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1. Gyrokinetic equation in general axisymmetric geometry

Working in field aligned coordinates (x: radial coordinate; y: binormal coordinate; z: parallel coor-
dinate), the GENE [1, 2] code solves the gyrokinetic equation for the particle distribution function
f (x, y, z, v‖, µ) = f0 + f1 :
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where 1/LTi = −d ln Ti/dx and 1/Ln = −d ln n/dx, Gj = ∂jf1 + (σi/v‖) ∂jΦ̄1 ∂f0/∂v‖ for j = (x, y, z),
αi = vTi/cs, σi = ZiTe/Ti, Φ̄1 is the gyroaveraged electrostatic potential, and
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where the gi,j = ∇ui · ∇uj are the metric coefficients and J = [(∇x×∇y) · ∇z]−1 is the Jacobian .
The self-consistent electrostatic field is solved using the gyrokinetic Poisson equation :

Z2τ [1− Γ0(b)] Φ1 = πZB

∫
J0(λ)f1dv‖dµ− (Φ1 − 〈Φ1〉)

with b = 1/(τB2)∇2
⊥, λ2 = 2µ/B∇2

⊥, ∇2
⊥ = gxx∂2/∂x2+gyy∂2/∂y2+gxy∂2/∂x∂y and 〈〉 the flux-surface

averaging.
Note : Simulations are done with one kinetic ion species and adiabatic electrons. Equilibrium quantities are provided via
the MHD equilibrium code CHEASE [3]. The equilibrium is set by analytically defining the shape of the last closed flux
surface (LCFS), the current and the pressure profiles.

2. Cyclone case [4] benchmark, limitation of the s− α model [5]

Physical parameters at ρ =
√

Φ/Φedge = 0.5 (Φ is the toroidal flux): q = 1.42, ŝ = (ρ/q)dq/dρ =

0.8, ε = ρa/R = 0.18 (a : minor radius, R: major radius), R〈∇ ln T 〉 = 6.96 and R〈∇ ln n〉 = 2.23.

• The s−α model approximates the straight
field line angle to the poloidal angle ⇒
growth rates differ by almost a factor 2
compared to results obtained using the
MHD equilibrium.

• Ad-hoc concentric circular analytic equi-
librium, which correctly treats the straight
field line angle ⇒ agreement within 10%
with MHD equilibrium results.

•Good agreement with global code GY-
GLES [6], in the limit ρ∗ → 0.

Figure 1: Growth rate comparison for the Cyclone
test case

=⇒ True agreement is finally obtained between flux tube simulations with correct treatment of the
geometry and global results in the appropriate ρ∗ → 0 limit.

3. Elongation and triangularity scan

• Same value of q and ŝ = ρ/qdq/dρ at ρ = 0.5; κ and δ are specified for the LCFS; |∇ ln N | = 0.

Circular equilibrium (a) (b)

Elongated equilibrium (c) (d)

Figure 2: Elongation scan at constant triangularity : (a,b) linear growthrate, (c,d) nonlinear electro-
static heat flux as a function of (a,c) the temperature gradient at χ = 0 and (b,d) the flux surface-
averaged temperature gradient < ∇ ln T >. Note : κ and δ given at ρ = 0.5.

=⇒ The dominant effect of elongation results from the modification of the spatial gradient, Fig. 2.
(a) and (b). For simulations with similar linear growth rates there remains a small difference in the
nonlinear heat flux, Fig. 2. (d).
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Figure 3: Triangularity scan at constant elongation: Same as Fig. 2 (a) and (b)

=⇒ The modification of the spatial gradient partly explains the effect of triangularity on linear growth
rates, Fig. 3 (a) and (b). The remaining differences might arise from the modification of ∇B, see Fig.
4 (a) and (b).
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Figure 4: ∇B(χ = 0) for (a) different elongations and (b) different triangularities.

4. Development of a global version of the GENE code

In order to address the issue of non-local effects in turbulent transport, a global version of the GENE
code is under development. As a first step toward this goal, the x variation of equilibrium quantities
will be introduced in the flux tube gyrokinetic equation (1) and in the field equations.

New features

The original Fourier representation for the radial direction has been replaced by a real space treat-
ment, this has required to adapt :

• The radial derivatives: 4th order centered finite differences (same as for z derivatives).

• The gyro-averaging and the field solver : the Fourier space gyroaveraging Φ̄(kx, ky, z, µ) =
J0(kx, ky, z, µ)Φ(kx, ky, z) is replaced in the x direction by the real space gyroaveraging integral,
for which a cubic-Hermite interpolation has been applied → banded Matrix operator on φ. A similar
treatment is used for the field solver.

• Anti-aliasing: in the Fourier version of the code, when dealing with the nonlinear term, an anti-
aliasing procedure is used to avoid pollution of the spectra by unresolved modes (may even lead
to numerical instabilities). A scheme has been introduced to achieve similar anti-aliasing in real
space.

The real space anti-aliasing

When working in Fourier space, the anti-aliasing procedure consits of two steps:

1) Extend the spectrum, and pad with zeroes before the nonlinear multiplication.

2) Remove the extended part of the spectrum from the nonlinear product.

These two steps correspond in real space to 1) an interpolation, followed by 2) a smoothing opera-
tion. When working in real space these two operations should remain local for practical reasons.

Effect of interpolation on spectrum

Let f be a periodic function represented on the initial N point grid and f̄ the corresponding interpo-
lated function on the extended 2N point grid. In Fourier space one obtains:

ˆ̄fk = H(k)f̂k, k = [−N, N ].

Noting that f̂k is periodic with period N, f̂k = f̂k+N , a given mode f̂k will therefore give rise to two
modes in the ˆ̄f spectrum :

f̂k →

{
1) ˆ̄fk = H(k)f̂k,

2) ˆ̄fk + N = H(k + N)f̂k,

where the spectral extension function H is defined by the interpolation scheme and verifies
H(k) + H(k + N) = 1.

Figure 5: Spectral extension function H
for Lagrange interpolation of various or-
der n, Cubic Spline, Cubic Hermite com-
pared to the box shaped function used in
the Fourier version of the code.

As the function H(k) approaches the ideal box shape function, it has also been used to design the
local real space smoothing operator.

Results for Cyclone parameters
Note : The following results are obtained with a version of the code which still uses Fourier treatment
of the derivative and field solver but with the real space anti-aliasing procedure. A hyperdiffusion term,
of the form hx(kx∆x)

4f , nonetheless needed to be added to the gyrokinetic equation to ensure stability.
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Figure 6: (a) Electrostatic heat flux time trace,(b) kx density spectrum in logarithmic and (c) linear
scale. The different curves are obtained using (1) the standard Fourier anti-aliasing and hx = 0,
(2) the real space anti-aliasing with Lagrange interpolation of order 9 and hx = 0.6, and (3) no anti-
aliasing and hx = 4.

=⇒ The real space anti-aliasing enables to use a lower value of the hyperdiffusion coefficient hx

required to obtain a stable simulations compared to the case where no anti-aliasing was used. In
addition the resulting kx density spectrum is much closer to the simulations with Fourier space anti-
aliasing.
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