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Abstract

Understanding small-scale turbulence in magnetized plasmas and how it affects the transport of quantities such as heat or momentum is crucial to
explain the observed large-scale properties of many objects in the Universe. Astrophysical plasmas such as the solar wind, the intracluster medium
or AGN plasmas are however only weakly collisional, which prohibits the use of fluid theories to describe turbulence in these systems. One must in
general instead resort to a kinetic description that notably incorporates finite Larmor radius effects if turbulent fluctuations develop at scales down to
the ion gyroscale. In this study, we consider the astrophysically relevant case of a weakly collisional high-β plasma, in which magnetized turbulence
naturally generates pressure anisotropies that drive mirror and firehose instabilities at scales comparable to the ion gyroscale. As a first step towards
understanding the dynamical macroscopic consequences of these instabilities, we present a kinetic theory of the nonlinear development of the parallel
firehose instability with finite Larmor radius effects. We show that infinitesimal magnetic fluctuations reach amplitudes comparable to that of the
background field on a turbulent turnover timescale and that the original pressure anisotropy evolves nonlinearly towards its critical value for instability.

Kinetic turbulence in astrophysical plasmas
Observations usually only reveal the large-scale properties of distant astrophysical objects, such as

their global magnetic field, temperature or luminosity. Somehow paradoxically, explaining the origin of
these structures requires to understand the details of the small-scale, unresolved dynamics within the
plasma. The reason is that most astrophysical plasmas are in a turbulent state, which drastically affects
the transport processes that regulate their thermodynamics and dynamics on global scales. For instance,
the X-ray emission of compact objects is tightly related to turbulent angular momentum transport as-
sociated with their hot accretion flow (Quataert et al. 2002). In galaxy cluster physics, determining if
and how a temperature gradient can be maintained between the inner and outer regions of a cluster
requires to understand how heat gets transported in the intracluster medium (Voigt et al. 2004).

Fig. 1. Left: X-ray emission of the hot gas
in the Sgr A* region obtained by Chandra (for
the central accreting region of size ∼ 108 km,
Ti ∼ 1012 K, λmfpi ∼ 109 km, ρi = 10−1 km,
βi ∼ 4. The field-of-view here is ∼ 20 − 30
pc). Right: pressure map (Schueker et al. 2004)
of the intracluster medium of the Coma cluster
(Ti ∼ 107 K, λmfpi ∼ 1015 km, ρi = 105 km,
βi ∼ 10). 1 pc ∼ 3.08 1013 km.

Many astrophysical plasmas are not only turbulent, they are also magnetized, weakly collisional and
have β ≡ 8πp/B2

0 ≥ 1. In such plasmas (see Fig. 1), the turbulent fluctuation scales and the ion Larmor
radius (or gyroscale) ρi = vthi/Ωi are both far smaller than the ion mean free path λmfpi = vthi/νii

(the ion-ion collision frequency is νii, the ion thermal speed is vthi =
√

2Ti/mi, and the ion cyclotron
frequency is Ωi = eiB/mic). This turbulence cannot be described by fluid theories such as isotropic
MHD or Braginskii MHD which are not valid in this parameter regime. Instead, one often has to resort
to a kinetic description, which usually increases theoretical and numerical complexity rather drastically.

Anisotropy and high-β kinetic instabilities

Pressure anisotropy generation in magnetized plasmas. In magnetized, high-β
weakly collisional plasmas, pressure anisotropy (with respect to the magnetic field orientation b̂0) is
an important element of the plasma dynamics. The first adiabatic invariant 〈µ〉 = p⊥/ρB0 is almost
conserved in such a system, meaning that any change in magnetic field immediately translates into
a change in perpendicular pressure and in the build-up of a pressure anisotropy ∆ ≡ (p⊥ − p‖)/p.
Changes in magnetic field can be due to a spatially decaying field experienced by particles moving
with respect to it (as in the solar wind) or to magnetic field induction by a velocity field u0, following
d ln B0/dt = b̂0b̂0 : ∇u0 . Such anisotropic, high-β configurations are unstable to either the mirror or
the firehose instability (depending on the sign of ∆), which both develop at scales as small as a few ρi.
Consequently, in the presence of any velocity field (even a large-scale one), these instabilities will always
kick in and inject energy down to the ion gyroscale. Since ρi can be very small in magnetized plasmas,
the problem contains extremely disparate scales and is not directly manageable numerically. Other
techniques based for instance on asymptotic scale separation have to be used to solve the problem.

The linear parallel firehose instability. Hereafter, we focus on the parallel firehose problem,
for which both velocity and magnetic field perturbations are perpendicular to b̂0 and have k⊥ = 0. In
the absence of FLR effects, the linear dispersion relation is an anisotropic Alfvénic dispersion relation
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For ∆ = 0, we recover a standard Alfvén wave. For ∆ < −2/β, the wave turns into an exponentially
growing unstable mode. This occurs when parallel pressure is larger than the perpendicular pressure,
i.e. in regions of decreasing magnetic field (in a tangled field, these are also the regions of high field
curvature). Note that in the unstable case, the growth rate should become infinite for k‖→∞, which
is of course not physical. In practice, the dispersion relation must be regularized using FLR corrections.

Asymptotic nonlinear theory with FLR

Asymptotic expansion. We consider the nonlinear evolution of a firehose-unstable system in
which anisotropy is consistently driven by a flow u0 at scales far larger than the instability scale. To close
the kinetic equations, we seek an asymptotic expansion based on this scale separation. For a turbulent
system of size L and corresponding large-scale velocity U such that the Mach number M = U/vthi � 1,
we define a Reynolds number Re = UL/ν, where ν ≡ vthiλmfpi is a fluid estimate of the plasma viscos-
ity. Based on Kolmogorov arguments, the largest field stretching rate γ0 comes from the viscous scales
`0 ∼ LRe−3/4 which have a velocity u0 ∼ URe−1/4. We introduce a small parameter

ε ≡ MRe−1/4 = u0/vthi = λmfpi/`0 , (2)

which provides a first scale separation between the subsonic stirring scales and the ion mean free path.
We further take vthi as unit of velocity, so that u0 ∼ ε in nondimensional form, and a typical firehose
fluctuation scale as unit of length. The fluctuation scales lie below the ion mean free path, so we order
λmfpi ∼ ε−1 and νii ∼ ε, leading to `0 ∼ ε−2 and γ0 ∼ ∇u0 ∼ ε3 for the slow scales. Now, the
pressure anisotropy that builds up before the firehose saturates results from a competition between
magnetic induction by u0 and relaxation by weak collisions, ∆ ∼ γ0/νii ∼ ε2. From Eq. (1), we must
similarly order β ∼ ε−2 to obtain a firehose instability at k‖ ∼ 1 with growth rate γ ∼ ε. Finally, we

know from the hot plasma theory (Stix 1992) that the FLR correction is proportional to (ρivthi)
2 in

the actual firehose dispersion relation, so we order ρi ∼ ε for the FLR term to be comparable to the ∆
term in Eq. (1). This means that we are doing a low frequency approximation, i.e. Ωi ∼ ε−1 � γ, γ0.

PSfrag replacements

Time

Space

1/γ0 ∼ ε−3

`0 ∼ ε−2λmfpi ∼ ε−1

1/γ, 1/νii ∼ ε−1

1/k‖ ∼ 1ρi ∼ ε

1/Ωi ∼ ε

We first consider the nondimensional Vlasov equation for the electrons and expand it in terms of the
electron to ion mass ratio me/mi. At order -1/2, we find that the electron distribution function is a
Maxwellian, and derive a simple Ohm’s law. We then expand u, B and the ion distribution function
fi in integer powers of ε starting from u0 ∼ ε, B0 ∼ ε and f0i ∼ 1 and plug the ε ordering in the
Vlasov equation for ions and Ohm’s law, systematically expanding derivatives in terms of slow and fast
variables. At orders -1, 0, 1 and 2, we most notably find that the zeroth and first order ion distribution
functions are Maxwellian and obtain the gyrophase dependence of higher and higher order bits of fi. We
need to proceed to order 3 to obtain information on the time evolution of the unstable mode u1i, B1.
Pressure anisotropy notably kicks in consistently at this order in f2i, as a consequence of our ordering
for γ0. We obtain an evolution equation for the anisotropic part h2i of f2i
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This equation contains an anisotropy source ∼ b̂0b̂0 : ∇u0 due to magnetic induction by u0, a nonlin-
ear term ∼ (B1/B0) b̂0 : ∇u1i which becomes important once the firehose fluctuations saturate, and a
collisional relaxation term. The induction and momentum equations for B1 and u1i read

d
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where the second order (negative) ion pressure anisotropy ∆(t) = (p⊥2i−p‖2i)/p0i has been introduced.

Equations (4)-(5) can be combined into the following wave-like equation for B1
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∆(t) can be computed consistently from h2i, thus Eqs. (3)-(6) form a closed system (for a given u0).
We then solve equation (3) using a simple pitch-angle scattering collision operator. Denoting an average
over small scales along field lines by an overbar, we obtain
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Numerical results. Equations (4)-(5)-(7) can be solved numerically, starting from random initial
conditions for B1 and u1i. After a linear firehose growth phase triggered by the build-up of ∆ to an
amplitude ∆0 ∼ −|γ0|/νii, fluctuations grow secularly in the nonlinear regime, feeding back on ∆ and
maintaining it close to its critical value −2/β0i. Fluctuations ultimately reach B1/B0 ∼ 1 after a
time ∼ 1/γ0, at which point the asymptotic theory breaks down. There are no interactions between
different k 6= 0 modes here, but a full spectrum of modes builds up with time as a consequence of the
time-modulated linear firehose instability, ultimately producing a spectral index close to -3.

Fig. 2. Left: Ensemble average of the time evolution of (B1/B0)
2 and anisotropy ∆ (inset) using a box size

L ≡ 1, νii ≡ 1, λmfpi = L, −|γ0|/νii = 0.01, 2/β0i = 0.002 and ρi = 0.00018. Right: magnetic energy
spectrum at νiit = 20. The firehose FLR cut-off scale is indicated by a vertical dashed line in the spectrum.

Discussion

Our theory, by assuming small perturbations, is a form of quasilinear theory, but our results demon-
strate that a fully nonlinear theory is required at times larger than a turbulent turnover time. As
transport of u0 takes place on a comparable timescale, we have not attempted to solve that problem in
detail. It is however worth noting that the viscosity in our theory, which can be obtained at order ε4, is
proportional to (∆(t) + 2/β) (this is simply Braginskii viscosity at νiit � 1). As this quantity tends to
zero on a timescale 1/νii � 1/γ0, we suspect that the actual plasma viscosity could be far smaller than
the fluid estimate as a consequence of the presence of the firehose. However, before any firm conclusion
can be drawn, a more general theory including notably mirror modes should of course be elaborated.


