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ARE CASCADE AND INERTIAL RANGE IN
TURBULENCE WELL POSED CONCEPTS?

from senescent idiot's fugitive essays onm gcience (borrowed from Truesdell)

Many do not even want to listen to such or similar questions The subtitle is added
to stir the audience even more as | intend to convince you that [ am pretty serious.
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Is "cascade" in genuine turbulence conceptually well
defined notion or is it "mostly a pedagogical imagery"?
Is there cascade in physical space? How meaningtul is
"cascade" of passive objects as described by linear

equations? Is "cascade" Eulerian, Lagrangian, both or

whatever? Do decompositions aid understanding or
obscuring the physics of turbulence?

How inertial is inertial range? How clean is the
decomposition on inertial and dissiaptive ranges? Is
anomalous scaling an attribute of the ineratial range?




One gets an impregsion of Cittle, randomly structured
and digtributed whirls in the fCuid, with the cascade
process consisting of the fission of the whirls into
smaller ones, after the fashion of the Richardson poem.
This picture seems to Ge drasgtically in conflict with what
can Ge inferred about the qualitative structure of high-
Reynoldg-number turbulence from Laboratory
visualization technigues and from plausitle application
of Kelvin circulation theorem. KRAICHAN, 1974,

... the idea of congervative inertial cascade ocal in scale
gize ig congistent prima facie, provided that the actual
statigtics do not differ strongly from Gaussian. Jt is
anothier, and ungettled, matter to establish that K41 or a
related theory actually describes what happens in NS
FCows. KRAICHNAN, 1991




A bit of histoiry and relaled

Phenomenoblogy - The branch of a science
that claggifies and degcribeg itg phenomena

without any attempt at explanation,
WEBSTER'S NEW WORLD DICTIONARY, 1962




WEATHER PREDICTION

BY
NUMERICAL PROCESS

BY

LEWIS F. RICHARDSON, B.A., F.R.Mker1.Soc., F:Inst.P.

LECTURER ON PHYSICS AT WESTMINSTER TRAINING COLLEGE

6 THE FUNDAMENTAL BQUATIONS - oh. 4/8/0
On the other hand we find that convectional motions are hindered by the formation of small eddies resembling those due to
dynamical instability. Thus 0. K. M. Douglas writing of observations from aeroplanes remarks : "'The upward currents of large
cumuli give rise to much turbulence within, below, and around the clouds, and the structure of the clouds is often very
complex.” One gets a similar impression when making a drawing of a rising cumulus from a fixed point; the details change
hefore the sketch can be completed. We realize thus that: big whirls ave little whirls that feed on their velocity, and little
whirls have lesser whirls and so on to viscosity— in the molecular sense... =

CAMBRIDGE

AT THE UNIVERSITY PRESS
1922
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NUMERICAL PROCESS
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LEWIS F. RICHARDSON, B.A., F.R.Mker1.Soc., F:Inst.P.

LECTURER ON PHYSICS AT WESTMINSTER TRAINING COLLEGE

66 THE FUNDAMENTAL BQUATIONS - oh. 4/8/0
On the other hand we find that convectional motions are hindered by the formation of small eddies resembling those due to
dynamical instability. Thus 0. K. M. Douglas writing of observations from aeroplanes remarks : "'The upward currents of large
cumuli give rise to much turbulence within, below, and around the clouds, and the structure of the clouds is often very
complex.” One gets a similar impression when making a drawing of a rising cumulus from a fixed point; the details change
hefore the sketch can be completed. We realize thus that: big whirls have little whirls that feed on Cheir velocily, aml little
whirls have lesser whirls and so on to viscosity— in the molecular sense...

Thus, becanse it is not possible to separate eddies into clearly defmed classes according to the source of their energy; end iy
there is no object, for present purposes, in making a distinction based on size between cumulus eddies and eddies a few metres
in diameter (stnce both are small compared with our coordinate chequer), therefore a sinole coeificient is used o represent the

effect produced by eddies of all sizes and descriptions.

CAMBRIDGE

AT THE UNIVERSITY PRESS
1922




Do you see here a cascade?

ZETTY IMAGEZ=

.....even wrong theories may help in designing machines,
(FEYNMZAN, 1996 ) Feyamann k., 1996 Lectures on Compntation, Addison-Wesley:




An example how it was taught 60 years a9

Lurivo Fermy, Notes ox Thernodynamivs and Statistios,

The Unirersity of Chivage Fress, Chivago and London Midweg
Poprict Edliting, 7988; pp. 181-182. (1957 bootures)




CONVENTIONAL PHENOMENOLOGY AS IT APPEARS IN THE BOOK Dy
ENRICO FERMI, Notes on Thermodynamics and Statistics, The University of Chicago Press,
Chicago and London Midway Reprint Edition, 1988; pp. 181-182. (1951 lectures)
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An example low it is taught foday
Conrtosy Sasha Sthekoohiibin

5 [ EcrORES ON TWRRULEACE.

A Sedokochiline
Cormnlon' Dg2- 25— 29 Jiypue. 2001
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Some quolations



From the energetical point of view it is natural to
imagine the process of turbulent mixing in the following
way: the pulsations of the first order absorb the energy
of the motion and pass it over successively to
pulsations of higher orders. The energy of the finest
pulsations is digpersed in the energy of heat due to
vigcogity. KOLMOGOROV 1941a

... it hag not Geen pointed out that Gefore that the
subdivigsion of the energy must Ge a stepwise process, such
that an n-fold increage of the wave-number ig reachied Gy a
number of steps of the order 109 N. For such a cascade
mechanism that part of the energy dengity which is
associated with Carge wave numbers should depend on
the total volume rate of disgipation () only. ONSAGER 1945




One gets an impression of Cittle, randomly structured and digtributed whirls
in the fluid, with the cascade process consisting of the fission of the whirls
into smaller ones, after the fashion of the Richardson poem. This picture seems
to Ge dragtically in conflict with what can Ge inferred about the qualitative
structure of high- Reynolds-number turbulence from CLaboratory visualization
technigues and from plaugiGle application of Kelvin circulation theorem.
KRAICHAN, 1974,

... the idea of conservative inertial cascade Cocal in scale gize is consigtent
prima facie, provided that the actual statistics do not differ strongly from
Gaussian. It is another, and ungettled, matter to establigh that K41 or a
related theory actually describes what Gappens in NS fCows. KRAICHNAN, 1991
The notion that turGulent fCows are hierarchical and involve entities... of
varying sizes is a common idea... This common notion underlieg the concept of
cascade, the third Gey clement of tur6ulence theory. FRISCH AND ORSZAG, 1990.
AL this cascade in Fourier space is a dream of Linearized physicigts. BETCHOV,
1993).

The tree examples Ljet, Goundary Layer, and wakel... show that there is
something wrong with this idea (the Richardson poem). In each case turbulence

Geging at small scales and grows Larger: not the other way around. GIBSON,
1996




A warning from von Newmann 1949

Op i there o cascade e physioad space 7




The Richardson-Kolmogorov cascade picture was formulated in physical space and is used
frequently without much distinction both in physical and Fourier space, as well as some others.
However, it was VON NEUMANN (1949) (see also Onsager, 1949) who stressed that this
process occurs not in physical space, but in Fourier space: ... tAe gystesm is “open” at
both ends, energy is Being supplied as well digssipated. The two
“endg” do not, however, Cie in ordinary gpace, but in itg Foswier-
trangfore . More gpecifically: The supply of energy occurg at
the macrogcopic end — it oviginates in the forced motiong of
macrogcopic (bounding) bodieg, or in the forced maintenance of
(again macrogcopic) pregssre gradients. The diggipation, on the
otfier hand, oceurg mainly at the microgecopic end, gince it ig
sltimately due to molecslar friction, and thig is mogt effective
in flow-patterns with Righ velocity gradients, that ig, in small
eddieg... Thug the statigtical agpect of turbslence ig eggentially
that of trangport plhienomenon (of energy) — trangport in the
Fouvier-trangform gpace.




That is, the nonlinear term in the Navier-Stokes equation
redistributes energy among the Fourier modes not scales as
is frequently claimed, unless the ‘scale’ is defined just as an
mverse of the magnitude of the wave-number of a Fourier
mode, which is not easy for everybody to swallow.

A natural question is then what does the nonlinear term in
physical space do? Is energy transferred from large to small
scales in physical space, i.e. is there a cascade in physical
space! The answer to the last question depends on the
definition of what is a “scale’ in physical space.




Recall that that there is no contribution from the nonlinear

term in the total energy balance equation (and in a
homogeneous/periodic flow it’s contribution is null in both
the total and the mean), since the nonlinear term (Which
includes or not the term with pressure) in the energy equation has

the form of a spatial flux,

o{u,el/ox;; e=vu?2+plp

In other words the nonlinear term redistributes the energy
in physical space, but does it do more than that?




It is straightforward to see that in a statistically
homogeneous turbulent flow the mean energy of volume of
any scale is changing due to external forcing and
dissipation only — there is no contribution in the mean

of the nonlinear term, which includes the term with the

pressure. That is, if one chooses to define a ‘scale’, 7, in
physical space as a fluid (or a fixed) volume, say, of order
B, then in a statistically homogeneous flow there is no
cascade in physical space in the sense that, in the mean,
there is no energy exchange between different scales.




This happens because the nonlinear term in the energy
equation has the form of a spatial flux, 6%...}/ Ox, ie.
there is conservation of energy by non-linear terms.

In other words, the nonlinear term redistributes the
energy in physical space if the flow is statistically

nonhomogeneous. So, generally, it is a misconception
to interpret this or any other process involving spatial
fhuxes, 0f...}/ Ox, (e.2. momentum flux), as a “cascade”
in physical space.




bascade versus decompositions/ representations

1t iz o Kind of trivad conseqaence

of wa/?k@@ﬂ@ and decompositions

Fouvier transform ambiguity in tur6ulence... TENNEKES 1976

J thing that the k -space decomposition does actually obscure the physics.
MOFFATT, 1990

See also LIEPMANN, 1962; LOHSE AND MULLER-GROELING, 1996




The reason for the above result on the absence of energy

exchange between different scalles in physical space is because no
decomposition is involved in the above ‘definition of scale’. Any
decomposition (be it in physical space, Fourier or any other) brings
the ‘cascade’ back to life since due to nonlinearity it results in

interaction between its components (‘cascade’).

(One of the problems with decompositions is that the nonlinear term
redistributes the energy among the components of a particular
decomposition in a different way for different decompositions, i.e.
the energy exchange/transfer is decomposition dependent. This
creates some discomfort as any physical process, should be
invariant of particular decompositions of a turbulent field.




Coupled with a decomposition (of whatever form) -

which is a good tool for linear problems — the
nonlinearity results in interaction between its

components (cascade’). Thatis ‘cascade’ is not

independent on the nature/form of the decomposition
and , therefore, is not a good means for describing a
physical process, since the latter cannot be
decomposition (which is ours - not Natures’)
dependent .




Decompositions versus representations




“Cascade' arising from a decomposition of the flow field
viewed as a process of exchange of energy, momentum,
etc. between the components of this decomposition is a

dynamical process. This should be distinguished from
“cascading processes” resulting from a decomposition of

some quantity, e.g. dissipation, usually of its surrogate
(Owy/0x,)?, obtained from experimental signals. The
former is a dynamical process, whereas the latter is a
representation characterizing some aspects of the spatial
and/or temporal structure of some flow characteristics.




In other words, ‘structure’ is not synonymous of ‘process':
it is the result of a process. Therefore, generally it is
impossible to draw conclusions about the former from the
information about the latter, though this is done quite
frequently. For example, simple chaotic systems™ with few

degrees of freedom only produce also “fine structure',

possessing a continuous spectrum with a multitude of
interacting modes. Of course, such a signal can be also cast
in a multiplicative representation, but there is no ‘cascade’

whatsoever.
*Fg. three as in the Loren (1963) system or four in the forced spherical pendulum, Miles (1984), also Mullin(1993)




What are the (small) scales in
turbulent dows?

boaiding d




Auy decomposition results in 2
bitirectional and direct (non localiy)

Lutzraction petseen suall aud the Tarve”

scales (whatever tis means) wiich s
non-loeal (Tunctional) Dot in space and
time (Le. bistory-tlependent)




There is an ambiguity in defining the meaning of the term‘small scales’ (or
more generally ‘scales’ or "eddies” and consequently the meaning of the term
‘cascade’. The specific meaning of this term and associated interscale energy
exchange/‘cascade’ (e.g. spectral energy transfer) is essentially
decomposition/representation dependent. The only common thing in all
decompositions/ representations (D/R) is that the small scales are always

associated with the field of velocity derivatives (not necessarily of the first order).
Therefore, it is naturally to look at this field as the one objectively (i.e. D/R
independent) representing the small scales. Indeed, the dissipation is
associated precisely with the symmetric part of the velocity derivative tenso
Ou,/ Ox; — the rate of strain field s; both in Newtonian and non-
Newtonian fluids, whereas vorticity ®; = €, Ou./0x, is the anti-
symmetric part.




The large scales are naturally characterized by the velocity field itsel
u. This is justified also by the fact that sustaining turbulent flows
requires energy input into flow, e.g. in case of a prescribed force, F,

the power iput 1s associated with this force | F uav _Le. with
the velocity field, w. The advantage of the above ‘definition’ of small
scales can be seen from the following.

While the mean contribution of the nonlinear term in the energy
balance is vanishing, the nonlinearity definitely is producing
vorticity and strain in physical space, since the mean enstrophy and
strain production are strictly positive:

<O)i0)j Sij ) > O» (‘ SiijkSki> >()




AMPLIFICATION MJD
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The'property of self amplification of vorticity and strain is responsible for the fact the neither
enstrophy co” nor the total strain s are inviscid invariants:as is the kineticenerqy u*
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That is 3-D turbulent flows have a natural tendency to create
small scales. The velocity field (and its energy) arising in the
process of (self) production of the field of velocity derivatives is
the one which is associated with small scales. This process is
what can be called as energy (and not only energy) transfer

from large to small scales in physical space. The latter are not
necessarlly created via a stepwise turbulent ‘cascade’: it can be
bypassed, and most probably is so in turbulent flows, for
example via broad-band instabilities with highest growth rate at
short wavelengths. More examples are given below




Small scales are not necessanily created from large scales via a stepwise turbulent
‘cascade’: it can be bypassed, and most probably is so in turbulent flows, for
example via broad-band instabilities with highest growth rate at short wavelengths |
(PIERREHUMBERT AND WIDNALL, 1962) o Some other approximately single step
process (BET’GH@Y/ 1976, DOUADY ET AL. 1991, OTT 1999; SHEN AND
WARHAFT 2000, VINCENT AND MENEGUZZI 1994). 1he problem goes back to

TOWNSEND 1951: ...tAe pogtulated process differs from the ordinary |
type of turbulent energy trangfer being frundamentally a gingle
process

An important example, is the complicated structure of vorticity (and passive |
objects) with power law spectrum, (multi)fractality and significant variations down
to very small scale that can be produced by a single instability at much larger scale
without any ‘cascade’ of successive instabilities arising in a simple fluid flow via a

single instability only(!), oTT 1999,




Lramples from transitional
and partly turbulent Hows

Abrupt transition
Pipe. Entrainment. Vortex breakdown. Turbulent spots.
Blow up instabilities. Bypass instabilities and transitions.

I all e above dominar fuid ecomes tebnlent in ‘o tme” without
0y cascade whatspeper.




Lramples from transitional and
partly turbulent Hows

[ ransitional @%w&




ABRUPT - TRANSITION

The transition between laminar and turbulent flows at the beginning
and end of the turbulent region:is relative to its duration.

Abb. 6. Geschwindigkeitsschriebein Rohrmitte bei Re == 2350. Rohreinlauf Nr. 1. Lauflinge »jd = 322. Obere Kurve: Aufzeichnung nur
rascher 13ﬂchwiuu:ligkéil;mhwnnkungfn (Hitzdrahtsirom dureh Wechselstromverstirker geleitet); untere Kurve: Gesamtverlauf der Ge-
schwindigkeit (Hitzdrabtstrom durch Gleichspannungsverstirker geleitet). Geschwindigheit uin m/sek.; Zeit fin sck,

ROTT#, J. C.(1956) Experimenteller Beitrag zur Entstechung
turbulenter Stromung 1m Rohr; /ng. Arch., 24, No. 4, 258-281.




BRUPT . TRANSITION.

The transition between laminar and turbulent flows at.the beginning
and end of the turbulent region'is relative to'its duration.

v (AN 1 I 1 1 T : —‘ .
'Wygnanskl&Champagne 1973 ! Jf % l F

FIGURE 11. Centreline velocity time records as exam pl of (a) puff and (b) slug-type
t hl 1t structu




ABRUPT
TRANSITION

A vortex ring impinging a
wallbecomes turbulent in:
no time as it approaches
thewall




Lramples from transitional and
partly turbulent Hows

Portly tarbotont floms




PTE - ENTRAINMENT
Mount St. Helen voleano

e on 18 May 1980
o The laminar- L
S | turbulent

< | “interiace” I§
| sharp:so that
fluid particles

- | (note the Lagrangian

“ aspect’) “are
iﬂllllﬂ”

testing a Lockheed na l“l‘h“lem
rocket engineiin the. @environment

Los Angeles hills

A turbulent jet from




PARTLY. TURBULENT FLOWS 11

Coexistence of laminar and turbulent regions in the same flow

g alent JBt g A turbulent boundary layer
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COEXISTENCE OF
LAMINAR AND
TURBULENT

| REGIONS IN. THE
SAME FLOW

THREE -DIMENSIONAL PARTICLE PATHS
DOUBLE-DELTA CONFIGURATION

VO rtex ' (MACH=0.3, ALPHA=30 DEG., RE=1.3 MILLION)
breakdown

NASA AMES RESEARCH CENTER

COMPUTATIONS: K. Fujii
GRAPHICS: P. Buning & K. Fujii




COEXISTENCE OF
LAMINAR AND
TURBULENT
REGIONS IN‘THE
'SAME FLOW

Turbulent °
spots

The front velocity, 1s
loo small to-explain
the:spol Spreading:




Another example, is the complicated structure arising in a
simple fluid flow via a single (1) instability with a power
law spectrum, (multi)fractality and significant variations
down to very small scales without any “cascade’ of
successive instabilities. (REYL ET AL 1998, 0TT, 1999).

This is true both the of the vorticity and passive scalar
field resulting from a linear instability of such a flow.




The above ‘definition” of small scales and self
production of velocity derivatives) has a variety of

consequences




1. Since the whole flow field (including velocity, which is mostly z
large scale object) is determined entirely by the field of vorticity
and or strain (namely, the velocity field is a functional of vorticity
and/or sirain w = o (x, t)}, u = §{s;;(x, t)}), the
production of vorticity and or strain ‘reacts back’ in creating the

corresponding velocity field, 1.e. the small scales are not just
‘swept’ by the large ones. Therefore, it is incorrect to treat the
small scales as a kind of passive object (e.g. passive sink of
energy) swept by the large scales or just ‘slaved’ to them.




2. Due to nonlocality of the relations u = F{w(x, t)}, u =
8{s;;(x, t)} mostly small scale vorticity and strain are, generally,
creating also some large scale velocity. This and other aspects of
nonlocality contradict the idea of cascade in physical space, which is local
by definition (e.g. see Frisch, 1995, p.104). In particular, the frequently
assumed statistical independence of large scales, such as structure

functions S_(r) = ((Au)P), Au = [u(x + r)—u(x)]-r/1,i
the inertial range on the (nature) of dissipation, i.e. strain, stands in
contradiction with the relation  w = §{s;;(x, t)} together with the

process of self-production of strain in turbulent flows.




3. Inertial (0;0;5;, - 55,5, ) and viscous terms

(voo; V2w, v s;V2s;; ) do not act as if they were additive and
independent - their interaction is crucial, e.g. the presence of
viscosity changes qualitatively the nature of the enstrophy/strain

production and the properties of the vorticity/strain field. This in
turn means that it is important in the properties of the velocity
(including structure functions) as the latter is fully determined by
the field of vorticity/strain (kinematic nonlocality).




Is cascade local?
Nonlocality




Statistical dependence of small
on large scales.




Elevation 1850 m over the sea level

| The runs were recorded at seven heights from
: 0.8 to 10 m above the ground

* | The experiment was performed in

“| collaboration with the Institute of
Hydromechanics and Water Resources
Management ETH Zurlch







THE MARIX SILS SITE, SWITZERL&ND

The calibration
unit at 3m height




THE PROBE

. / ;I :

coliires s>

'The tip of the pxrobe

Manganin Is used as a
material for the sensor
prongs instead of
tungsten because the
temperature coefficient
of the electrical
resistance of manganin
IS 400 times smaller than
that of tungsten.




Statistical dependence of small on large scales.

Enstrophy )2, total strain s* and squared acceleration a conditioned on magnitude of
the velocity fluctuation vector, Field experiment, Sils-Maria, Switzerland, 2004,

Re, = 6800 (Gulitskii et al. 2007, J/ Aluid Mect,, 589, )
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What about dependence
of large on small scales?




PDFs of instantaneous —— —

dissipation and enstrophy |~ =/~ | -
normallzed on lllelr means
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Though prety underresoved

exhibit long tails: Kolmogorov
scale S not the smallest one.

Fleld expenment in Sils
Maria, Switzerland, 2004




20 30
Energy dissipation rate

The dissipation field is given in units
of the mean energy dissipation rate
£The case with £ 7, = 1.2 (cyan
curve), corresponding roughly to
the standard resolution in a box of
size /=128, is compared with that
of superfine resolution (blue curve,
see also table 1). While the cores of
both PDFs agree, deviations are
manifest in the far tails. Both runs
are for £ = 65.. Approximately 1.7
x 108 data points were processed
for the analysis in the lowresolution
run; the corresponding number for
the high-resolution run was about

30 times larger.
SCHUMACHER ET AL., 2007




‘Anomalous’
scaling

from FRISCH 1995

— T T T >
100 12 14 16 I8

P

Fig. 8.8. Exponent {, of structure functions in the time domain of order p vs
p. Inverted white triangles: data from Van Atta and Park (1972); black circles,
white squares and black triangles: data from Anselmet, Gagne, Hopfinger and
Antonia (1984) with R; = 515, 536, 852, respectively; + signs: S1 data processed
by ‘ESS’ (see p. 131). Straight chain line: {, = p/3 (K41); dashed line: f-model
(eq. (8.31)) with D = 2.8; solid line: lognormal model (eq. (8.122)) with u = 0.2;
dotted line: log—Poisson model (eq. (8.141)).




‘Anomalous’
scaling

from TSINOBER 2001

12

Figure 7.1. Exponents of structure functions for the longitudinal velocity component
(A, e, x) and temperature (7,0 ); A - Anselmet et al. (1984), 77 — Antonia et al. (1984),
o — Ruiz-Chavaria et al. (1996), ® — Vincent and Meneguzzi (1991); and exponents of
structure functions for the transverse velocity component, x — Noullez et al. (1997). This

figure is from Tsinober (1998b).




Scaling exponents, C of structure functions for the longitudinal
velocity component for the full data and the same data in which the
strong dlsslpahve events wnth different thresholds were removed.

An event is
qualified as a
strong dissipative if
at least at one of its
ends (x, x*1) the
Instantaneous
dissipation

€>q (&)
forg > 1.

Order, p, of the structure functions




u, (+400)-u, (x)

j |
200 300 400
Sample number, from position 43000

FIG. 2. Example of simultaneous time series of the squared magnitude of the rate of strain
tensor, 52, proportional to the dissipation e (top) and the velocity increments, Auy = uy (x+7)—
wy(x) for r = 4007 (bottom). The marked segments correspond to the strong events, selected
with the value of the threshold g = 12. This corresponds to the value of s% & 4, 000,




The effect of the removal of the strong dissipative
events is obviously much stronger for higher-
order structure functions. For example, there are
only 5% of dissipative events for g = 6 sitting

mostly at tails of the PDF of u,(r) for r/ =400 (i.e.
deep in the ‘inertial’ range), which contribute

about 36% to the total dissipation. These events
contribute nearly 60% to the value of Sy(r) at Re
~10%.

These same events change the S, (r) by about
11.5%, but contribute about 9% to S; (r)




PDFs of the increments of the longitudinal velocity component for the full data and
the same data in which the strong dissipative events with different thresholds were

removed.. ¢/ = 40 corresponds to the lower edge of the inertial range. (a). v/
=400 is deep in the inertial range (b)

An event is qualified as a strong dissipative if at least at one of its ends (x, x+r)
the instantaneous dissipation €> ¢ (€) forg > 1.

——g=20
——g=610 i, TR
——q=120| \i%% |
—e—g=20.0 AR
——None
0 : 5 2
Au, (40)RMS v, Au(400/RMS u,




Histograms of the increments of the longitudinal velocity component for the full data
and the same data in which the strong dissipative events with different thresholds
were removed.. 1/v) = 40 corresponds to the lower edge of the inertial range. (a).
t/1 =400 is deep in the inertial range (b)
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Contributions of the strong dissipative events, as
defined above, to the eighith order structure function
(), the second-order structure function (b) and the
third-order structure function (c) as a function of the
threshold q for various separations r. Note that this
contribution to the third order structure function s
not negligible in the ‘inertial range” !
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as defined above (a) dissipation (b) as a function of the

threshold q for various separations r.




Lagrangian setting and

passive objecis




Lagrangian setting




It seems natural to look at/for ‘cascade’ of passive objects in
pure Lagrangian setting. However, in pure Lagrangian
description the fluid particle acceleration is linear in the fuid
particle displacement and the ‘inertial’ effects are manifested only
by the term containing pressure - there are no terms like the
advective terms (w + V)w inpure Enlerian setting.

82X@/82t — [ijXk:p] —+ L’{[XQ, ng [XQ, ng 8X£/8IL] -+
[Xg}Xlﬁ[ngXL ng/df] -+ [leXQ’[leXgﬁXi/c‘?t]

Here (7, 7. k) means an even permutation of the indices (1,2, 3). The vector
X (a,t) is the particle position vector for a particle labeled by a. Usually
a= X(a.tg). l.e. the initial positions of fluid particles are used as their
labels. The expression [A.B,C] = aﬁi‘fii‘;) 18 an abbreviation for the
Jacobian of the wvariables A, B.C 1in respect with wvariables a;.a2.a3. We

The inertial interactions understood as (u - ) have a relative nature; they are eliminated in the transformation to the particle attached reference system




Therefore, the nonlinearity in the Lagrangian representation
cannot be interpreted in terms of some cascade (as it cannot be
maintained by pressure gradient alone) and it is far less clear (if
at all) how one can employ decompositions even at the
problematic level as done in pure Eulerian setting.

Similarly one can hardly speak about things like Reynolds

decomposition and Reynolds stresses, turbuent kinetic energy
production in shear flows in pure Lagrangian setting.

Also there is no sweeping of any kind at the outset as there are no terms
like the advective terms (w - V){... } in pure Eulerian setting, so one
has a problem speaking about the interaction between advective and

diffusive processes in pure Largangian setting




bascade of passive objects

Is there ‘enough’ analogy (mare on analogies in 4 sevarate lectire)
between genuine and ‘passive’ turbulence or the differences are
essential? Nonlinear versus linear. Is extension of Kolmogorov
phenomenology justified for systems governed by linear equations?




It is rather common, since OBUKHOV (1949) and CORRSIN
(1951), to speak about cascade in case of a passive scalar and
more recently passive . The main argument is from some analogy.
Indeed, for instance in any random isotropic flow the rate of
production of ‘dissipation’ (i.e. corresponding field of derivatives)

of both passive scalars and passive vectors is essentially positive,
which can be interpreted as a sort of "cascade'. However, the
equations describing the behavour of passive objects are linear.
Hence, there is no interaction between modes of whatever
decomposition of the field of a passive object: the princilple of
superposition is valid in case of passive objects™.




*Here by ‘mode’ is meant as a solution of the appropriate equation, e.g. of
the advection-diffusion equation . Of course, there are many ways to use
‘modes’ that are not solutions of this equation, such as Fourier modes. In this
case the Fourier modes do interact, since one of the coefficients of the
advection-diffusion equation, the velocity field, is not constant. This
interaction is interpreted frequently as a 'cascade’ of passive objects. But, as
mentioned, this interaction is decomposition dependent, and therefore is not

appropriate for description of physical processes, which are invariant of our
decompositions. There is a point concerning the behavior of an individual
solution. Namely, the evolution of its energy spectrum is expected to exhibit
positive energy transfer to higher wave numbers as a consequence of
production of the field of derivatives of the passive field. Can one see this as
a kind of ‘cascade’? Even if the answer were affirmative it is a very different

kind of cascade, if at all.




Therefore, it seems more appropriate to describe the process in terms of production
of the field of derivatives of the passive object, which is performed by the velocity
straining field, just like it is proposed above for the velocity field.

Hence the extension of Kolmogorov arguments and phenomenology to passive
objects seems to be much less justified. No wonder that the phenomenological
paradigms for the velocity field failed in most cases when applied to passive
objects™. We are reminded that the ‘analogy’ between the passive objects and the

active variables is, at best, very limited for several reasons, the main of which are the
linear nature of ‘passive’ turbulence, Lagrangian chaos, the irreversible effect of the
randomness of the velocity field on passive objects independently of the nature of
this randomness, e.g. even a Gaussian one, and the one-way interaction between the

velocity field and the field of a passive object .

*E.g. experiments by Villermaux et al. (2001) clearly show that this is the case. The behaviour of passive scalar in
their experiments is distinctly nonlocal in the sense that the main mechanism responsible for mixiing involves direct
interaction between large and small scales ‘bypassing' the (nonexistent) cascade.




IS BELOW ANYTHING WRONG?

The mixed-denivative skewness 5,4

(g /dxq) (80 /6% ) :':l _
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15 related to the nonhnear transfer of scalar variance to small scales and takes a valu
zero when there 15 no net cascade to higher wavenumbers - |




4 laminar Eulerian fAow at Re~1 (E-baminar)
IS Chaotic bagrangian ([-turbulent)

le thore & carvads of passrve objocts?




MIXING INPMM, Re ~ 1 (!)

KUSH & OTTINO (1992)
RELEVANT TO MICROFLUIDICS with Re ~ 0 (0);
Linked twist maps (LTMs), Bernoulli mixing. ..

The complexity and problematic aspects of
the relation between the Lagrangian and

Eulerian fields is seen in the example of

'|.#¥ Lagrangian (kinematic) chaos or
| Lagrangian turbulence (chaotic advection)
>3 with a priori prescribed and not random
~ | | Enlerian velocity field (E-laminar). This is
| why Lagrangian description - being
) { physically more transparent - is much
'Y more difficult than the Eulerian

description. In such E-laminar but L-
turbulent flows the Lagrangian statistics

has no Eulerian counterpart, as in the flow

shown at the left.




Mixing in PPM - partitioned-pipe mixer at very low Reynolds number.
Reppatiaziar = (v:) R/v = 0.3 and Reppares = vaR/v = 1.8; here (v,) — average
axial velocity and vg = -é-(iu”mu + |v1ymin) — characteristic cross-sectional velocity.
0 < Repparariat < 0.8 and O < Reppum.cs < 0.8 < 8. a) schematic of the PPM, b) is
a close up of the upper part of ¢). From Kusch and Qttino (1992).




In lieu of conclusion




CHOOSE WHAT YOQU LIKE MORE

Big whivlg Gave Little whivbg,

Whickh feed on their velocity.

Asdl Cittbe whivlg liave Cegser whirbg
And go on to vigeogity =

In the mobecslbon genge

RICHARDSON (1922)

Big whirlg Lach smaller whirlg,

To feed on their velocity.

They cragh and form the finegt cowls
Pevoitted by vigeogity

BETCHOV (1976)




The notion that turbulent flows are hierarchical, which underlies
the concept of cascade, though convenient, is more a reflection of
the unavoidable (due to the nonlinear nature of the problem)
hierarchical structure of models of turbulence and/or
decompositions rather than reality. This is emphasized in the case

of passive objects, whose evolution is governed by linear
equations, with the velocity field entering multiplicatively in these
equations, thus making them ‘statistically nonlinear’.

| personally prefer the physical space rather than to live and die
in some decomposition space.




The concept of inertial range is not well defined, e.g. in the context of
‘anomalous’ scaling behavior of higher order structure functions in the
nominally defined inertial range. This is due to the contamination of the
inertial range by strong dissipative events at whatever large Reynolds
numbers. One of the consequences is that the ‘decomposition’ into
inertial and dissipative ranges is not that nice, the anomalous scaling is

not the attribute of the ‘inertial range’ in the conventional sense and
corresponding consequences for what is called MF formalism. The 4/5
law is not a pure inertial law.

A similar problem seems to exist (because the data is still qualitative
only) for passive scalars, so that the zero mode explanation may well be

of not of the kind R* (the right result for the right reason)




