
 

Gyrokinetic simulations 
 
Aim to describe turbulence in a tokamak 
plasma, thus giving information about heat 
and particle transport and confinement 
related phenomena 
 
Several theoretical approaches and 
numerical methods (Vlasov, PIC, full-f, delta-
f, etc.) have been and are still used  
 
 

PIC method and ELMFIRE 
 
Key ingredients for PIC simulation model 

- Equations of motion 
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- The Poisson equation 
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The equations above represent the ones 
ELMFIRE

1
 is based on.  

 
In the standard set

2
 the polarization drift is 

not included in the equations of motion and 
the 4

th
 and 5

th
 terms in the Poisson equation 

are not present.  
 
Both sets of equations should in principle 
form a consistent description of the 
electrodynamic system comprised of charged 
particles. 
 
In both approaches 0φ∆ ≈  and the terms 
involving gradient of distribution function are 
also small due to long scale length of 
equilibrium density and temperature  

 
In the standard set the potential is solved 
from the second term (polarization density) 
on the RHS of the Poisson equation 
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In the alternative approach, applied in 
ELMFIRE, the fact that the second order 
terms cancel in the long wave length limit is 
used  
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Potential is solved by linearizing the density 
change (in each grid point) caused by 

1. the ion polarization drift  

2. the electron parallel acceleration 

in such a way that the calculated potential 
adjusts the system into quasineutrality 
 
To give a picture of the applied implicit 
scheme, we first define  
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Next we write out the simplified Poisson 
equation and consider how the densities can 
be interpreted to change in time 
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N.B. The density change due to polarization 
drift is calculated particle-wise, the change 
affects surrounding grid cells and depends 
respectively on the potentials in all of them. 
 
By defining short hand notation 
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the equation above can be formulated as  
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This approach, based on the theory 
presented by Sosenko

3
, has been used in 

order to study an alternative numerical 
scheme where the computation of the 
standard polarization density term is not 
required.  
 
Sosenko however did not consider if this 
system is consistent in the Hamiltonian 
sense. 
 
 

Outline of the derivation - Lie transform 
perturbation method and action 

principle 
 
The Lie transformation has been in a key role 
in gyrokinetic theory during the last few 
decades. Now the theory basis of ELMFIRE 

has been formulated in a way which 
endeavors to use the standard notation

2
. 

 
The near identity transform 
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transforms the particle Lagrangian γ into 
gyrocenter Lagrangian 
 

 
1T dSγ−Γ = +   

 
Fundamental one form defines Poisson-
Lagrange tensor and thus also the equations 
of motion 
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The particle Lagrangian is 
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where 
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The Lagrangian divided to different orders is  
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In order to calculate the gyrocenter one form 
we proceed in a similar fashion as in the 
standard derivation. 
 
The difference comes from the first order 
generating functions 
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Action principle was used to find the Poisson 
equation 
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varying the action with respect to the potential 
yields the Poisson equation 
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