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The Larmor gyration VS The electric drift

We are interested in the behaviour of a plasma (that
is to say a gaz made of ions and electrons) submitted
to a large magnetic field. The effects we want to de-
scribe are non linear interaction between the particles
and the electric field. In order to do this, we assume
that the plasma is sufficiently rarefied so that one can
use a kinetic description (Vlasov-Poisson system) :



∂tf + v.∇xf + (E + v ∧B).∇vf = 0
f|t=0 = f0
E = −∇xV
−∆xV =

∫
fdv

(0.1)

where t ∈ R+, x ∈ Rd, v ∈ Rd (usually d = 2 or 3) are the usual physical variables.f (t, x, v) is the
density of ions : f (t, x, v)dxdv gives the number of ions in the infinitesimal volume centered in (x, v)
with length dx and dv. In our present study B = |B|ez is taken as a constant vector.
The guiding center approximation:
It is obtained as |B| tends to infinity : take |B| ∼ 1

ε (then make it tend to 0). This leads to the following
system : 

∂tf + v‖.∇xf + E‖.∇vf = 0
f|t=0 = f0
E = −∇xV
−∆xV =

∫
fdv

(0.2)

For some mathematical study see for example [3] or [5].
Unfortunately this approximation is not sufficient for simulation purposes since one can notice with real
plasma experimentations that there is a drift appearing in long time scales. Some straightforward formal
calculations with a one particle model show that the drift is actually created by the electric field. Note
nevertheless that with this scaling but with a longer time scale it is still possible to make this electric
drift appear (see [5] for a 2D study).
The finite Larmor Radius approximation:
A good way to make this drift appear is to consider the so called Finite Larmor Radius Scaling ([4]).
Physically speaking it consists in not neglecting anymore the gradients in the scale of the Larmor radius
in the plane perpendicular to the constant magnetic field. More precisely, the spacial observation lenght
in the perpendicular plane is taken with the same order in ε as the Larmor Radius (∼ ε) :



∂tfε + v‖.∇xfε + v⊥
ε .∇xfε +

(
Eε + v∧ez

ε

)
.∇vfε = 0

fε,|t=0 = f0
Eε =

−ε∇x‖Vε,−∇x⊥Vε


Vε − ε2∆x‖Vε −∆x⊥Vε = ρε

In [4], Frénod and Sonnendrücker assumed that nothing depends on x‖ and v‖ and proved the conver-
gence in some weak sense to a solution of some pseudo 2D system.
Note here that unlike Frénod and Sonnendrücker, we consider, for technical reasons, a Poisson equation
with the term Vε in the left hand side. (it can be physically seen as the contribution of the electrons to
the Poisson equation)
The proved result:
We assume that f0 ≥ 0, f0 ∈ L1

x,v ∩ Lpx,v (for some p > 7/2) and the initial kinetic energy bounded
0 <

∫
f0(1 + |v|2)dv <∞

For each ε, let (fε, Eε) in L∞t (L1
x,v ∩ Lpx,v)× L∞t (L7/5

x‖ (W 1,75
x⊥ )) be a solution to the previous system.

Then up to a subsequence we have the following convergence in some weak sense (which will be stated
more precisely after) to (G, E) which is solution to :

∂tG + v‖.∇xG + 1
2π

∫ 2π
0 R(−τ )E(t, τ, x +R(τ )v)dτ

 .∇xG

+ 1
2π

∫ 2π
0 R(−τ )E(t, τ, x +R(τ )v)dτ

 .∇vG = 0

G|t=0 = 1
2π
f0

E = (−∇⊥Φ, 0), Φ−∆⊥Φ =
∫
vG(t, x +R(−τ )v,R(−τ )v)dv

denoting by R and R the linear operators defined by :

R(τ ) =



cos τ sin τ 0
− sin τ cos τ 0

0 0 1


,R(τ ) = − (R(π/2 + τ )−R(π/2))

The difficulty comes from the fact that there is no full elliptic regularity for the electric field because of
the factor ε2 in front of ∆x‖. In particular there is no a priori regularity on x‖ and therefore no strong
compactness. Nevertheless, we actually prove that due to the particular form of the asymptotic equation,
the moments with respect to v‖ of the solution are more regular in x‖ than the solution itself. We can
then easily pass to the weak limit.

The mathematical tools

2 scale convergence from homogenization theory ([1]):
Definition 1 Let X be a separable Banach space, X ′ be its topological dual space and (., .) the duality
bracket between X ′ and X . For all α > 0, denote by Cα(R, X) (respectively Lq′α(R;X ′)) the space of
α periodic continuous (respectively Lq′) functions on R with values in X . Let q ∈ [1;∞[.
Given a sequence (uε) of functions of Lq′(0, t;X ′) and a function U0(t, θ) ∈ Lq

′(0, T ;Lq′α(R;X ′) we
say that

uε 2-scale converges to U0

if for any function Ψ ∈ Lq(0, T ; Cα(R, X)) we have :

lim
ε→0

∫ T
0

uε(t),Ψ
t, t
ε

 dt
 = 1

α

∫ T
0

∫ α
0

U0(t, θ),Ψ(t, θ)
 dθdt

Theorem 1 Given a sequence (uε) bounded in Lq′(0, t;X ′), there exists for all α > 0 a subsequence
U0
α ∈ Lq

′(0, T ;Lq′α(R;X ′) such that up to a subsequence,
uε 2-scale converges to U0

α

The profile U0
α is called the α periodic two scale limit of uε and the link between U0

α and the weak-*
limit u of uε is given by :

1
α

∫ α
0 U0dθ = u

Averaging lemma ([2]):
Theorem 2 Let 1 < p ≤ 2. Let f, g ∈ Lp(dt⊗ dx⊗ dv) solutions of the following transport equation

∂tf + v.∇xf = (∆t,x)τ/2(∆v)m/2g

with m ∈ R+, τ ∈ [0, 1[. Then ∀Ψ ∈ C∞c (Rd), ρ(t, x) =
∫
f (t, x, v)Ψ(v)dv ∈ Ẇ s,p(R× Rd) where

s = 1− τ
(1 +m)p′

Moreover,
‖ρ‖W s,p(R×Rd) ≤ C(‖f‖Lp(dt⊗dx⊗dv) + ‖(∆t,x)τ/2(∆v)m/2g‖Ẇ−τ,p

t,x (Ẇ−m,p
v ))

A priori estimates

Conservation of Lp norms:
For all 1 ≤ p ≤ ∞,

∀t ≥ 0, ‖f (t)‖Lpx,v = ‖f (0)‖Lpx,v (0.3)
Conservation of the energy:

d

dt

∫ fε|v|2dvdx + ε
∫
|∇x⊥Vε|

2dx + ε3
∫
|∇x‖Vε|

2dx
 = 0 (0.4)

Regularity of the ions density (interpolation):
ρε ∈ L∞t (L7/5

x )
Regularity of the electric field (elliptic estimates):

Eε ∈ L∞t (L7/5
x‖ (W 1,7/5

x⊥ ))

Note that in the usual guiding center approximation, we do have Eε ∈ L∞t (W 1,7/5
x‖ (W 1,7/5

x⊥ ))

Ideas of the proof

The first two steps are the same as in [4] :
Getting the constraint equation:
Thanks to Theorem 1, fε 2-scale converges to F2π ∈ L∞(0, T ;L∞2π(R;Lpx,v)) Considering oscillating
test functions and passing to the 2-scale limit we get the usual constraint equation:

∂τF2π + v⊥.∇xF2π + v ∧ ez.∇vF2π = 0
Writing that F is constant along the characteristics we get:

F2π(t, τ, x, v) = G(t, x +R(−τ )v,R(−τ )v) (0.5)
Filtering the essential oscillation:
Take gε(t, x, v) = fε(t, x +R(t/ε)v,R(t/ε)v) We easily compute the equation satisfied by wε :

∂tgε + v‖.∇xgε +R(−t/ε)Eε(t, x +R(t/ε)v).∇xgε
+R(−t/ε)Eε(t, x +R(t/ε)v).∇vgε = 0

Getting some regularity for the moments in v‖:
Define ηε(t, x, v⊥) =

∫
gε(t, x, v)Ψ(v‖)dv‖ with Ψ ∈ D(R). Then, thanks to the special structure of the

previous equation, we can prove, using the averaging lemma:
ηε is uniformly bounded in ε in W s,γ

t,loc(W
s,γ
x‖,loc(W

−1,γ
x⊥,v⊥,loc)) (0.6)

with 1
γ = 5

7 + 1
p and some s ∈]0; 1[ (depending on γ)

Using interpolation arguments we then prove that there exists θ ∈]0, 1[ such that ηε ∈
W
sθ,7/2
t,loc (W sθ,7/2

x‖,loc (W−θ,7/2x⊥,v⊥,loc)) Finally a “Aubin-Lions” type of lemma shows that there exists η such
that up to a subsequence :

‖ηε − η‖L7/2
t,loc(L

7/2
x‖,loc(W

−θ−ξ,7/2
x⊥,v⊥,loc))

→ 0

(with θ + ξ ≤ 1)
Passing to the limit:
Finally it is an easy game to study the convergence of the non linear term R(−t/ε)Eε(t, x +
R(t/ε)v).∇vgε. The idea is that we manage to compensate for the lack of compactness of the electric
field with respect to the x‖ variable by getting some on the moment with respect to the v‖ variable
which is the relevant quantity when one passes to the weak limit in the sense of distributions.

Prospects

A lot of other issues remain to be seen : what asymptotic equation do we get if we consider a “slowly”
varying magnetic field ? Which model should we consider for the electrons ? How should we choose the
scaling for the Debye Lenght and the Larmor Radius ?
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