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e Oscillation and polarity reversal, 22
year solar cycle

 Equator ward migration of sunspots.
* Poleward migration of diffusing field.
« Azimuthally averaged magnetic field.

Turbulence in the Sun:
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Estimates of Solar Magnetic
Field:

-About 1G on surface, but about 2
kG at the sunspots.

- Equipartition field strength at
the base of the convection zone is
about 3 kG.

-Mean magnetic field (estimated
from total magnetic flux that
emerges from the surface during
one cycle) is about 4 kG.
(Galloway and Weiss, 1981)

~Peak magnetic field estimated
from thin flux tube

approximations is about 100kG
(D'Silva and Chaudhuri, 1993)

Simulation:

‘Direct numerical simulation (DNS) of
compressible MHD
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Advective derivative
Magnetic diffusivity

Different domain extents:
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» The large scale magnetic field forms itself in
cells along the azimuthal direction. Each cell has
about unit aspect ratio.

» Cartesian simulations with similar aspect ratio

shows similar behaviour.

» Extending the domain in azimuthal direction
gives rise to the clusters repeating themselves.

» Extending the domain in the meridional

Helical external force in spherical
polar coordinates:

direction gives no significant change.

Two hemispheres, two signs of
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 Chandrasekhar-Kendall functions.

* The coefficients are chosen to satisfy
the right boundary conditions.

The coefficients and the unit vector is
randomised to generate random helical
forcing corresponding to a range of
wave number.

Spherical wedge shaped
domains:
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- External force injects positive kinetic
helicity.

- Magnetic energy grows and reaches
equipartition on slow dissipative scales.

- Limited by decay of small scale magnetic
helicity due to magnetic diffusivity.

Kinetic helicity:

Gauge- Independent magnetic

helicity:
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* We have no convection, rotation, and differential
rotation, and quite small Reynolds number.

* How does the frequency of oscillations change with
magnetic Reynolds number ? (This question is best
answered in mean field simulations)

* To generate similar kinetic helicity from convective
simulations and rotation will require rapid rotation.

* This is a model with minimum number of added .
mfgredlen’rs which shows interesting dynamical behaviour

of large scale magnetic field, e.lg., equatorward migration,
oscillations and polarity reversal.
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