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Structures observed in
the terrestrial magnetosheath

Joy et al.  J. Geophys. Res. 111, A12212 (2006)

1. Satellite observations

Soucek, Lucek & Dandouras JGR 113, A04203 (2008)

Structures observed in the Jovian magnetosheath

Joy et al.  J. Geophys. Res. 111, A12212 (2006)

Magnetic structures (humps or holes) 
that are quasi-stationary in the plasma frame,
with no or little change in the magnetic field
direction are commonly observed in the
solar wind and the planetary magnetosheaths.

Usually viewed as nonlinear mirror modes



Russell et al., JGR 104 (A8) 17471 (1999)

Huddleston et al., JGR 104 (A8) 17479 (1999)

Mirror–mode structures in the wake of Io, as observed by Galileo



Mirror modes in Venus’magnetosheath

Volwerk et al.,  GRL 35, L12204 (2008)
JGR 113, E00B16 (2008) 

(linear holes)



Kaufmann et al., J. Geophys. Res. 75, 4666 (1970)

Lucek et al. GRL 26, 2159 (1999)

Structures observed in the terrestrial magnetosheath

Peaks in low field regions

Dips in high field regions

Near sinusoidal waveform

Conditions for peaks or dips



Holes: low β

Peaks: higher β

Depending on local values of β,  magnetic holes or humps are  preferentially formed.
Same conclusion by Bavassano-Cattaneo et al. 1998 (Saturn’s magnetosheath) , 

Soucek, Lucek & Dandouras 2008 (Earth’s magnetosheath).

, JGR (2006)



pressure equilibrium

anticorrelation
magnetic field - density

From Phan et al.
JGR 99, 121 (1994)

magnetosheath region 
adjacent to the dayside
magnetopause
(AMPTE/IRM satellite).



Strong anti-correllation of magnetic field and density for 
nearly sinusoidal (left) and peak (right)  mirror modes. 

Leckband et al., Adv. Space Res. 15, 345 (1995)

Measurement by AMPTE-UKS satellite in the magnetosheath.
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Free solar wind
(Ulysses)

Jovian magnetosheath
(Ulysses)

Free solar wind
(Helios)

Do these structures  have a unique origin?
Baumgärtel JGR 104 (A12),  28295  (1999)

Winterhalter et al. (2000)

Zhang et al. GRL 35, L10106 (2008)

Magnetic holes may display different shapes 
(sharp or wide)



Other magnetic structures in the solar wind (Sperveslage et al. NPG 7, 191, 2000)



Evidence of huge magnetic holes in the solar wind
(Stevens & Kasper, JGR 112, A10905 (2007)

(a)
(b)

Effect of solar wind expansion on mirror modes?

Alternative origin :Alfvén waves propagating
at large angle to the ambient magnetic field
[Buti et al., JGR 2001] 

Do kinetic effects play a role is so big structures ?



• Structures are quasi-static in the plasma frame

•Small change in the magnetic field direction 

• Observed in regions displaying: ion temperature anisotropy                
β of a few units

(conditions met under the effect of plasma compression in front of  the magnetopause).
Not always in a mirror unstable regime.

• Magnetic fluctuations mostly affect the parallel component.

• Cigar-like structures, quasi-parallel to the ambient field, with a transverse scale of a few Larmor radii.

• Density is anticorrelated with magnetic field amplitude.

Origin of these  structures  is still not fully understood.

Usually  viewed as nonlinearly saturated states of the mirror instability,
or possibly, in particular in the solar wind, remnants of mirror structures
created upstream of the point of observation (Winterhalter et al. 1995).

Other recent interpretations:
• trains of slow-mode magnetosonic solitons (Stasiewicz 2004)
• mirror instability is the trigger, generating high amplitude fluctuations that evolve 

such as to become nonlinear solutions of isotropic or anisotropic plasma equations
(Baumgärtel, Sauer & Dubinin 2005) 

Main properties of observed structures:

ii TT >⊥



Linear instability

Instability condition:

Linear growth rate
(near threshold):

For a bi-Maxwellian distribution:

Venedov and Sagdeev (1958), Chandrasekhar et al. (1958), Hasegawa (1969), 

Hall (1979), Gary (1992), McKean et al. (1992,1994), Southwood and Kivelson (1993), 

Pantellini & Schwartz 1995, Pokhotelov et al. (2005 and references therein), Hellinger (2007).

Instability condition:

cold electrons,

(Shapiro & Shevchenko 1964)  

(     : ion Larmor radius)Lρ

k

Growth rate:

=



• Zero-frequency instability.

• Driven by Landau wave-particle resonance and 
quenched at small-scales by finite Larmor radius effects.

Understanding of the nonlinear dynamics is still incomplete. 

Linear mirror instability (continued)

• At least near threshold, it develops at large angle 
with respect to  the ambient field.
At small or moderate angle and/or smaller β,
Ion Cyclotron Anisotropic Instability can be
dominant.

Gary, JGR 97 (A6), 8519 (1992).

Nevertheless, numerical simulations suggest that 
mirror modes could dominate in the nonlinear 
regime (“Competition between the mirror-mode instability 
and the L-mode electromagnetic ion cyclotron instability: 
results from comparison of 2-D and 3-D 
simulations’’Shoji,Omura,Tsurutani,Verkhoglyadova

http://rp.iszf.irk.ru/hawk/URSI2008/paper/HP04p3.pdf)

See also Hall, J. Plasma Phys. 21, 431 (1979).



Magnetosheath CLUSTER data (Génot et al.,  AGU 2006)

Magnetic holes are also observed in conditions  for  which
the plasma is linearly stable (BISTABILITY).

(instability condition
for bi-Maxwellian
distribution)

Bistability also observed in Jovian magnetosheath (Erdös and Balogh 1996) 

Skewness of magnetic fluctuations:
• when negative: magnetic holes
• when positive: magnetic humps

Distance to threshold

Soucek, Lucek & Dandouras (JGR 2008): “peaks are typically observed in an unstable plasma, 
while mirror structures observed deep within the stable region appear almost exclusively as dips”.



Soucek, Lucek & Dandouras, JGR 113, A04203 (2008)

Solid blue line: theoretical
(bi-Maxwellian) mirror threshold

Dashed-dotted blue line: empirical
marginal stability

Black dashed line: fitted boundary
between peaks and dips

Solar wind: “Although the plasma surrounding the holes was generally 
stable against the mirror instability, there are indications that the holes 
may have been remnants of mirror mode structures created upstream 
of the points of observation” (Winterhalter et al. 1995).



Magnetic holes: mostly in subcritical regime Magnetic humps: in supercritical regime

Génot et al., Ann. Geophys. 27, 601 (2009).

CM <1 : subcritical
CM >1 : supercritical
(for bi-Maxwellian equilibrium)



With a PIC code in a large domain:
Domain size= 2048 c/ωpi
Growth rate: 0.005 Ωp
1024 cells with 500 000 particles/cell

A large number of modes are excited.
Humps form and undergo coarsening.

2. Numerical simulations of the Vlasov-Maxwell equations

Mirror unstable regime near threshold in a large domain
(most unstable direction)

Shed light on the time evolution and on the origin of the structures.

Color plot of the fluctuations of the magnetic field
component Bη perpendicular to the direction ζ of 
spatial variation, as a function of ζ and t.

1D simulation:



QUESTION: What are the saturation mechanisms of the linear instability?

First mechanism suggested for saturation: based on quasi-linear theory
(Shapiro  & Shevchenko 1963)

• Assumes space homogeneity 
(thus absence of coherent structures).

• Can consequently be valid at early times only.

• Requires many modes in interaction, thus an extended domain.

• Mainly associated with a diffusion process in velocity space
(dominantly along the ambient field).



Quasi-linear theory

linear growth rate

f : velocity distribution function averaged 
over the space variables

(Shapiro & Shevchenko 1964)  

(Hellinger & al., GRL, submitted)

(Shapiro & Shevchenko 1964)  



Perturbation of the space-averaged distribution function ∆f = f – f(0)

QL theory PIC simulationt= 1.4 105 t=2 103

Integrated over
flattening

t=0

negative values

positive values

∆



Quasi-linear theory cannot describe structure formation.
It traces the spatially independent part of the distribution function, while nonlinearities describing 
space variation (wave-wave interactions) are ignored.

Alternative theory: saturation of mirror modes by relaxation to locally marginal stability
(Kivelson and Southwood 1996, Pantellini 1998).

Phenomenological model where particles are divided in two groups
that respond differently to the changing field. 

Trapped particles with large pitch angle 
Passing particles with small pitch angle

In the rising field regions, trapped particles are excluded by the mirror
force, leading to a decrease of the particle pressure (reduction of β┴)
and evolution to marginal stability (with not important change in the
particle energy).

In the well regions, no particle can be excluded.
Some trapped particles are cooled by loosing perpendicular energy
(reduction of the temperature anisotropy).
Large reductions in the field are required in the wells in order to 
cool the trapped population enough to stabilize the system.

This model mostly predicts deep magnetic fields in conditions of marginal stability.
It hardly explains the formation of magnetic humps
and does not address the phenomenon of bistability. 



Instantaneous distance to threshold reaches negative values, 
a signature that quasi-linear theory ceases to apply when 
coherent structures begin to form.

The instability continues to take place while Γ< 0, due to 
hydrodynamic-type nonlinear effects.

Positive skewness: magnetic humps.

Bi-Maxwellian distance 
to threshold:

Instantaneous distance 
to threshold:

Gray scale plot of the magnetic
fluctuations as a function of 
space and time. 

Magnetic energy fluctuationsPIC simulation in an extended domain near threshold

No relaxation to marginal stability regime



PIC hybrid simulations at moderate β
(Baumgärtel, Sauer & Dubinin, GRL, 2003)

Initial random noise in a mirror instable 
regime leads to the formation of 
magnetic humps whose number 
decreases as time elapses.

Magnetic humps form and 
undergo coarsening.

Moderate distance from threshold



PIC simulation in a small computational domain

Oscillations of the magnetic energy 
fluctuations with a period consistent 
with the ion bounce time

Suggests that particle trapping
is at the origin of oscillations.

.



Saturation by particle trapping in gyrokinetic simulations starting with a single mirror mode
(Qu, Lin & Chen, GRL 35, L10108, 2008)

Anisotropy only weakly reduced 

x

PIC algorithm



β║=15,  T┴/T║=1.4 and θ=1.37

Magnetic hump (and density hole)
resulting from the mirror instability, 
starting from noise.

tim
e

• In a small domain, the quasi-linear phase is not present.
• Amplitude oscillations, associated with particle trapping.

Simulations in a small domain (15x 2π c/ωpi),using an Eulerian code (no numerical noise)



Magnetic humps form even very close to threshold

Time evolution of the unstable modes

Distribution function does not display flattening.
No quasi-linear phase.

Growth rate of most unstable mode
(m=3) : 0.0017 Ωi

High resolution in velocity space nevertheless required.



At large scales, kinetic effects (Landau damping and finite Larmor radius 
corrections) are weak and contribute only linearly in the  weakly nonlinear 
regime supposed to develop near threshold.

This argument is validated by a systematic reductive perturbative analysis 
performed on the Vlasov-Maxwell system (Califano et al. JGR 113, A08212, 2008).

For the sake of simplicity, assume cold electrons with negligible inertia.

3. Modeling the structure formation

Close to threshold, the linearly unstable mirror modes are confined to large scales.

Nonlinear dynamics amenable to a reductive perturbative expansion that isolates
mirror modes  (Kuznetsov, Passot & Sulem, PRL, 98, 235003 ,2007).

A.  Asymptotic expansion (near a bi-Maxwellian equilibrium)



Equation governing the proton velocity (derived from Vlasov equation)

with 

with 

Scalings of the space and time variables are suggested by the linear instability growth rate near threshold

Assuming cold electrons with no inertia:

(     : ion Larmor radius)Lρ



the ion-velocity equation reduces to a pressure balance equation

The perpendicular pressure and the gyroviscous force are to be calculated from Vlasov equation 

The vanishing of the contribution of zeroth order reproduces the instability threshold.

In this near-threshold asymptotics,
• time derivative originates  from   

Landau damping
• Landau damping and  finite Larmor

radius effects arise only linearly

Lr : ion Larmor radius

In particular
E.B =0

One shows that . By the divergenceless condition:

cold electrons 
without inertia

For a biMaxwellian equlibrium:

Dynamical equation obtained at the next order.



Dynamical equation (assuming a bi-Maxwellian equilibrium):

After simple rescaling 

When the spatial variation are limited to a direction making a fixed angle with the ambient field

whose Fourier transform is



Integration above threshold (σ>1), with
as initial conditions a sine function
involving several wavelengths.

After an initial phase of  linear instability, 
formation of  a dominant magnetic hole. 
After a while, solution blows up
with a self-similar behavior.

Solution profile near collapse

Finite time blowup of the solution

At the level of Vlasov-Maxwell  eqs,
the singularity is the signature of the 

formation of finite-amplitude structures,
through a subcritical bifurcation that 

cannot be captured perturbatively.

When  spatial variations are limited to a direction 
making a fixed angle with the ambient field: Wave-particle resonance  provides the 

trigger mechanism leading to the linear 
instability.

Hydrodynamic nonlinearities reinforce the
instability, leading to collapse.

Linear FLR effects arrest the linear 
instability at small scales but cannot cope 
with hydrodynamic nonlinearities.

Kuznetsov, Passot & Sulem, PRL 98, 235003 (2007).

Magnetic holes and not humps are obtained !



This equation can be written in the form

Above threshold (σ=+1): there is no non-zero solutions of (   ).
Below threshold (σ=-1): solutions exist (in the form of magnetic holes). 

In 3D, they correspond to saddle points of the free energy and are thus unstable.
In 1D, the solution is the KdV soliton; the linearized operator near this solution has 

one neutral mode (associated to space translation) with one node and thus
a negative energy level: again it is unstable.

(Kuznetsov, Passot & Sulem, JETP Letters, 86, 637, 2007)

No stable non-zero stationary solutions to the asymptotic equation

• No steady solutions above threshold
• Unstable solutions below threshold
• Blowup of a small-amplitude initial 

condition above threshold

Subcritical bifurcation

It can indeed only vanish for (   )

Saturated solution is not amenable 
to a perturbative calculation



Reductive perturbative expansion 
performed near bi-Maxwelian equilibrium,
retaining only linear kinetic effects,

predicts that the nonlinear development of the mirror instability leads to the
formation of magnetic holes.

Similar observation when using a more comprehensive semi-fluid description:

FLR-Landau fluids (Passot & Sulem, Phys. Plasmas 14, 082502 (2007):
Fluid description obtained by closing the moment hierarchy 
by means of a closure relation aimed to reproduce the 
linear kinetic theory near a bi-Maxwellian distribution
(include linear Landau damping and FLR corrections in the gyrokinetic scaling).

FLR Landau fluids  also predict that nonlinear saturation of the mirror instability
leads to magnetic holes.



No  blow-up

FLR-Landau fluid simulations  
(Borgogno, Passot, Sulem, NPG, 14, 373 (2007)

At least one of the two assumptions (bi-Maxwelian
equilibrium,linear kinetic effects) is to be challenged.



The reductive perturbative expansion near threshold can be extended to any (frozen) smooth
equilibrium distribution function                       provided

(normalized parallel
magnetic perturbation)

with
For a bi-Maxwellian distribution                                ,  thus Λ >0 and
the model predicts formation of magnetic holes, while humps are 
observed in the simulations. 

Extension of the reductive perturbative expansion:

neglecting the contribution of resonant particles
to Λ in the case of a smooth distribution fonction

This suggests that the early-time QL  dynamics affects the forthcoming formation of the structures.

We are thus led to modify eq.(▲) by assuming that the coefficients are not frozen at their initial 
values but are evaluated from the instantaneous distribution function given by the QL 
diffusion equation. 

For consistency, the contribution of resonant particles are to be retained in the estimate of the nonlinear coupling constant.

(▲)

(▲▲)



Results of the simulation of eq. (▲▲) Formation of magnetic humps

QL theory

-min(b)

blowup

change of sign

nonlinear coupling

QL saturation



The asymptotic equation cannot capture the saturation of the mirror instability.
The asymptotic scaling are broken rather early.

B. Phenomenological modeling of the saturation

I. Models based on particle trapping: 

Pantellini et al. Adv. Space Res. 15, 341 (1995) 
Kivelson and Southwood JGR 101, 17365 (1996) 
Pantellini JGR 103, 4789 (1998)

Assume a separation of the particle distribution into trapped and untrapped components that respond
differently to magnetic field variations.
Saturation results from the cooling of trapped particles in magnetic troughs.

Usually predict deep magnetic holes and are hardly consistent with the presence of magnetic humps
(only predicted for exceptionally high values of  β); Bi-stability not addressed.

Pokhotelov et al. JGR 113, A04225 (2008): phenomenological modeling of  particle trapping by a prescribing
flattening of the parallel distribution function on a range that extends with the strength of the magnetic
perturbation.  This leads to a  renormalization of the time derivative (associated with the quenching of the
Landau resonance).

(i)

(ii)

Prevents wave collapse. 
The stationary solutions still have the form of KdV solitons.

Only holes can result from this approach.



II. Effect of variation of the local ion Larmor radius:
when phenomenologically supplemented to the asymptotic equation, 
it makes the model consistent with Vlasov-Maxwell simulations. 

In regions of weaker magnetic field (and/or large       ), ion Larmor radius is larger, 
making the stabilizing effects of finite radius corrections more efficient than in the 
linear regime. Consequently, mirror instability is more easily quenched in magnetic 
field minima than in maxima, making magnetic humps more likely to form in the 
saturating phase of the mirror instability.

(taken equal to 0.01) is related 
to the size of the box

Using conservation of 
magnetic moment, 

Furthermore, in addition to 
Laplacian which results from 
the leading order expansion of 
a nonlocal operator associated
with FLR  corrections, we also
retain the next order contribution.

Singularity is arrested 

Motivation:

Assume a bi-Maxwellian equilibrium



σα = 1.54

tim
e

σα = 0.05

σα = - 0.3

σα = - 0.4

σα = - 0.05

Coarsening of magnetic humps resulting from
the mirror instability in the framework of the 
phenomenological model.

Magnetic holes predicted by the phenomenological
model initiated by a random noise of small amplitude 
when σ> +1 and of large amplitude when σ< -1.

Evolution after saturation of linear instability



Cluster data : statistic of structures 
observed in the magnetosheath.

Skewness of magnetic fluctuations 
in the quasi-stationary regime

I.C.: small-amplitude random noise in supercritical regime
large-amplitude  random noise in subcritical regime

Bistability

Bistability
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Génot et al., Ann. Geophys. 27, 601 (2009).



Subcritical solutions (i.e. below threshold) 

Vlasov simulation in a small domain

Large-amplitude magnetic holes
survive even far below threshold.

Magnetic humps do not survive

Model simulation

4. Formation of magnetic holes when starting with large initial perturbations



PIC hybrid simulations at moderate β below threshold (Baumgärtel, Sauer & Dubinin, GRL, 2003)

A localized magnetic perturbation in the 
form of a finite-amplitude hole persists

A localized magnetic perturbation in the form of a 
finite-amplitude hump relaxes



Magnetic hole (and density hump), starting with a large amplitude 
magnetic field depression, above threshold.

tim
e

Eulerian Vlasov simulations in a small domain for large-amplitude initial 
perturbations above threshold

Domain size: 15x 2π c/ωpi, with β║=6,  
T┴/T║=1.2 and θ=1.463

Note the overshoot 



Large-amplitude magnetic holes are found to be stable solutions 
even far above threshold.

Cluster observation 
(Génot et al., AGU 2006)

Overshoot 



Mirror structures are different from soliton solutions:

Magnetic field component perpendicular
to the plane (k, Bo) is symmetric with
respect to the center of the magnetic hole.

hodograph

b z

by

Differently, soliton models based on 
anisotropic Hall-MHD 
(Stasiewicz 2004, Mjolhus 2006)
predict an antisymmetric by profile.

Stasiewicz, JGR 110, A03220  (2005)



PIC simulation far from threshold starting form random noise. 
Early-formed humps transform into holes.

Distance to threshold remains slightly positive.
The system is continuously stirred and 
coarsening is less efficient.
In particular, there are no isolated structures.

Formation  of magnetic holes from small-amplitude noise in a mirror unstable plasma

Skewness
becomes
negative

(quarter of the box)

Late transition from magnetic 
humps to magnetic holes

1024 cells with 500 000 particles/cell; Domain 
size=1024 c/ωpi
Growth rate: 0.156 Ωp

-1

(most unstable angle)

--- biMaxwellian
___ instantaneous

β is decreasing, which favours nonlinear
stability of magnetic holes.

No such transition at larger β ( e.g. ).2=pβ



The distribution function remains 
close to  bi-Maxwellian.
No flattening of the distribution function.

Space-integrated distribution function variation

Space-integrated parallel distribution function

Qualitative similarity with Ulysses measurements in the  
magnetosheath of Jupiter (Erdös & Balogh 1996):

Resulting magnetic holes:



• Numerical integrations in a large domain of VM equations demonstrate the existence of an 
early phase described by quasi-linear theory, followed by a regime where coherent structures form.

• In a small domain, no quasi-linear phase but significant oscillations due to particle trapping. 

• The structures resulting from the saturation of the mirror instabilty are magnetic humps.

• Stable solutions in the form of large-amplitude magnetic holes exist both above and below threshold. 

• Holes can also form in the late evolution of an extended system when initialized far from threshold. 

• Reductive perturbative expansion  of  VM eqs near threshold leads to an equation with
a finite-time singularity, signature of a subcritical bifurcation. Nature of the structures depends on the 
equilibrium distribution function. An early QL phase can provide the conditions for the formation of
magnetic humps.

• A phenomenological modeling retaining ion Larmor radius variations  predicts the formation of  
saturated magnetic humps above threshold and existence of stable large-amplitude magnetic
holes mainly below threshold, in agreement with observations and numerical simulations.

5. Summary

Refs: Kuznetsov, Passot & Sulem, PRL 98, 235003 (2007); JETP Letters 86, 637 (2008)
Califano, Hellinger, Kuznetsov, Passot, Sulem & Travnicek, JGR 113, A08219 (2008).
Hellinger, Kuznetsov, Passot, Sulem & Travnicek,GRL, 34, xxxx, DOI:10.1029/2008GL036805. in press.
Génot, Budbik, Hellinger, Passot, Belmont, Travnicek, Sulem, Lucek & Dandouras, Ann. Geophys. 27, 601 (2009). 



6. Open questions

• Would it be possible to retain nonlinear FLR effects and the influence of trapped particles
within an asymptotic theory?

• Are there conditions where mirror instability saturates by quasi-linear effects?

• Can one observe, very close to threshold, the signature of the singularity predicted by the 
reductive perturbative expansion ?

• How to understand quantitatively the transition from humps to holes observed in large-box 
simulations far from threshold?

• Perform Vlasov-Maxwell simulations in two or three dimensions.

• What is the role of the mirror structures on the magnetopause boundary? 
Can they  trigger micro-reconnection events?


