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Motivation: spans several areas

* Theories predict that small scale (~p;) magnetic islands may
exist in tokamaks
— if present, there are a number of consequences for transport
barrier formation, NTM formation and core confinement

* NTM threshold
— We know that cross-field (turbulent) transport provides a
threshold to NTMs (healing small scale “seed islands”)
— But how does the island itself affect the turbulence?

* Transport barrier formation/core confinement
— what if magnetic flux surfaces are not “good” (ie not nested)?
— small islands have an associated flow shear: what is
influence of this on electrostatic (eg ITG) turbulence?

* RMP ELM suppression
— RMPs likely create small islands
— How do these influence the pedestal confinement?



Geometry: magnetic islands in a sheared slab

* We adopt a “sheared slab” geometry with a magnetic island
O-point : Magnetic field
X-point \ g B=BVz-ViyxVz
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* Consider long, thin islands: weak variation of equilibrium in y-direction
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* Work in island rest frame (ie, a “slab-equilibrium” radial electric field exists)

Electrostatic potential has 3 pieces:
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Methodology (1)

* Qur starting point is an equilibrium of the standard sheared slab, where
distribution functions are Maxwellian with density and temperature functions of
x alone, and a constant “radial” electric field, E,

* We treat both the island and the fluctuations as perturbations to this state

* Thus the distribution functions are expressed as:
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* The non-adiabatic part of the distribution function is split into two pieces:
— a time independent response to the island perturbation: i.

— retain (almost) full non-linear dynamics associated with this piece
— provides the new, self-consistent island equilibrium with self-consistent flows

— a fluctuating response associated with ITG mode: ..-""
— linearise with respect to these so time-dependence ~e¢-i*

* Use gyro-kinetic theory to derive particle responses



Methodology (2)

* For fluctuating pieces, we Fourier transform perturbations ~ a"™""="

* We can, and have, developed the theory for arbitrary kp,, but here we
consider a simpler model for illustration

—order kp~kp;<<1; K w<<1, p,/w<<1

* We can define diamagnetic frequencies both for fluctuations and the island:
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*The equilibrium radial electric field can be used to define a drift frequency
(normalised to the island diamagnetic drift frequency)

eL, A measure of the island rotation
Wg =- T k, frequency in ExB rest frame (ie an

¢ O(1) parameter)

We expect w ~1: an input parameter
here



Electron response

* For electrons, assume parallel transport dominates: kv, >>o, oy

the

* We then find (neglecting FLR) on, =D +gpe™ +L1(wE —lii—h(x))
w

ne n

* Second part describes flattening of electron distribution function across island
— h(x) depends on transport processes, not included

— we adopt a simple model that satisfies boundary conditions:

h(X) \/7 ! (X ) Recall: X—ziz—COSKy
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* We now proceed to consider the ions

* Quasi-neutrality will then determine both
— & and hence the self-consistent ExB flow around the island
— the fluctuating potential ¢, and the complex mode frequency w as the

solution of an eigenmode equation



lon response

* For ions, we take gyro-kinetic equation to derive on;,

* We illustrate main physics assuming

W, W >> k”vth’l- k.p; ~ kypl. <<1

* We then find the following equation for the non-adiabatic ion response:
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lon response: ExB flow around the island

°Equating the time-independent terms
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* The function K is arbitrary: determined by a model for momentum transport,
for example
— we choose the particular solution K=0
— Interestingly, this linear solution is a particular solution of the non-linear
equation

* Neglecting FLR effects, we equate the resulting ion density perturbation with
the time-independent electron density response to derive the potential:

6=—wEW(%—h(X))

L

n

* Note that this form for the potential implies a strongly sheared flow around the
island through the function A(y)

— flow varies on a length scale ~w



The Modified Density Profile

Density profile is modified by island
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* For the fluctuating response (ie the ITG piece), we neglect non-linearities in fluctuating
quantities, but retain non-linearities with the time-independent perturbations
— the impact of the sheared flow on the ITG mode is included through the non-linear
ExB convective derivative



lon response: time-dependent perturbations

* After much algebra:
— perturbatively treat FLR and the parallel dynamics for the time-dependent
lon response
— Impose quasi-neutrality to derive:

2
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effects shear ITG drive

Shear flow: S(x,y)= W+, 0 (1 - wg—h) Doppler-shifted freq: Q2 =w +w, w.,
X

* Terms in o, represent flow shear terms: a Doppler shift of mode frequency
* Terms in o, represent density profile modification: modifies n, and w.,

— ao,=a,~1 for the case with the island

— o, =a,~0 for the case with no island



Local Stability Analysis (1)

*Parameter set: n=10, ©=2, p /w=0.2, L /L =-15, w,=-0.5, 56=0.12

Density profile is modified by island
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* Density profile flattened across island
* Doppler shift effect slightly destabilising
* Pressure profile effects substantially stabilise
— ITG mode is most unstable in vicinity of X-point



Local Stability Analysis (2)
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2-D mode structure

* Transforming back to real space: ik,—d/dy to give 2-D eigenmode equation

* Numerical solution yields localised, unstable mode
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—> More unstable than prediction of local theory
—> Mode is not localised about position of maximum instability



A simple model

* One can construct a simple model
— Set a,=a =0 to return to standard slab
— Instead introduce a sinusoidal y-variation to 7,
— Model equation is then analytically tractable:
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* We have introduced n=(1+n,)/t=n,(1+ecosK y); k=k p,
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* Solve analytically (cf WKB), to derive eigenvalue equation

[ np*k3+p*(£2+?)k2+p*(l+za)k +Q}cp 0

where p.=Kp,

* Returning to real space, and defining z=K y, we have

3
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Localised solns exist: not localised at pos™ of max drive

* Numerical solution for p.=0.002

%\/\\/\/AU \][\\/\/A\/A\/\/z T S|

k,p,=0.02 k,p,=0.14 k,p,=0.18
Essentially slab-like Localised mode Mode starts to leak out
More slab-like?

!

]

!

/
/
/
/
/
/
/

- "H“HHHW““‘”““

* Numerical solution for p.=0.01
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A “local” expansion...not accurate, but interesting

* We seek solutions of the form @=exp(-ifkdz/p.)f(z) by expanding for small p.:

— f=fotp+f1t- .. Q=Q(k,,2)+p:20Q2+...
3 2
in(p*%—ik) (Q_l(g’)(p*%—ik) +i(1$i0(p*;—z—ik)+9 G =0
* To leading order, we have:
F(Q,k,z)fy = |-nk’ + (QO ig—"’)ﬁ +(Fiok+ Qo]fo =0 = Q(k,z)
0
* The next order yields  iF, fo +Ffl F, = (31;

and so dF/dk|,=0; this is equivalent to the condition d<2,/dk=0

* These two equations yield & and €,
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=> expanding Q, about extremum z=z,, provides f, = eXp[:;(—F )
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Suggests shifted, localised modes, but...

* Combining f, with the eikonal we derive :
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* This provides a mode which is localised with width Ay~(p /K )'? about a
position 4
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* If the shift is large (Im(kyps)"\/p*), then the ordering breaks down

¢ =CXp

* From the numerical solutions, the shift is indeed large
— Note also that the width of the localised modes from the numerical
solutions does not scale as Vp.
— The standard approach (eg as used in ballooning theory) does not work

* Requires us to extend our formalism to Mathieu-type approach to address
more extended modes....work in progress!



Summary

* The presence of a magnetic island chain stabilises ITG modes
according to the local theory

* But a more complete 2-D model predicts a more unstable mode,
localised in y (not allowed in the absence of the island)

* A local WKB theory qualitatively reproduces these trends

— predicts a complex &, which results in a shift in the mode peak amplitude
relative to position of maximum instability drive

— Unfortunately the local WKB theory then fails and needs to be extended
— work in progress

— a similar theory may apply for toroidal drift modes in tokamaks (could be
very dangerous to do linear drift wave stability with 6,=0 k<=0,)



