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AGENDA

Gyrokinetic treatment of background scales of 
order poloidal ion gyroradius

Ion temperature and pressure balance in the 
pedestal and internal transport barrier regionspedestal and internal transport barrier regions

Zonal flow in pedestal



GYROKINETIC ORDERINGS IN PEDESTAL
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AXISYMMETRIC VARIABLESB
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FIRST ORDER CORRECTIONS
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AXISYMMETRIC GYROKINETIC EQUATION
AND ISOTHERMAL TOKAMAK EQUILIBRIUMQ
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SOLUBILITY CONSTRAINT FOR
A NON-ISOTHERMAL TOKAMAKA NON ISOTHERMAL TOKAMAK
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in pedestal?

Entropy production analysis: no!



ION TEMPERATURE VARIATION ACROSS THE
PEDESTAL
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In the banana regime f0 can not depend on θ* but only In the banana regime f0 can not depend on θ but only 
on E, ψ* and µ

Combining these two statements we conclude Combining these two statements we conclude 
that pedestal plasma is essentially isothermal !!!
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PHYSICAL INTERPRETATION

a given flux 

In the core plasma gradients are so weak that 
ions departures from a flux surface are not 
important and we can consider any given flux 

surface

p y g
surface a closed system. 

In the pedestal gradients are as large as 1/ρIn the pedestal gradients are as large as 1/ρpol
and therefore these departures affect the 

equilibrating of the neighboring flux surfaces. 
Thus  it is the entire pedestal region that is a ρpol Thus, it is the entire pedestal region that is a 
closed system rather than its individual flux 
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PRESSURE BALANCE IN PEDESTAL
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CORRECTIONS TO THE LEADING ORDER
DISTRIBUTION FUNCTION
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NEOCLASSICAL POLARIZATION

Density response to the perturbation of the potential:
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In the absence of the electric field     is an odd function of     so that the 
terms of the first order in Q vanish

||v ||v
terms of the first order in Q vanish.

It is no longer the case in pedestal as there is a preferred direction of rotation 
in the poloidal plane due to ExB drift. Consequently, in our case, terms linear in Q 
contribute to the density response that makes neoclassical polarization complex.

Thus, there is now a spatial phase shift between density and potential
perturbations 



TIME EVOLUTION OF ZONAL FLOW

Free ion density accumulated by plasma turbulence 
drives zonal flow whose potential evolves so that
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PARTICLE ORBITS IN PEDESTAL
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ExB drift is of order vth (ρ/ρpol)<<v||, but due to the geometrical factors 
its contribution to the poloidal velocity is comparable to that of v||



ENERGY CONSERVATION
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If S<0 trapped particles reside on the inside of a tokamak. If S>0 – on the outside. For 
S>0, the maximum initial angular velocity at which particle can be trapped is given by  
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TRAPPED PARTICLES FRACTION

In the absence of orbit squeezing (S=1), 
E B d ift h  th  f ll i  ff t
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ExB drift has the following effects:

1) Increases the depth of the effective
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magnetic moment can be trapped.
2) Shifts the axis of symmetry of the
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EVALUATION OF THE ZONAL FLOW RESIDUAL 1
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EVALUATION OF THE ZONAL FLOW RESIDUAL 2
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THE ZONAL FLOW RESIDUAL WITH THE ORBIT
SQUEEZING EFFECT RETAINED
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NEOCLASSICAL POLARIZATION IN A SINGLE
PARTICLE PICTURE
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SUMMARY

Gyrokinetic formalism developed retains finite Larmor radius Gyrokinetic formalism developed retains finite Larmor radius 
effects as well as finite poloidal gyroradius effects

Pedestal plasma is nearly isothermal (              ) and sustains 1Tρ ∇ �Pedestal plasma is nearly isothermal (              ) and sustains 
sharp density gradients due to electron dynamics

The zonal flow residual is evaluated in pedestal

1ipol Tρ ∇ �

The zonal flow residual is evaluated in pedestal

• Spatial phase shift between initial and final zonal flow potentials is 
observed
Th  l fl  id l i  i i   l i  fi ld ( ) d i  h  (S)• The zonal flow residual is sensitive to electric field (u) and its shear (S)

• Neoclassical shielding vanishes in strong electric field


