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Outline
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• Summary



Motivation: spans several areas
• Theories predict that small scale (~ρi) magnetic islands may
exist in tokamaks

– if present, there are a number of consequences for transport
barrier formation, NTM formation and core confinement

• NTM threshold
– We know that cross-field (turbulent) transport provides a
threshold to NTMs (healing small scale “seed islands”)
– But how does the island itself affect the turbulence?

• Transport barrier formation/core confinement
– what if magnetic flux surfaces are not “good” (ie not nested)?
– small islands have an associated flow shear: what is
influence of this on electrostatic (eg ITG) turbulence?

• RMP ELM suppression
– RMPs likely create small islands
– How do these influence the pedestal confinement?



Geometry: magnetic islands in a sheared slab
• We adopt a “sheared slab” geometry with a magnetic island

• Consider long, thin islands: weak variation of equilibrium in y-direction

• Work in island rest frame (ie, a “slab-equilibrium” radial electric field exists)
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Methodology (1)
• Our starting point is an equilibrium of the standard sheared slab, where
distribution functions are Maxwellian with density and temperature functions of
x alone, and a constant “radial” electric field, Er

• We treat both the island and the fluctuations as perturbations to this state

• Thus the distribution functions are expressed as:

• The non-adiabatic part of the distribution function is split into two pieces:
– a time independent response to the island perturbation:

– retain (almost) full non-linear dynamics associated with this piece
– provides the new, self-consistent island equilibrium with self-consistent flows

– a fluctuating response associated with ITG mode:
– linearise with respect to these so time-dependence ~e−iωt

• Use gyro-kinetic theory to derive particle responses
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Methodology (2)
• For fluctuating pieces, we Fourier transform perturbations ~

• We can, and have, developed the theory for arbitrary kρi, but here we
consider a simpler model for illustration

– order    kxρi~kyρi<<1;         Kyw<<1, ρi/w<<1

• We can define diamagnetic frequencies both for fluctuations and the island:

•The equilibrium radial electric field can be used to define a drift frequency
(normalised to the island diamagnetic drift frequency)
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Electron response
• For electrons, assume parallel transport dominates: k||vthe>>ω, ωΕ

• We then find (neglecting FLR)

• Second part describes flattening of electron distribution function across island
– h(χ) depends on transport processes, not included
– we adopt a simple model that satisfies boundary conditions:

• We now proceed to consider the ions

• Quasi-neutrality will then determine both
–      and hence the self-consistent ExB flow around the island
– the fluctuating potential ϕ, and the complex mode frequency ω as the
solution of an eigenmode equation
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Ion response
• For ions, we take gyro-kinetic equation to derive δni

• We illustrate main physics assuming

• We then find the following equation for the non-adiabatic ion response:
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Ion response: ExB flow around the island
•Equating the time-independent terms

• The function K is arbitrary: determined by a model for momentum transport,
for example

– we choose the particular solution K=0
– Interestingly, this linear solution is a particular solution of the non-linear
equation

• Neglecting FLR effects, we equate the resulting ion density perturbation with
the time-independent electron density response to derive the potential:

• Note that this form for the potential implies a strongly sheared flow around the
island through the function h(χ)

– flow varies on a length scale ~w
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The Modified Density Profile

About X-point

About O-point

Density profile is modified by island

•  For the fluctuating response (ie the ITG piece), we neglect non-linearities in fluctuating
quantities, but retain non-linearities with the time-independent perturbations

– the impact of the sheared flow on the ITG mode is included through the non-linear
ExB convective derivative
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Ion response: time-dependent perturbations
• After much algebra:

– perturbatively treat FLR and the parallel dynamics for the time-dependent
ion response
– impose quasi-neutrality to derive:

• Terms in αd represent flow shear terms: a Doppler shift of mode frequency
• Terms in αn represent density profile modification: modifies ηi and ω*e

– αn=αd=1 for the case with the island
– αn=αd=0 for the case with no island

( )

( ) ( )

( )
0~

)/)(1(

/~

*
1

*2

222

2
*

2

2

2
2 =!

"

#
$
%

&
!
"

#
$
%

&
+

'++'(

'''(
'

'(
+

)

)
'

*
+,+-.,

+,+,

,/

+*
/ b

SS

SS
x

SL

L

x
Eneid

Ened

dss

en

s

( ) !
"

#
$
%

&

'

'
(=

x

h
wyxS Ee 1, * )) eE *

!!! +="Shear flow: Doppler-shifted freq:

FLR 
effects

Impact of
shear ITG drive



Local Stability Analysis (1)
•Parameter set: ηi=10, τ=2, ρs/w=0.2, Ls/Ln=−15, ωE=−0.5, b=0.12

• Density profile flattened across island
• Doppler shift effect slightly destabilising
• Pressure profile effects substantially stabilise

– ITG mode is most unstable in vicinity of X-point
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Local Stability Analysis (2)

Local growth rate has a
maximum at kyρs=0.42

O X OO X O
Taking the ky that maximises
growth, larger islands have bigger
influence on stability



2-D mode structure
• Transforming back to real space: iky→∂/∂y to give 2-D eigenmode equation

• Numerical solution yields localised, unstable mode

⇒ More unstable than prediction of local theory
⇒ Mode is not localised about position of maximum instability
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A simple model
• One can construct a simple model

– Set αn=αd=0 to return to standard slab
– Instead introduce a sinusoidal y-variation to ηi
– Model equation is then analytically tractable:

• We have introduced η=(1+ηi)/τ=η0(1+εcosKyy); k=kyρs

• Solve analytically (cf WKB), to derive eigenvalue equation

where ρ*=Kρs

• Returning to real space, and defining z=Kyy, we have
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Localised solns exist: not localised at posn of max drive
• Numerical solution for ρ*=0.002

• Numerical solution for ρ*=0.01
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A “local” expansion…not accurate, but interesting

• We seek solutions of the form ϕ=exp(−i∫k dz/ρ*)f(z) by expanding for small ρ*:
– f=f0+ρ*f1+…        Ω=Ω0(ky,z)+ρ*

2δΩ+...

• To leading order, we have:

• The next order yields

and so dF/dk|Ω=0; this is equivalent to the condition dΩ0/dk=0

• These two equations yield k and Ω0

• Finally, at second order, we have

⇒ expanding Ω0 about extremum z=z0, provides
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Suggests shifted, localised modes, but…

• Combining f0 with the eikonal we derive ϕ:

• This provides a mode which is localised with width Δy~(ρs/Ky)1/2 about a
position

• If the shift is large (Im(kyρs)~√ρ*), then the ordering breaks down

• From the numerical solutions, the shift is indeed large
– Note also that the width of the localised modes from the numerical
solutions does not scale as √ρ*
– The standard approach (eg as used in ballooning theory) does not work

• Requires us to extend our formalism to Mathieu-type approach to address
more extended modes….work in progress!
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Summary
• The presence of a magnetic island chain stabilises ITG modes
according to the local theory
• But a more complete 2-D model predicts a more unstable mode,
localised in y (not allowed in the absence of the island)

• A local WKB theory qualitatively reproduces these trends
– predicts a complex ky which results in a shift in the mode peak amplitude
relative to position of maximum instability drive
– Unfortunately the local WKB theory then fails and needs to be extended
– work in progress
– a similar theory may apply for toroidal drift modes in tokamaks (could be
very dangerous to do linear drift wave stability with θ0=0 k↔θ0)


