Are the field lines in Tokamaks stochastic?
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Introduction.

*Is transport in tokamaks due to wandering field lines?

*Are field lines in tokamak drift-wave turbulence
stochastic?

| will extend the frozen - in - theorem for ion
scale turbulence (/TG and TEM,).

| will suggest that the field is only stochastic on electron
scales.
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Transport Stochasticity and Turbulence -- T¢

Mapping of field lines -- the need for magnetic surfaces

SOME PROPERTIES OF ROTATIONAL TRANSFORMS
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Transport Stochasticity and Turbulence -- T¢

Chrikov-Taylor map

pn+ 1 = pn + Ksin(On)
On+1=0n+pn+1

Field Line Diffusion
Island overlap.

N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor,
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Test particle transport -- T¢

Test particles moving in prescribed stochastic fields.

T. H. Stix, Nucl. Fusion 183,353 (1978)
A. B. Rechester and M. N. Rosenbluth,
Phys. Rev. Lett. 3,38 (1978)
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Galaxy Clusters -- Confined by
stochastic field?

Outside is 10KeV
Inside is <1KeV
Thermal equilibriation
Shorter than lifetime,
Magnetic confinement
With stochastic fields?

The Coma Cluster: pressure map
[Schuecker et al. 2004, A&A 426, 387]
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Electrostatic or Electromagnetic Turbulence?

Current tokamaks and ITER will have § ~ ¢/q? ~ a/g?R
and therefore turbulence will have strong magnetic
omponent. We expect:

B A 1 1 Field line crosses a whole
- T | ~ 5 HKddy going once around the
b q qh tokamak.
AQ
Dp=— 77 Field line diffusion if field 1s
qR incoherent each time around.

* Xk
KAEA .00 7
*
Working % *
in Europe % * *



Electrostatic or Electromagnetic
Turbulence?

Estimating the thermal diffusivities we get:

Ion thermal diffusivity
from both cross field and

XZ ™~ UchD B along field line motion.

Electron thermal

Xe ™~ Uthe D B~ 6OXZ diffusivity from motion
along stochastic
field line.
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Spherical Tokamaks

1.0

" constant ] MFuture ST's are projected to operate
whee at  10-100 times lower normalized
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_ &.Conventional tokamaks observe weak

(T-s)
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Normalized electron collisionality v.* « n /T2 * Observes much stronger scaling
VS. Vv
— Does favorable scaling extend to
Stan Kaye et. al NF 2007. lower v* ?
—What modes dominate e-transport in
ST ?
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Self Consistent Transport.

The motion of the particles affects the field -- test
particle transport typically ignores the correlation
of motion and field fluctuations.

Electrons provide constraints on the fluctuating field.

This area is much less researched although there
IS some -- e.g. Itoh and Itoh.
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Frozen in Magnetic Field.

Alfven 1945, Kelvin, Cauchy Ideal Ohm’s law: E + V X B — O

%—?:—VXE:VX(VXB)

Flux Freezing. If E + vxB = 0 the magnetic
flux through a loop that moves with the plasma
flow, v, is constant in time.

Frozen Field Lines. If E + vxB =0 the
magnetic field lines change as though they are
simply convected with velocity, v. Thus we say
that the field lines are frozen to the plasma
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Velocity of Magnetic Field lines = Velocity of Plasma =v.

Fux Tube at time t

\

Patch at time t

Fux Tube attimet+ T

Patch attimet+ T
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When are Field Lines Frozen?

Newcomb 1958 Suppose we can write

EZEJ_—l—EHb, EH:bVC

V= (B V() xB|.

. velocity
) %—? =V x (Vv x B).

This only makes sense 1f

C 1s finite and single valued.
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Frozen Field Lines with Pressure

and Hall Terms
Ve
E Ve X B — . B ’ VTe — O
eNe
. | Inn,
V=Vet 3 (VT. x B)
9B _ V x (v x B).

ot

Field lines are frozen but not to either species.
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Ion Scale -- Electron Scale Turbulence?
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Short wavelength
dominates growth
rate.

Long wavelength
dominates
turbulent transport



Ion Scale Turbulence 1n
Tokamaks

Most of the tokamak turbulence seems to satisty:

Uthi Uthe
k”U ~Y
R < Fvthe ( qR)

X
W~ W~ kv~

Electron response to highest order 1s due to rapid motion
along the field. The guiding center motion holds.

2
v = \%(5 — ,LLB)
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Condition on E

Collisionless electron drift kinetic equation:

perturbed electron distribution function, o f,, satisfies:

| —’U”b'{ . +

NN
T, o T )

’U”b : V((ng) = U

where b is the unit vector along the full field (perturbed
plus unperturbed), £y = b - E and parallel derivative is at
fixed £ and pu.
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Condition on E

Let

on 01 & 3

fom {4 T = D)} Py 40
{ +T0 T 2)} M+ 0fH

where the homogeneous solution satisfies:
U”b . V(de) =0
Then:

z*”b-V({ E 3 ely) ng Vig, &€ 3

on ol |
L AR R . Y |
| O(TO 5)1) 77, {- T <T0 o))

Any dependence on € and u can be
absorbed into of,
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Condition on E

> b.VOT+Ty) =0

)
b V{(6T +To)(— +Inno)} = —eE|
0
and clearly
Ej=b-V¢
and 1
VvV = ﬁ[(E — V() x B,

Field lines are frozen to the

“funny velocity” h



Moving Surfaces

If surfaces aren’t broken then they are frozen to {'f

O .

8_2) +v- -V =0 Equation for moving flux surfaces
df, can be found by averaging along moving field line -- flux
surface average for passing particles and bounce average

for trapped particles. E.g. in the collisionless case the

passing particles have: e(c . C)
0fe = Fy
e ]—,e
Integral over constant . fﬁ ds B¢ =

Y surface. with C — f y =
S =
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No Stochasticity?

K2 Ion scales with frozen Electron scales
Fields ITG, TEM etc. Stochastic fields?
Transport scales - Micro-tearing layers.
No stochastic field y; ~ %,  reconnection scales
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Embedded Micro-tearing

w surfaces Rational surfaces distorted by
electromagnetic ITG/TEM can
still tear and make electron
scale islands. How would we
know they are there?

Electron heat transport from
micro-tearing:

2 Uth,e

Xe ™~ Pe qR \/me/mz
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Conclusions

I[n most Tokamak Turbulence the field lines are frozen
to a flow.

Electrons can still be transported since they don’t move
with the lines.

*Small scales could be affecting the large scales. We
might imagine small scales stochasticity is always
present.
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