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AGENDA

o Gyrokinetic treatment of background scales of
order poloidal ion gyroradius

o Ion temperature and pressure balance in the
pedestal and internal transport barrier regions

o Zonal flow in pedestal



GYROKINETIC ORDERINGS IN PEDESTAL
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AXISYMMETRIC B VARIABLES
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FIRST ORDER CORRECTIONS
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In the above formulas we defined v, = %



AXISYMMETRIC GYROKINETIC EQUATION
AND ISOTHERMAL TOKAMAK EQUILIBRIUM

For 8 /9¢ = 0 Kinetic equation in the new variables is given by
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For 0/0t =0, f= f(lb*,E) makes the left side exactly vanish

To make the collision operator vanish f has to be Maxwellian
Therefore, we find an exact solution to the above equation:
. A\2
Zep Mw’R*  Ze M(’U - WRC)
P T e P57

where 1',w and 1) are constants

In terms of the new variables:
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SOLUBILITY CONSTRAINT FOR
A NON-ISOTHERMAL TOKAMAK

: : 0
Let us now analyze the steady state still assuming ac =0

Setting % = 0 and transit averaging:
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full A : _ :
i where Q = 9§Qd7/5§d7 with dr = d6 /(6. )
equation

Are there non-Maxwellian solutions
in pedestal?

Entropy production analysis: no!



TON TEMPERATURE VARIATION ACROSS THE
PEDESTAL
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fo is Maxwellian
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In the banana regime f, can not depend on 6. but only
on E, y« and p

Combining these two statements we conclude
that pedestal plasma is essentially isothermal Il

That is, T; must vary slowly compared to p,,



PHYSICAL INTERPRETATION

a given flux

ks In the core plasma gradients are so weak that

ions departures from a flux surface are not
important and we can consider any given flux
surface a closed system.

In the pedestal gradients are as large as 1/p,
and therefore these departures affect the
equilibrating of the neighboring flux surfaces.
Thus, it is the entire pedestal region that is a
closed system rather than its individual flux

ion
surfaces.

trajectory



PRESSURE BALANCE IN PEDESTAL

radial ion pressure balance (V, = wr*V¢)
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that is, pedestal electric field is inward for subsonic ion flow

radial electron pressure balance
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Thus, electric potential that provides 1/p,, density gradient can
only be sustained by large e/ectron flow



CORRECTIONS TO THE LEADING ORDER
DISTRIBUTION FUNCTION

Let us assume f = ﬁ(¢*,E)+g(¢*,0*,u*,E,t) with g << f. and 9¢g/0¢ =0

Let ¢ = ¢, + ¢, where ¢, is the equilibrium potential and ¢, stands
for its zonal flow perturbation with 9¢, /9t > 9¢, /0t — 0.

Assuming ¢, = ¢e'®Y), defining ¢, = ¢e'“(*) k, = VG, and @ = %G’

and fransit averaging we obtain

finite poloidal
gyroradius
effect
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NEOCLASSICAL POLARIZATION

Density response to the perturbation of the potential:
_ Ze 3 ~iQiQ
m =7 ([ ufy (e -1)),
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Rosenbluth-Hinton (zero electric field) limit
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In the absence of the electric field v, is an odd function of v, so that the
terms of the first order in Q vanish.
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It is no longer the case in pedestal as there is a preferred direction of rotation
in the poloidal plane due to ExB drift. Consequently, in our case, terms linear in Q
contribute to the density response that makes neoclassical polarization complex.
Thus, there is now a spatial phase shift between density and potential
perturbations



TIME EVOLUTION OF ZONAL FLOW

Free ion density accumulated by plasma turbulence
drives zonal flow whose potential evolves so that
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PARTICLE ORBITS IN PEDESTAL
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ExB drift is of order vy, (p/p,,)<v||, but due to the geometrical factors
its contribution to the poloidal velocity is comparable to that of v



ENERGY CONSERVATION

Assume a quadratic potential well
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then, using | and g« invariance we can write energy conservation as
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If S<0 trapped particles reside on the inside of a tokamak. If S>0 - on the outside. For
5>0, the maximum initial angular velocity at which particle can be trapped is given by
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where the subscript "0" corresponds to the outboard equatorial plane (6=0)



TRAPPED PARTICLES FRACTION

€=0.05, u/v,, =1.3

In the absence of orbit squeezing (S=1),
ExB drift has the following effects:

1) Increases the depth of the effective
potential well - now particles with no
magnetic moment can be trapped.

2) Shifts the axis of symmetfry of the
trapped particles region.

For small enough ¢ the tfrapped particles
fraction decays exponentially as |u| grows.
Accordingly, neoclassical polarization should
disappear in the large electric field limit
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Notice, that uz(p,,/p)ve»ve and therefore particle dynamics can be
significantly affected even by the ExB drift much less than v,



EVALUATION OF THE ZONAL FLOW RESIDUAL 1
Need to evaluate
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Transit averages are to be performed holding y. fixed while the outer
integral has to be calculated at a fixed y

Also, Q has to be redefined
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EVALUATION OF THE ZONAL FLOW RESIDUAL 2
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Q and @ are found in terms of ¥, and k while the outer integral is over 3y
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Therefore, it is convenient to switch to x* and v, + u variables
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Then, after some algebraic manipulations we obtain
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THE ZONAL FLOW RESIDUAL WITH THE ORBIT
SQUEEZING EFFECT RETAINED
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In the strong electric field limit ¢, (t — c0) = ¢, (t = 0)



NEOCLASSICAL POLARIZATION IN A SINGLE
PARTICLE PICTURE

A dipole moment gained by a particle on a given
flux surface due to electric field perturbation
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Density response of a flux surface
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SUMMARY

o Gyrokinetic formalism developed retains finite Larmor radius
effects as well as finite poloidal gyroradius effects

o Pedestal plasma is nearly isothermal (o, V7, < 1) and sustains
sharp density gradients due to electron dynamics

o The zonal flow residual is evaluated in pedestal

* Spatial phase shift between initial and final zonal flow potentials is
observed

* The zonal flow residual is sensitive to electric field (u) and its shear (S)
* Neoclassical shielding vanishes in strong electric field



