyal+ 9% (JxB-Vp)

M resistivity; Ny perpendicular electron viscosity

de = c/®p; ¢ electron skin depth; dj = c/wpy ; ionic skin depth
Different corrections = Different regimes of reconnection

Much more complex dynamics

@ electron inertia

@ electron viscosity

@ ion inertia

@ fast dispersive waves
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Motivation

@ To develop a framework for the physics of the reconnection region ranging from
resistive to two-fluid regimes

@ To understand intrinsic limit of reconnection rates in all regimes of interest (2D,
two-fluid)

Some basic issues

© Role of fast dispersive waves
@ Fast reconnection and dissipation

© Role of electron inertia

Approach

To write a non-linear reduced dynamical system for key quantities defining the
reconnection region

From continuum equations (PDE)=- To ODE equations for discrete
quantities
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Pair plasma fluid continuum equations.
Equation of motion

mn vy +vy -Vvy) = —Vpi—V-Hi$en(E+%vi X B)$F

classical isothermal fluid

Fluid equations I' = —nen(v4 —v_) friction
1 .

2. . v=35(vy+v_) c.m. velocity
8t2v+v-Vv+T=]~Vj—uAv: %(jx B)—Ql—"Vp j=ne(vi—v_)= SVxB
G 06+ V- (vi+iv) —pAJ = E-+vxB-nj | Pr=p-=p/2 b=k =k

BP = (BXvBy)
Q=5.Vxv vorticity 2D incompressible equations
=2 x V@ fluid velocity
Vov—0 N 9:Bj, —V x (vxBj) :I—VXV(@BP)
P=n- ”gezADifFusion operator 9t Q+v-VQ—uAQ =3B, -Vj,
B, =B, +d2VxVxB, Ap=Q

Linear dispersive waves ® = k| /1/2+d2k?= NO FAST WAVES o ~ k?

de = ¢/(wpeL) dimensionless electron skin depth, u dimensionless viscosity
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Zero-dimensional reconnection model

Symmetries

BX(_X7y7t)7 (X Y, )7BX(X7_y7t) X(X7y7t)
By(X77Y7t)_ (Xy7 )7B,V( ) ,V(Xy7 )
q)(_xvyvt):_q)(x Y, )7q)(x7 y,t)Z—q)(X,y, )

At the symmetry axis

9t Bx[x=0 + 9y (vy Bx)|x=0 = =y (ZJjz)x=0 1)
9eBy|y—0 — x(vxBy)ly=0 = 9x(ZJz)y=0 (2)
Representation Procedure
_ . 22442 @ Integrate along the symmetry axis
@ Bx(xy.t.6w) =2Bx(6) 78 () e Eqgs. (1)-(2)(Poloidal field)
o _ x oy 2052 +(%)?)
x,y,t)=—Q(t)2 3 25e (5

@ Integrate over the control volume

internal profile, stagnation point, nonlinearities, the vorticity equation
g even, and By (x,y.t,8,w) = Bx(y,x,t,w,d)
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Zero-dimensional reconnection model

Discrete Equations

By *5_¢B;_ By By
B~ —9(57 5*2)7
ds, rw _ PBy

dt _B}/W_ Sw =9 Sw 2 />

2
2
Sw [z —32) —HO (52 52

2
Bi =B+ %Z(Bx/az —B,/w)
By = By+‘2’7=<5y/w2 ~ By /8w)
7=n+rEE 2w ?)

Five Unknowns-Three equations (Byx and w chosen as parameters)

4

Coupling to an external driver provides closure ( through By, By)
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Fixed Points (% =0).

Master Equation for dp = \;’5

A =D 2 1/2
1+d, :25_1<dﬂe) [ﬁ—l—%} , E2 <1, (de/w)? < 1

S =S 4515 (62 1) ~ Syt + S de”
E=08/w

Sy = Bxw/n Resistive Lundquist number

S = Bxw/u Reynolds number

Associated reconnection rate

o B, By\ . p2siEl-g
E: =% = 9(7 Vg) ~ B, (1+232€2)

E2 <1 = large E,
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Collisionless (viscous) steady state (u # 0, =0)

-1
3 de 1 1,1 #
¢ N%WHE Teta 2”‘32*2“
magnetized regime §/de 2 1 inertial regime §/de <1
8/de ~ (u*)'/3 J 8/de ~ p* J

Jzlx = 2By /6 ~2B¢/d. , for de > 6 where Bf =%-B(0,d./2)

magnetized regime inertial regime
8~ (Quwde/By)Y3? > de S~ \/uw/(Bg)<d
B)% max
z ~ \/5 T de

By max = max|[By, Bf]

Viscous sub-d, layers can sustain dissipation-independent reconnection
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Resistive regime (n # 0, u =0)

~2\3/2
(1+dZ) : o MW
283 - ByxdZ N

Threshold

No solutions for B"X—'Zez <3v/3/2

40

30

20

10
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Resistive regime (n # 0, u =0)

N 3/2 .
(1+a2)* onw s "
202 7 BydZ n 10

30
Threshold

20

10

No solutions for B’l—'gez <3v/3/2

2 4 6 8 10
magnetized regime §/de = 1 inertial regime §/de <1
~ _ nw. ~ n R3/2 . 1/2 -
sty = [T 5o T8 () s v 50

Sweet-Parker slow reconnection

Resistivity cannot set any dissipative length scale below de

¢

The scale § < de can be arbitrarily small and viscosity important!
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Numerical Validation

Test predictions with the island coalescence problem.

Equilibrium ideally unstable

magnetic equilibrium

Wo(x,y) = —Aln[cosh (%) +ecos (¥)]
A equilibrium length

¢ island size Ideally Unstable

Diagnostics

@ 5=2 2log2y, FWHM of the current

J2(0,y) = e=20/9? with 92j2(0.y.) =0

@ w measured at the out-flow’s maximum

@ By measured up-stream (0,5/2)

Nonlinear stage: merged islands

Example of Induced Current Sheet (at maximum
reconnection)

EMHD with 71 £0, de # 0,y =0

Ideal instability = Driver of reconnection
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Numerical Validation

Collisionless viscosity-dominated regime.

Viscous sub-layer Transition |1" =2 B“ Tz~ 1,6~de
X
6 ~ \/uw/(BE) < de :
from collisional §/de > 1 — to collisionless §/de <1
In{j,3,,0(y=¥)!| d/de
5 104
3 By
2
. 0.14
0 y
0 0.005 0.01 0.015
0.01 : :  Hy
0.01 0.1 1 10

y * 2 H H
Ve =0 (t = tmax) —yo (t =0) 8/deVs u= uw/Bxdg at time of maximum
reconnection

yo(t) instantaneous island O-point position
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Motivation

Some basic issues

© Role of fast dispersive waves
@ Fast reconnection and dissipation

© Role of electron inertia

Are not necessary to enable Fast (dissipation-independent) Reconnection
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Motivation

Some basic issues

© Role of fast dispersive waves
@ Fast reconnection and dissipation

© Role of electron inertia

Generalized Ohm’s law ions at rest, electron fluid = Electron Magnetohydrodynamics

E+vixB=nJ+%9 A
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EMHD continuum equations.

Two D (d, =0) incompressible two fluid plasma with an ion neutralizing background
(vi ~0)

B o o 9°B, 9B, B, 2B
ot VB —Bpi) = _"<ayax_ 9y2 )+ H <8yt9x_ 92 )
JB; 2B, 92B 2B, 2B
Y _v. (i ¥ _ Rp* g — _ x _ Y X _ Y
ar ~ VB, ~Bpiy) "(axay 92 >+ H <8x8y 92 )
%+BP'VJZ = 7de2 GP'V)ABz+nABzanAsz

B; = (BivB;)»JP = (jxvjy) =—-2xVB, = 7(VX7 Vy)

B: =B, —d?AB,
N Resistivity, nyElectron viscosity, d.Electron skin depth

Properties Operators

0 1 0 Byeq. By eq.
1 0 0 |op,| Beq |=| Byeq. @ P,:B,— B,
0 0 1 B,eq. B.eq. @ 0:(dx,dy,Bx,By) — (dy,0x,By,Bx)
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EMHD discrete equations.

Discrete EMHD Equations

dB: 5  B.B; B, B,
@ Bxs - @(TV’V— )

dt Sw 52
dB; ; BB * B

Yy _ R*W & = ot 4
dt Byw + 6w - (5x 2)
dB: B
dt

_‘@(51724_#) dgﬁBw(

(3 + 2’)+(V:+lg)(;—g)—

B} = By +d2(Bx /8% — B, /dw)
B; = By +dZ(B,/w? — Bx/éw)
Bf =B, +d2(6 2+ w?)B,

7 =n+nu(82+w?)
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Fixed Points (% =0).

Current sheet aspect ratio (& = %) equation

1+d2(14£2) Z_L 1 d? E2-1 2
{ 142d2&2 } 52{1+é2+1+d2(1+§2)< ¢ )
ST =5 +SMET2+1), de= %

Sy = V2B« /N Resistive Lundquist number
Sy = V2B, w? /1y Hyper-resistive Lundquist number

A

Centers in the parametric space (&, d,)

o = %o wy = Bp _g1_§ -6
de” 3.8 VaBy 1+d2(1462)
By,de define electron Alfvén speed v4 o = By /de
e T
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Small aspect ratios (£2 < 1)

Reconnection Rate

. B B B2 N
Ezlx = Djzlx :_@(TX—WY) = E,~v28 1442y
é ~ 5_1 ﬁ, 62 < 1 Inertial correction to the steady state current sheet equation
e

Resistivity-dominated regime Hyper-resistivity dominated regime
n -

ol

6

4

P

2 1 [3 3 d./6
@ diliden~ (W) A —pr N3 A X
detde~ () gy = © dialt~(3) e =i
B
@ Threshold: \/g"; >2
X

6 < d. allowed

Outflows vy =~ B; /8 ~ Bx/8 < Bx max/de = Va e bounded by the electron Alfvén speed
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Hyper-resistive regime (n =0, de > 0)

~c—-1_1 1,1 (w NMH __ — %
RS nmETe T <de>ﬁ3xd3*nH

magnetized regime 6/de 2 1 inertial regime §/de <1
S/de ~ (n;tl)l/S J S/de ~ n;; J

jzlx ~ 2By /8 ~2B2/d. , for de > & where BE = %-B(0,d./2)

By max = max|By, BS] magnetic field at the upstream boundary of induced current j,

magnetized regime inertial regime
8~ (Muw/V2B, )3 > d, 8~ /Mpw/(Bsde,) < de
H BZ
El~ \/ET

Viscous sub-d. layers can sustain dissipation-independent reconnection
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Motivation

Some basic issues

© Role of fast dispersive waves

© Fast reconnection and dissipation
© Role of electron inertia

We predict scaling laws for nonlinear current sheet solution in all regimes of collisionality
a.zoccol@physics.ox.ac.uk

The maximum reconnection rate does not depend on electron inertia
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Summary

@ We developed a two-fluid theory for reconnection, in electron-positron
plasmas, which features no fast dispersive waves, and includes resistivity and
fluid viscosity

@ These equations are related to the electron MHD model with electron inertia
(which supports fast dispersive waves)

@ A zero-dimensional model which describes key-quantities of the reconnection
region is derived, solutions at time of maximum reconnection are found

@ In resistivity-dominated regimes the current sheet layer can achieve
arbitrarily small values 6 < d,

@ In viscosity-dominated regimes viscous layers § < de develop and sustain
dissipation-independent reconnection: E ~ ﬂBﬁpst,eam for pair plasmas,

w
E~ L B2 iream for EMHD

@ We gave a new framework of understanding for reconnection that apply in a wide
range of physical regimes
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