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1. Satellite observations
Magnetic structures (humps or holes)
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Figure 1. Each panel shows 3 hours of Galileo magnetometer field magnitude data (solid black line),
appropriate quartiles (dotted), and the median value (solid gray) computed using 20 min sliding windows
with single sample shifts. The panels show examples of “peaks™ (top), “dips” (middle), and “other™
(bottom) structures.

Joy etal. J. Geophys. Res. 111, A12212 (2006) Usually viewed as nonlinear mirror modes

Structures observed in the Jovian magnetosheath
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Figure 1. Overview of the Galileo-Io flyby geometry showing
the locations of the mirror mode and ion cyclotron wave
 observations. (Figure adapted from Russell et al. [1997], and
velocity vectors taken from Frank et al. [1996].)

Mirror—-mode structures in the wake of lo, as observed by Galileo

Russell et al., JGR 104 (A8) 17471 (1999)
Huddleston et al., JGR 104 (A8) 17479 (1999)
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Mirror modes in Venus'’magnetosheath

AB/B

Volwerk et al., GRL 35, L12204 (2008)
JGR 113, EOOB16 (2008)
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Figure 1. The magnetic field data for 5 May 2006. The spacecraft moves from the solar wind (SW), through the BS (BS)
into the 1ndgjneloshedth (MS). (e) and (ﬂ The fluctuation of the magnetic field AB/B and the angle ”Bmv between the
maximum variance direction and the mean magnetic field (dots), and the angle g, between the minimum variance
direction and the mean magnetic field (pluses).
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Figure 3. The magnetic field data for 2 October 2006. The spacecraft moves from periapsis in Venus’ magnetosphere
(MSp), through the magnetopause (MP) into the magnetosheath (MS). (e¢) and (f) The fluctuation of the magnetic field
AB/B; the angle (g between the maximum variance direction and the mean magnetic field (dots), and the angle
Frmy between the minimum variance direction and the mean magnetic field (pluses).



Conditions for peaks or dips
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Figure 2. A, B and C show the field magnitude recorded
during three intervals from 20 Dec 1997. They illustrate
three forms of mirror structure: peaks, dips and a near si-
nusoidal waveform.

Lucek et al. GRL 26, 2159 (1999)

September 22, 1961
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Fig. 1. Magnetic field magnitude B and direction angles « and ¢ are presented in satellite
coordinates for part of a highly disturbed orbit. The angle between the magnetic field and
the satellite spin axis is «. The angle between the magnetic field and the sun, as projected
onto the satellite’s equatorial plane is ¢. Each point plotted represents the average of 16
individual field measurements taken during a 5-sec time interval,

Kaufmann et al., J. Geophys. Res. 75, 4666 (1970)

Structures observed in the terrestrial magnetosheath
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Figure 8. Galileo magnetic field and plasma 3 observations from the outbound pass of the 29th orbit.
The shading convention used here is the same as in Figure 2. The heavy black line indicates an interval of
amplitude saturation. The vertical dotted lines mark the bow shock and magnetopause crossing times.

Depending on local values of 3, magnetic holes or humps are preferentially formed.
Same conclusion by Bavassano-Cattaneo et al. 1998 (Saturn’s magnetosheath) ,
Soucek, Lucek & Dandouras 2008 (Earth’s magnetosheath).



From Phan et al.
JGR 99, 121 (1994)
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Strong anti-correllation of magnetic field and density for
nearly sinusoidal (left) and peak (right) mirror modes.

Leckband et al., Adv. Space Res. 15, 345 (1995)

Measurement by AMPTE-UKS satellite in the magnetosheath.



Magnetic holes may display different shapes 12f 913020ci28 Ursses
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Figure 1, Examples of magnetic holes observed (a) by Gices Orsz0 st Wi s
Ul}fSSCS in the free solar wind (taken from Figure 2 of Figure 2. More examples of the mirror mode structures in the solar wind.
Winterhalter et al. [1994], (b) by Ulysses in the magne-
tosheath of Jupiter, called mirror mode structures (from Zhang et al. GRL 35, L10106 (2008)

Figure 5 of Erdds and Balogh [1996]), and (c) by Helios
in the free solar wind (data courtesy of K, Sperveslage
and F.M. Neubauer, University of Koln, 1999). Shown

is the magnetic field magnitude. . .
¥ x Do these structures have a unique origin?

Baumgartel JGR 104 (A12), 28295 (1999)



Other magnetic structures in the solar wind (Sperveslage et al. NPG 7, 191, 2000)

Magnitude of the magnetic field [nT]
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Fig. 2. Examples of magnetic holes in the highest resolution
data of the missions Voyager 2 (1.92s), Helios 1 and 2 (0.25s),
time intervals are three minutes.
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Fig. 3. Examples of magnetic enhancements in the highest reso-
lution data of the mission Helios 2; time intervals are one minute
except for panel 3.



Evidence of huge magnetic holes in the solar wind
(Stevens & Kasper, JGR 112, A10905 (2007)
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Main properties of observed structures:

* Structures are quasi-static in the plasma frame

*Small change in the magnetic field direction

* Observed in regions displaying: ion temperature anisotropy 15 > T. H
B of a few units
(conditions met under the effect of plasma compression in front of the magnetopause).
Not always in a mirror unstable regime.

* Magnetic fluctuations mostly affect the parallel component.
* Cigar-like structures, quasi-parallel to the ambient field, with a transverse scale of a few Larmor radii.

* Density is anticorrelated with magnetic field amplitude.

Origin of these structures is still not fully understood.

Usually viewed as nonlinearly saturated states of the mirror instability,
or possibly, in particular in the solar wind, remnants of mirror structures
created upstream of the point of observation (Winterhalter et al. 1995).

Other recent interpretations:

* trains of slow-mode magnetosonic solitons (Stasiewicz 2004)

» mirror instability is the trigger, generating high amplitude fluctuations that evolve
such as to become nonlinear solutions of isotropic or anisotropic plasma equations
(Baumgartel, Sauer & Dubinin 2005)



Linear instability
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Linear mirror instability (continued)
® Zero-frequency instability.

* Driven by Landau wave-particle resonance and

guenched at small-scales by finite Larmor radius effects.
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Fig. 2. The growth rate of the mirror instability as a function
of wavenumber at three different values of the proton tempera-
ture anisotropy. Here and in the following figures (unless stated
otherwise) the other plasma parameters are §, = 1.00, m, /m, =
1836, T. /T, = 1.00, and va/c = 1.0 x 10—*. For each curve the
angle of propagation corresponds to the maximum growth rate
at that value of the anisotropy: at Ty /T, = 2.00, 6 =T1°; at

TJ-p/Thp = 2.25, # =66°; and at T-LPI"T"P = 2.50, § = 63°.
Gary, JGR 97 (A6), 8519 (1992).

See also Hall, J. Plasma Phys. 21, 431 (1979).

* At least near threshold, it develops at large angle
with respect to the ambient field.
At small or moderate angle and/or smaller 3,
lon Cyclotron Anisotropic Instability can be
dominant.
Nevertheless, numerical simulations suggest that
mirror modes could dominate in the nonlinear

regime (“Competition between the mirror-mode instability
and the L-mode electromagnetic ion cyclotron instability:
results from comparison of 2-D and 3-D
simulations”Shoji,Omura, Tsurutani,Verkhoglyadova

http://rp.iszf.irk.ru/hawk/URSI12008/paper/H P04p3.pdf)

Understanding of the nonlinear dynamics is still incomplete.



Magnetic holes are also observed in conditions for which

the plasma is linearly stable (BISTABILITY).

Skewness of magnetic fluctuations:

* when negative: magnetic holes
» when positive: magnetic humps

'H-l"‘“-‘g
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Magnetosheath CLUSTER data (Génot et al.,

- Holes in small beta
region

-Linearly stable or
close to threshold

- Bistability region

- Linear mirror mode
- Classical sinusoidal

shape

- Humps in large or

moderate beta region
- Corresponds to the
first phase of simulations

AGU 2006)

Soucek, Lucek & Dandouras (JGR 2008): “peaks are typically observed in an unstable plasma,
while mirror structures observed deep within the stable region appear almost exclusively as dips”.

Bistability also observed in Jovian magnetosheath (Erdds and Balogh 1996)
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Figure 3. Distribution of mirror modes of different types
in the anisotropy-beta plane. Red triangles denote peaks
with P > 0.3, green squares dips (P < —0.6) and the

remaining ambiguous mirror mode events are marked by
grey stars.

Soucek, Lucek & Dandouras, JGR 113, A04203 (2008)

Solar wind: “Although the plasma surrounding the holes was generally
stable against the mirror instability, there are indications that the holes
may have been remnants of mirror mode structures created upstream

of the points of observation” (Winterhalter et al. 1995).



Cy >1 : supercritical
(for bi-Maxwellian equilibrium)
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2. Numerical simulations of the Vlasov-Maxwell equations
Shed light on the time evolution and on the origin of the structures.

Mirror unstable regime near threshold in alarge domain

1D simulation:  frp = 72.8° (most unstable direction)
With a PIC code in a large domain: ;Efp” =103, = 1.857 3. = 1072
Domain size= 2048 c/wpi
Growth rate: 0.005 Qp

1024 cells with 500 000 particles/cell £ = 200003 £ = 10000 €232
0.15
2000 — : 0.10 0.10f ;
j = === ] <
: ':.—.:, — : o 008k
1500 o 2= “ 000
? ——————— - 0.05 . . . it . . . .
- —— m—____— (00 0 500 1000, 1500 2000 O 500 1000 1500 2000
10007 — = - — Spf'UA C zp;’f“ﬂ
— — __— 0.25 T r T T T T T
500 =_—— — | 0.05 ]
—— —— _— < 015F
I —— ——— =
I e 0,10 = 010F
0 2000 4000 6000 8000 10000 005k
L wep
0.00 h L
) o 0.0 01 0.2 0.3 04 05 0.0 0.1 0.2 03 0.4 0.5
Color plot of the fluctuations of the magnetic field kva/iy kva/

component B, perpendicular to the direction ¢ of

spatial variation, as a function of ¢ and t. A Iarge number of modes are excited

Humps form and undergo coarsening,.



QUESTION: What are the saturation mechanisms of the linear instability?

First mechanism suggested for saturation: based on quasi-linear theory
(Shapiro & Shevchenko 1963)

» Assumes space homogeneity
(thus absence of coherent structures).

» Can consequently be valid at early times only.
* Requires many modes in interaction, thus an extended domain.

» Mainly associated with a diffusion process in velocity space
(dominantly along the ambient field).



Quasi-linear theory
(Shapiro & Shevchenko 1964)
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Perturbation of the space-averaged distribution function
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Quasi-linear theory cannot describe structure formation.

It traces the spatially independent part of the distribution function, while nonlinearities describing

space variation (wave-wave interactions) are ignored.

Alternative theory: saturation of mirror modes by relaxation to locally marginal stability

(Kivelson and Southwood 1996, Pantellini 1998).

Phenomenological model where particles are divided in two groups
that respond differently to the changing field.

Trapped particles with large pitch angle »
Passing particles with small pitch angle & = tan (VL/VH)

In the rising field regions, trapped particles are excluded by the mirror
force, leading to a decrease of the particle pressure (reduction of 3,)
and evolution to marginal stability (with not important change in the
particle energy).

In the well regions, no particle can be excluded.

Some trapped patrticles are cooled by loosing perpendicular energy
(reduction of the temperature anisotropy).

Large reductions in the field are required in the wells in order to
cool the trapped population enough to stabilize the system.

AVi>0 AV <0 AVn>0
An,Ap, <O 4n,ap>0  An Ap <O

0000

Ap,An>0 4Ap,An<O Ap,4An>0

Figure 1. A schematic illustration of the distinction between the
orbits of untrapped (upper panel) and trapped (lower panel)
particles in a mirror geometry. Local velocity, density. and
perpendicular pressure perturbations for adiabatic responses are
characterized below each panel.

This model mostly predicts deep magnetic fields in conditions of marginal stability.

It hardly explains the formation of magnetic humps
and does not address the phenomenon of bistability.



PIC simulation in an extended domain near threshold
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The instability continues to take place while '< 0, due to
hydrodynamic-type nonlinear effects.

Positive skewness: magnetic humps.

No relaxation to marginal stability regime



PIC hybrid simulations at moderate 3
(Baumgartel, Sauer & Dubinin, GRL, 2003)

Moderate distance from threshold

Initial random noise in a mirror instable
regime leads to the formation of
magnetic humps whose number

decreases as time elapses.

Magnetic humps form and
undergo coarsening.
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Figure 4. Space-time evolution of the magnetic field in an
uniform, collisionless, anisotropic, mirror-unstable plasma
with bi-Maxwellian proton distribution (8, = 5, ;) = 2.5,
B.=1, 6=180°



PIC simulation in a small computational domain
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Suggests that particle trapping
Is at the origin of oscillations.



Saturation by particle trapping in gyrokinetic simulations starting with a single mirror mode
(Qu, Lin & Chen, GRL 35, 110108, 2008) P|C algorithm
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Figure 1. Time history of the amplitude of (a) the \f\/ 00 .
perturbed parallel magnetic field and (b) the ion temperature = 0.0
anisotropy for 4; ; =2 and 4, = 1. 05 01
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Figure 2. The island formation of the distribution function in the phase-space at r * €2; = 2250 (the cross in Figure 1a). (a)
The amplitude of the perturbed parallel magnetic field. (b) The distribution function /= f;, + 8F; in the phase-space. (¢ and
d) The normalized perturbed distribution function 6F,/f, taken for jt = 1 and 1 = 2, respectively.



Simulations in a small domain (15x 21 c/wpi),using an Eulerian code (no numerical noise)

time

B":].S, TL/T":14 and 6=1.37

Run 1, By
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Magnetic hump (and density hole)
resulting from the mirror instability,
starting from noise.

 In a small domain, the quasi-linear phase is not present.
 Amplitude oscillations, associated with particle trapping.



Magnetic humps form even very close to threshold

Run 17, By, t=4700 ':IW,Pr t=3700
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Distribution function does not display flattening.
No quasi-linear phase.

High resolution in velocity space nevertheless required.

Time evolution of the unstable modes

Growth rate of most unstable mode
(m=3) : 0.0017 Q,



3. Modeling the structure formation
A. Asymptotic expansion (near a bi-Maxwellian equilibrium)

Close to threshold, the linearly unstable mirror modes are confined to large scales.

Nonlinear dynamics amenable to a reductive perturbative expansion that isolates
mirror modes (Kuznetsov, Passot & Sulem, PRL, 98, 235003 ,2007).

At large scales, kinetic effects (Landau damping and finite Larmor radius
corrections) are weak and contribute only linearly in the weakly nonlinear
regime supposed to develop near threshold.

This argument is validated by a systematic reductive perturbative analysis
performed on the Vlasov-Maxwell system (Califano et al. JGR 113, A08212, 2008).

For the sake of simplicity, assume cold electrons with negligible inertia.



Equation governing the proton velocity (derived from Vlasov equation)

b, 1 |
&P ZV.p,— —(E+-u,x B)=0

dt — pp My c

Assuming cold electrons with no inertia:

FE = l(t.i.p — i) x B with 7 = (C/ilﬂ')v x B
c ne

F

du,, \B\z) ( Am (B-V)B +|BJ? ~ A
My _y( | P — ) b (1 N ) T

In order to address the asymptotic regime, we rescale the independent variables in the
form X = /ex, Y = /ey, Z = ez, T = £°t, where ¢ measures the distance to threshold,

and expand any field ¢ in the form

Py p— ,nnﬁlg -
Y= &7 Pny2

n=>0
Scalings of the space and time variables are suggested by the linear instability growth rate near threshold

B [BL 1 kz( ﬁl—&g_ 3 22}
k — 1 — 3 1 + k
= lklvay —7=5— JTB. |: B B R 2 481 1AL (0. ion Larmor radius)




5/2 p(5/ by (7
In particular B, = ESKEB(E'M 4 Es/zBESfE) G E, =¢ ”Ei 2 /zEI/z) "
E.B=0
B,=By+eBY +£2BY ... cold electrons E, =£'E® LR
without inertia

One shows that 7, « B'** — (. By the divergenceless condition: B = (—A)7'V 0B

Defining by = By’ +¢B5” and p, = p{’+ep?,

the ion-velocity equation reduces to a pressure balance equation

(5/2)

) pf)(m)—lﬁzzbz} + f(v * H)l — O(<?)

. By b Qe 3, — ﬁ”
v {p LT T T T

The perpendicular pressure and the gyroviscous force are to be calculated from Vlasov equation
For a biMaxwellian equlibrium:

&1\ Bob. V1
pJ_ — JJ_(]. - J_) 0 _|_ = \/?
))H 4 Uth, |

-1 Jjﬁ_ Bﬂbz
_,.3” 47

5’1”( —H 32) In this near-threshold asymptotics,
e time derivative originates from

9 b. FiN27 b, \2 .
—ep” { riA; =+ (1 gty 3( _L) (—) } Landau damping

W - Pl A Bo * Landau damping and finite Larmor
(V H)(sz) B —E(l - _rg;L) 027 © (bz) radius effects arise only linearly
e Av g B,

I'\: ion Larmor radius

The vanishing of the contribution of zeroth order reproduces the instability threshold.
Dynamical equation obtained at the next order.



Dynamical equation (assuming a bi-Maxwellian equilibrium):

t-|t~J

A%a

(i) = (o)1 )G o

4
1 ¢ 01— 0 -1 b, 371 + J.N\ 7 b,
() (8s) ma () 3 () (B) )=

After simple rescaling

0.U = ( - M) [JU FALU — AT U — 3(52]

Here, 0 = £1, depending on the positive or negative sign of the
threshold parameter 3, /8 —1 —1/3,.

When the spatial variation are limited to a direction making a fixed angle with the ambient field

~ R,=-Hao
‘ T T o J ¢ 72 z . z .
orU = K= [((T + O==) U — 3U } whose Fourier transform is | K|

where = 1s the coordinate along the direction of variation.




Finite time blowup of the solution

When spatial variations are limited to a direction
making a fixed angle with the ambient field:

o - )2 .
P Re Ka +— ) U— 3U3]

=2

Solution profile near collapse

Integration above threshold (0>1), with
as initial conditions a sine function
involving several wavelengths.

After an initial phase of linear instability,
formation of a dominant magnetic hole.

After a while, solution blows up
with a self-similar behavior.

Wave-particle resonance provides the
trigger mechanism leading to the linear
instability.

Hydrodynamic nonlinearities reinforce the
instability, leading to collapse.

Linear FLR effects arrest the linear
instability at small scales but cannot cope
with hydrodynamic nonlineatrities.

At the level of Vlasov-Maxwell eqgs,
the singularity is the signature of the
formation of finite-amplitude structures,
through a subcritical bifurcation that

cannot be captured perturbatively.

Kuznetsov, Passot & Sulem, PRL 98, 235003 (2007).

Magnetic holes and not humps are obtained !



No stable non-zero stationary solutions to the asymptotic equation

. . L oU ~ OF
This equation can be written in the form — = —Ky—
T oU

where f{;z = —H0O/0Z is a positive definite operator (whose Fourier transform is |Kz|), and

_ . 2y - 102 1 3
F_‘/[ 2[- [A de (VLI) + U ]di?

has the meaning of a free energy or a Lyapunov functional. This quantity can only decrease in time, since

o T o o0 2
ar | U :)T( K. .f[*“’ E<0. 2
0

dF'/dT is strictly negative above threshold. It canindeed only vanish for w = (o —-A 572 AL) U —3U%=0. (%)

a’F dF oU [ OF ~ OF

Above threshold (o=+1): there is no non-zero solutions of (¥¥).

Below threshold (o=-1): solutions exist (in the form of magnetic holes).
In 3D, they correspond to saddle points of the free energy and are thus unstable.
In 1D, the solution is the KdV soliton; the linearized operator near this solution has
one neutral mode (associated to space translation) with one node and thus
a negative energy level: again it is unstable.
(Kuznetsov, Passot & Sulem, JETP Letters, 86, 637, 2007)

* No steady solutions above threshold

» Unstable solutions below threshold s : :
« Blowup of a small-amplitude initial ==>  Subcritical bifurcation

condition above threshold Saturated solution is not amenable
to a perturbative calculation



Reductive perturbative expansion

performed near bi-Maxwelian equilibrium,

retaining only linear kinetic effects,
predicts that the nonlinear development of the mirror instability leads to the
formation of magnetic holes.

Similar observation when using a more comprehensive semi-fluid description:

FLR-Landau fluids (Passot & Sulem, Phys. Plasmas 14, 082502 (2007):
Fluid description obtained by closing the moment hierarchy
by means of a closure relation aimed to reproduce the

linear kinetic theory near a bi-Maxwellian distribution
(include linear Landau damping and FLR corrections in the gyrokinetic scaling).

FLR Landau fluids also predict that nonlinear saturation of the mirror instability
leads to magnetic holes.



FLR-Landau fluid simulations 1.000F
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Extension of the reductive perturbative expansion:

The reductive perturbative expansion near threshold can be extended to any (frozen) smooth
equilibrium distribution function f(vﬁ,zu) provided » > 0, o> 0, and v > 0).

b= 6B.(r,t)/Bog
(normalized parallel
magnetic perturbation)

‘ ‘ 02
Db = \/Eﬁ(—H&z) b+ SF2A b — x-Lob — AL (A)
T 2 AL

p ~ _BL 1 neglecting the contribution of resonant particles
A= _‘-*’—i'\ — 2..-*{3F + 9 =+ § to A in the case of a smooth distribution fonction
. - . . 3 5
. mn [ 82Ff 4 For a bi Maxwe_lllan dlstrlputlon Ba = 3/287 /B thus A >0 and
with - 3, = ———d v  the model predicts formation of magnetic holes, while humps are
PB 8 ()(’Uﬁ)‘2

observed in the simulations.

This suggests that the early-time QL dynamics affects the forthcoming formation of the structures.

We are thus led to modify eq.(A) by assuming that the coefficients are not frozen at their initial
values but are evaluated from the instantaneous distribution function given by the QL

diffusion equation.

For consistency, the contribution of resonant particles are to be retained in the estimate of the nonlinear coupling constant.

6 2

_1 mn [ v] oO°f 3
=V2r— [ — —_—

Vp o / k 5(UH)( vﬁ)2d v

\/;?7 3 02
Ob= — " (—HI) [T+ Z/FA b — y—==2 bAb2> (AA)
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The asymptotic equation cannot capture the saturation of the mirror instability.
The asymptotic scaling are broken rather early.

B. Phenomenological modeling of the saturation

|. Models based on particle trapping:

() Pantellini et al. Adv. Space Res. 15, 341 (1995)
Kivelson and Southwood JGR 101, 17365 (1996)
Pantellini JGR 103, 4789 (1998)

Assume a separation of the particle distribution into trapped and untrapped components that respond

differently to magnetic field variations.
Saturation results from the cooling of trapped particles in magnetic troughs.

Usually predict deep magnetic holes and are hardly consistent with the presence of magnetic humps
(only predicted for exceptionally high values of [3); Bi-stability not addressed.

(i) Pokhotelov et al. JGR 113, A04225 (2008): phenomenological modeling of particle trapping by a prescribing
flattening of the parallel distribution function on a range that extends with the strength of the magnetic
perturbation. This leads to a renormalization of the time derivative (associated with the quenching of the

Landau resonance).

(" 12 = { y2 A .
l-garcmn L iﬂ:k; |1+ E_q h—h-
. 7 o) \

Prevents wave collapse.
The stationary solutions still have the form of KdV solitons.

Only holes can result from this approach.



|l. Effect of variation of the local ion Larmor radius:

when phenomenologically supplemented to the asymptotic equation,
it makes the model consistent with Vlasov-Maxwell simulations.

Motivation:

In regions of weaker magnetic field (and/or large 1), ion Larmor radius is larger,
making the stabilizing effects of finite radius corrections more efficient than in the
linear regime. Consequently, mirror instability is more easily quenched in magnetic
field minima than in maxima, making magnetic humps more likely to form in the
saturating phase of the mirror instability.

Assume a bi-Maxwellian equilibrium

.U = (—'Hf);) [r:r[_.-" + AU — L\Il”&(—"r _ 3[J% Using conservation of
) b magnetic moment,
4 p3 o T, /IBI? = 1/IBl = 1/B.
AU — L A UrE Y A%y
- 1+al - 9(1+al)2 " Furthermore, in addition to
Laplacian which results from

(taken equal to 0.01) is related the leading order expansion of

[/ ; .
. to the size of the box a'nonlocal operat_or associated
Y - with FLR corrections, we also
o — 261 [-‘31 (T L 1) B 1} retain the next order contribution.
14+5 L T”

Singularity is arrested
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Skewness of magnetic fluctuations
in the quasi-stationary regime
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ter oo, as predicted by the phenomenological model.

Cluster data : statistic of structures

|.C.: small-amplitude random noise in supercritical regime observed in the magnetosheath.

large-amplitude random noise in subcritical regime

Génot et al., Ann. Geophys. 27, 601 (2009).



4. Formation of magnetic holes when starting with large initial perturbations

Subcritical solutions (i.e. below threshold)

Model simulation Vlasov simulation in a small domain
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Large-amplitude magnetic holes
survive even far below threshold.

Magnetic humps do not survive
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Figure 1. Space-time evolution of a magnetic depression
in an otherwise uniform, collisionless, isotropic high-3
plasma with 8, = 2.5, B. = 1, 8 = 80°. The initial
perturbation 1s prescribed as 8B./By = —0.5 exp (—x*/h?)
with A = 10 c/w,,; 8B, is set to zero at (= 0.

A localized magnetic perturbation in the
form of a finite-amplitude hole persists

PI1C hybrid simulations at moderate [3 below threshold Baumgartel, Sauer & Dubinin, GRL, 2003)
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Figure 3. Space-time evolution of a magnetic compression
0B./By = 0.5 exp (—xzr’hg), other parameters the same as in
Figure 1.

A localized magnetic perturbation in the form of a
finite-amplitude hump relaxes



time

Eulerian Vlasov simulations in a small domain for large-amplitude initial
perturbations above threshold

Run 8, By (at t=0 strong By hole, 6n,=0)

] :; | §b, , tZTBO.O . | on, ; t=180|0
1000 0.9 0.2+ 41 0.06F
0.8 - r
00— — 0.7 L | 0.04}
0.6—0.0 L
¢ I ] o.02
0 1 2 3 4 5 6 i [
ks 1 o.00f
0.0 1 [
0.4 1 -0.02f
0.0 Y 1 i ]
0.0 I ] 004 5
0070o6 n n L " 1 P S S I T S S— | " [ " " L 1 L PR T E—— |
0 20 40 60 80 g 20 40 60 80
o ¢ ¢
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Magnetic hole (and density hump), starting with a large amplitude
magnetic field depression, above threshold.

Domain size: 15x 21 c/w;, with 3=6,
T_l_/T":l.Z and 6=1.463



§b, , t=7600

Run 11, By (at t=0 strong By hole, 6n,=0)
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Cluster observation
(Génot et al., AGU 2006)

Large-amplitude magnetic holes are found to be stable solutions

even far above threshold.



Mirror structures are different from soliton solutions:

Magnetic field component perpendicular
to the plane (k, B,) is symmetric with
respect to the center of the magnetic hole.
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Differently, soliton models based on

anisotropic Hall-MHD
(Stasiewicz 2004, Mjolhus 2006)

predict an antisymmetric by, profile.
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Formation of magnetic holes from small-amplitude noise in a mirror unstable plasma

PIC simulation far from threshold starting form random noise.
Early-formed humps transform into holes. 0,5 = 50.5° (mostunstable angle)

1024 cells with 500 000 particles/cell; Domain Py =1 fﬁl =4
size=1024 c/w, £, =10~
Growth rate: 0.156 Q,*
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The system is continuously stirred and stability of magnetic holes.
coarsening is less efficient.
In particular, there are no isolated structures. No such transition at larger B (e.g. 8, =2 ).
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Resulting magnetic holes:
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Qualitative similarity with Ulysses measurements in the
magnetosheath of Jupiter (Erdos & Balogh 1996):
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Space-integrated parallel distribution function

The distribution function remains
close to bi-Maxwellian.
No flattening of the distribution function.




5. Summary

* Numerical integrations in a large domain of VM equations demonstrate the existence of an
early phase described by quasi-linear theory, followed by a regime where coherent structures form.

* In a small domain, no quasi-linear phase but significant oscillations due to particle trapping.
* The structures resulting from the saturation of the mirror instabilty are magnetic humps.
» Stable solutions in the form of large-amplitude magnetic holes exist both above and below threshold.

* Holes can also form in the late evolution of an extended system when initialized far from threshold.

* Reductive perturbative expansion of VM eqgs near threshold leads to an equation with
a finite-time singularity, signature of a subcritical bifurcation. Nature of the structures depends on the
equilibrium distribution function. An early QL phase can provide the conditions for the formation of
magnetic humps.

» A phenomenological modeling retaining ion Larmor radius variations predicts the formation of
saturated magnetic humps above threshold and existence of stable large-amplitude magnetic
holes mainly below threshold, in agreement with observations and numerical simulations.

Refs: Kuznetsov, Passot & Sulem, PRL 98, 235003 (2007); JETP Letters 86, 637 (2008)
Califano, Hellinger, Kuznetsov, Passot, Sulem & Travnicek, JGR 113, A08219 (2008).
Hellinger, Kuznetsov, Passot, Sulem & Travnicek,GRL, 34, xxxx, DOI:10.1029/2008GL036805. in press.
Génot, Budbik, Hellinger, Passot, Belmont, Travnicek, Sulem, Lucek & Dandouras, Ann. Geophys. 27, 601 (2009).



6. Open questions

 Would it be possible to retain nonlinear FLR effects and the influence of trapped particles
within an asymptotic theory?

* Are there conditions where mirror instability saturates by quasi-linear effects?

 Can one observe, very close to threshold, the signature of the singularity predicted by the
reductive perturbative expansion ?

 How to understand quantitatively the transition from humps to holes observed in large-box
simulations far from threshold?

. Perform Vlasov-Maxwell simulations in two or three dimensions.

 What is the role of the mirror structures on the magnetopause boundary?
Can they trigger micro-reconnection events?



